Antimicrobial Susceptibility Profile of Rare Anaerobic Bacteria
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Agar Dilution
4.2. E-Tests
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagy, E. Anaerobic infections: Update on treatment considerations. Drugs 2010, 70, 841–858. [Google Scholar] [CrossRef]
- Cobo, F. Antimicrobial Susceptibility and Clinical Findings of Anaerobic Bacteria. Antibiotics 2022, 11, 351. [Google Scholar] [CrossRef] [PubMed]
- Zhao-Fleming, H.; Dissanaike, S.; Rumbaugh, K. Are anaerobes a major, underappreciated cause of necrotizing infections? Anaerobe 2017, 45, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Boyanova, L.; Justesen, U.S. How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2018, 24, 1139–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nouioui, I.; Carro, L.; García-López, M.; Meier-Kolthoff, J.P.; Woyke, T.; Kyrpides, N.C.; Pukall, R.; Klenk, H.-P.; Goodfellow, M.; Göker, M. Genome-Based Taxonomic Classification of the Phylum Actinobacteria. Front. Microbiol. 2018, 9, 2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyanova, L.; Kolarov, R.; Mitov, I. Recent evolution of antibiotic resistance in the anaerobes as compared to previous decades. Anaerobe 2015, 31, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Hecht, D.W. Prevalence of antibiotic resistance in anaerobic bacteria: Worrisome developments. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2004, 39, 92–97. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing of the European Society of Clinical Microbiology and Infectious Diseases: Clinical Breakpoints–Bacteria v.12.0 1 Jan 2022. Available online: www.eucast.org (accessed on 13 October 2022).
- Jolivet-Gougeon, A.; Buffet, A.; Dupuy, C.; Sixou, J.L.; Bonnaure-Mallet, M.; David, S.; Cormier, M. In vitro susceptibilities of Capnocytophaga isolates to beta-lactam antibiotics and beta-lactamase inhibitors. Antimicrob. Agents Chemother. 2000, 44, 3186–3188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuetz, A.N. Antimicrobial resistance and susceptibility testing of anaerobic bacteria. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2014, 59, 698–705. [Google Scholar] [CrossRef] [Green Version]
- Cobo, F.; Rodríguez-Granger, J.; Pérez-Zapata, I.; Sampedro, A.; Aliaga, L.; Navarro-Marí, J.M. Antimicrobial susceptibility and clinical findings of significant anaerobic bacteria in southern Spain. Anaerobe 2019, 59, 49–53. [Google Scholar] [CrossRef]
- Lotte, R.; Lotte, L.; Ruimy, R. Actinotignum schaalii (formerly Actinobaculum schaalii): A newly recognized pathogen-review of the literature. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2016, 22, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badri, M.; Nilson, B.; Ragnarsson, S.; Senneby, E.; Rasmussen, M. Clinical and microbiological features of bacteraemia with Gram-positive anaerobic cocci: A population-based retrospective study. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2019, 25, 760.e1–760.e6. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.H.; Kim, M.; Lee, Y.; Lee, K.; Chong, Y. Antimicrobial Susceptibility Patterns of Anaerobic Bacterial Clinical Isolates From 2014 to 2016, Including Recently Named or Renamed Species. Ann. Lab. Med. 2019, 39, 190–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wybo, I.; van den Bossche, D.; Soetens, O.; Vekens, E.; Vandoorslaer, K.; Claeys, G.; Byun, J.-H.; Kim, M.; Lee, Y.; Lee, K.; et al. Fourth Belgian multicentre survey of antibiotic susceptibility of anaerobic bacteria. J. Antimicrob. Chemother. 2014, 69, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Rodloff, A.C.; Dowzicky, M.J. In vitro activity of tigecycline and comparators against a European collection of anaerobes collected as part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) 2010–2016. Anaerobe 2018, 51, 78–88. [Google Scholar] [CrossRef]
- Petrina, M.A.B.; Cosentino, L.A.; Wiesenfeld, H.C.; Darville, T.; Hillier, S.L. Susceptibility of endometrial isolates recovered from women with clinical pelvic inflammatory disease or histological endometritis to antimicrobial agents. Anaerobe 2019, 56, 61–65. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Huang, Y.-T.; Liao, C.-H.; Yen, L.-C.; Lin, H.-Y.; Hsueh, P.-R. Increasing trends in antimicrobial resistance among clinically important anaerobes and Bacteroides fragilis isolates causing nosocomial infections: Emerging resistance to carbapenems. Antimicrob. Agents Chemother. 2008, 52, 3161–3168. [Google Scholar] [CrossRef] [Green Version]
- Maestre, J.R.; Bascones, A.; Sánchez, P.; Matesanz, P.; Aguilar, L.; Giménez, M.J.; Pérez-Balcabao, I.; Granizo, J.J.; Prieto, J. Odontogenic bacteria in periodontal disease and resistance patterns to common antibiotics used as treatment and prophylaxis in odontology in Spain. Rev. Esp. De Quimioter. Publ. Of. De La Soc. Esp. De Quimioter. 2007, 20, 61–67. [Google Scholar]
- Jeverica, S.; Kolenc, U.; Mueller-Premru, M.; Papst, L. Evaluation of the routine antimicrobial susceptibility testing results of clinically significant anaerobic bacteria in a Slovenian tertiary-care hospital in 2015. Anaerobe 2017, 47, 64–69. [Google Scholar] [CrossRef]
- Bhat, K.G.; Ingalagi, P.; Patil, S.; Patil, S.; Pattar, G. Antimicrobial susceptibility pattern of oral gram negative anaerobes from Indian subjects. Anaerobe 2021, 70, 102367. [Google Scholar] [CrossRef]
- Cattoir, V.; Varca, A.; Greub, G.; Prod’hom, G.; Legrand, P.; Lienhard, R. In vitro susceptibility of Actinobaculum schaalii to 12 antimicrobial agents and molecular analysis of fluoroquinolone resistance. J. Antimicrob. Chemother. 2010, 65, 2514–2517. [Google Scholar] [CrossRef]
- Hays, C.; Lienhard, R.; Auzou, M.; Barraud, O.; Guérin, F.; Ploy, M.-C.; Cattoir, V. Erm(X)-mediated resistance to macrolides, lincosamides and streptogramins in Actinobaculum schaalii. J. Antimicrob. Chemother. 2014, 69, 2056–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haller, P.; Bruderer, T.; Schaeren, S.; Laifer, G.; Frei, R.; Battegay, M.; Fluckiger, U.; Bassetti, S. Vertebral osteomyelitis caused by Actinobaculum schaalii: A difficult-to-diagnose and potentially invasive uropathogen. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2007, 26, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Barberis, C.; Cittadini, R.; del Castillo, M.; Acevedo, P.; García Roig, C.; Ramírez, M.S.; Perez, S.; Almuzara, M.; Vay, C. Actinobaculum schaalii causing urinary tract infections: Report of four cases from Argentina. J. Infect. Dev. Ctries. 2014, 8, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Özbay, B.O.; Bastuğ, A.; Köksal Cevher, Ş.; Yenigün, E.C.; Mumcuoğlu, I.; Bodur, H. Eggerthia catenaformis-related peritonitis in a patient with peritoneal dialysis. Anaerobe 2022, 75, 102558. [Google Scholar] [CrossRef] [PubMed]
- Foronda, C.; Calatrava, E.; Casanovas, I.; Martín-Hita, L.; Navarro-Marí, J.M.; Cobo, F. Eggerthia catenaformis bacteremia in a patient with an odontogenic abscess. Anaerobe 2019, 57, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, M.; Xu, H. First report of bacteremia caused by Eggerthia catenaformis in a patient with gastric malignancy in China. Anaerobe 2020, 64, 102218. [Google Scholar] [CrossRef] [PubMed]
- Sreckovic, S.; Kadija, M.; Ladjevic, N.; Starcevic, B.; Stijak, L.; Milovanovic, D. The first case of septic arthritis of the knee caused by Eggerthia catenaformis. Anaerobe 2022, 73, 102503. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.S.Y.; Kwang, L.L.; Rao, S.; Tan, T.Y. Anaerobic Bacteraemia Revisited: Species and Susceptibilities. Ann. Acad Med. Singap. 2015, 44, 13–18. [Google Scholar] [CrossRef]
- Nagaoka, R.; Kitagawa, H.; Koba, Y.; Tadera, K.; Hara, T.; Kashiyama, S.; Nomura, T.; Omori, K.; Shigemoto, N.; Yokozaki, M.; et al. Clinical and microbiological characteristics of Eggerthella lenta bacteremia at a Japanese tertiary hospital. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2021, 27, 1261–1264. [Google Scholar] [CrossRef] [PubMed]
- Ugarte-Torres, A.; Gillrie, M.R.; Griener, T.P.; Church, D.L. Eggerthella lenta Bloodstream Infections Are Associated With Increased Mortality Following Empiric Piperacillin-Tazobactam (TZP) Monotherapy: A Population-based Cohort Study. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2018, 67, 221–228. [Google Scholar] [CrossRef]
- Petrina, M.A.B.; Cosentino, L.A.; Rabe, L.K.; Hillier, S.L. Susceptibility of bacterial vaginosis (BV)-associated bacteria to secnidazole compared to metronidazole, tinidazole and clindamycin. Anaerobe 2017, 47, 115–119. [Google Scholar] [CrossRef]
- Zheng, G.; Summanen, P.H.; Talan, D.; Bennion, R.; Rowlinson, M.-C.; Finegold, S.M. Phenotypic and molecular characterization of Solobacterium moorei isolates from patients with wound infection. J. Clin. Microbiol. 2010, 48, 873–876. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, R.M.; Holt, H.M.; Justesen, U.S. Solobacterium moorei bacteremia: Identification, antimicrobial susceptibility, and clinical characteristics. J. Clin. Microbiol. 2011, 49, 2766–2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, B.M.; Geary, I.; Lee, M.E.; Duerden, B.I. Comparison of the in vitro activities of fenticonazole, other imidazoles, metronidazole, and tetracycline against organisms associated with bacterial vaginosis and skin infections. Antimicrob. Agents Chemother. 1989, 33, 970–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenner, L.; Roux, V.; Ananian, P.; Raoult, D. Alistipes finegoldii in blood cultures from colon cancer patients. Emerg. Infect. Dis. 2007, 13, 1260–1262. [Google Scholar] [CrossRef] [PubMed]
- Cobo, F.; Foronda, C.; Pérez-Carrasco, V.; Martin-Hita, L.; García-Salcedo, J.A.; Navarro-Marí, J.M. First description of abdominal infection due to Alistipes onderdonkii. Anaerobe 2020, 66, 102283. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-R.; Huang, Y.-T.; Liao, C.-H.; Chuang, T.-Y.; Wang, W.-J.; Lee, S.-W.; Lee, L.-N.; Hsueh, P.-R. Clinical and microbiological characteristics of bacteremia caused by Eggerthella, Paraeggerthella, and Eubacterium species at a university hospital in Taiwan from 2001 to 2010. J. Clin. Microbiol. 2012, 50, 2053–2055. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-S.; Rowlinson, M.-C.; Bennion, R.; Liu, C.; Talan, D.; Summanen, P.; Finegold, S.M. Characterization of Slackia exigua isolated from human wound infections, including abscesses of intestinal origin. J. Clin. Microbiol. 2010, 48, 1070–1075. [Google Scholar] [CrossRef] [Green Version]
- Casale, R.; Bianco, G.; Cosma, S.; Micheletti, L.; Comini, S.; Iannaccone, M.; Boattini, M.; Cavallo, R.; Benedetto, C.; Costa, C. Trueperella bernardiae bloodstream infection following onco-gynaecologic surgery and literature review. Le Infez. Med. 2022, 30, 124–128. [Google Scholar] [CrossRef]
- Citron, D.M.; Ostovari, M.I.; Karlsson, A.; Goldstein, E.J. Evaluation of the E test for susceptibility testing of anaerobic bacteria. J. Clin. Microbiol. 1991, 29, 2197–2203. [Google Scholar] [CrossRef]
- Herra, C.M.; Cafferkey, M.T.; Keane, C.T. The in-vitro susceptibilities of vaginal lactobacilli to four broad-spectrum antibiotics, as determined by the agar dilution and E test methods. J. Antimicrob. Chemother. 1995, 35, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Wüst, J.; Hardegger, U. Comparison of the E test and a reference agar dilution method for susceptibility testing of anaerobic bacteria. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 1992, 11, 1169–1173. [Google Scholar] [CrossRef] [PubMed]
- Bradford, P.A.; Petersen, P.J.; Young, M.; Jones, C.H.; Tischler, M.; O’Connell, J. Tigecycline MIC testing by broth dilution requires use of fresh medium or addition of the biocatalytic oxygen-reducing reagent oxyrase to standardize the test method. Antimicrob. Agents Chemother. 2005, 49, 3903–3909. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing of the European Society of Clinical Microbiology and Infectious Diseases: When There Are no Breakpoints in the EUCAST Tables (updated 1 December 2021). Available online: www.eucast.org (accessed on 13 October 2022).
- DIN EN ISO 20776-1:2020-12, Empfindlichkeitsprüfung von Infektionserregern und Leistungsbewertung von Geräten zur Antimikrobiellen Empfindlichkeitsprüfung_- Teil_1: Referenzmethode zur Testung der In-Vitro-Aktivität von antimikrobiellen Substanzen Gegen Schnell Wachsende Aerobe Bakterien, die Infektionskrankheiten Verursachen (ISO_20776-1:2019, Einschließlich der Korrigierten Fassung von 2019-12); Deutsche Fassung EN_ISO_20776-1:2020. Available online: https://doi.org/10.31030/3184793 (accessed on 21 December 2022).
MIC (mg/L) | No. of Isolates with Indicated Susceptibility (%) | ||||||
---|---|---|---|---|---|---|---|
Bacteria | Antibiotic | Range | 50% | 90% | S | I | R |
Prevotella spp. n = 25 | Penicillin | 0.03–>2 | 0.125 | >2 | 16 (64) | 9 (36) | |
Ampsulb ° | 0.5 | 0.5 | 0.5 | 25 (100) | |||
Piptaz ° | 0.125–1 | 0.125 | 0.125 | 24 (96) | 1 (4) | ||
Imipenem | 0.03–0.06 | 0.03 | 0.06 | 25 (100) | |||
Meropenem | 0.03–0.125 | 0.03 | 0.125 | 25 (100) | |||
Cefoxitin | 0.25–4 | 1 | 4 | ||||
Metronidazole | 0.125–>8 | 0.5 | 8 | 22 (88) | 3 (12) | ||
Moxifloxacin | 0.06–>2 | 1 | 1 | 3 (12) | 22 (88) | ||
Clindamycin | 0.03–>2 | 0.5 | >2 | 19 (76) | 6 (24) | ||
Doxycycline | 0.125–>4 | 0.25 | 4 | ||||
Tigecycline | 0.125–0.5 | 0.125 | 0.25 | 25 (100) | |||
Capnocytophaga spp. n = 22 | Penicillin | 0.03–>2 | 0.125 | 2 | 17 (77) | 5 (23) | |
Ampsulb | 0.5–2 | 0.5 | 0.5 | 22 (100) | |||
Piptaz | 0.5–>16 | 0.5 | 0.5 | 21 (95.5) | 1 (4.5) | ||
Imipenem | 0.25–0.5 | 0.25 | 0.5 | 22 (100) | |||
Meropenem | 0.25–2 | 0.25 | 0.5 | 22 (100) | |||
Cefoxitin | 1–4 | 2 | 2 | ||||
Metronidazole | 2–>16 | >16 | >16 | 4 (18) | 18 (82) | ||
Moxifloxacin | 0.06–>2 | 0.06 | 2 | 19 (86) | 3 (14) | ||
Clindamycin | 0.03–>2 | >2 | >2 | 7 (32) | 15 (68) | ||
Doxycycline | 0.25–1 | 0.5 | 1 | ||||
Tigecycline | 0.125–0.25 | 0.25 | 0.25 | 22 (100) | |||
Fusobacterium spp. n = 12 | Penicillin | 0.03–1 | 0.03 | 1 | 10 (83) | 2 (17) | |
Ampsulb | 0.5–4 | 0.5 | 4 | 10 (83) | 2 (17) | ||
Piptaz | 0.125–16 | 0.5 | 16 | 10 (83) | 2 (17) | ||
Imipenem | 0.03–2 | 0.25 | 2 | 12 (100) | |||
Meropenem | 0.03–2 | 0.25 | 0.5 | 12 (100) | |||
Cefoxitin | 0.25–8 | 4 | 8 | ||||
Metronidazole | 0.25–>16 | 0.5 | 0.5 | 12 (100) | |||
Moxifloxacin | 0.06–>2 | 1 | >2 | 6 (50) | 6 (50) | ||
Clindamycin | 0.03–>2 | 0.125 | >2 | 9 (75) | 3 (25) | ||
Doxycycline | 0.125–2 | 0.25 | 1 | ||||
Tigecycline | 0.125–0.25 | 0.125 | 0.25 | 12 (100) | |||
Eggerthia catenaformis n = 16 | Penicillin | 0.03 | 0.03 | 0.03 | 16 (100) | ||
Ampsulb | 0.5 | 0.5 | 0.5 | 16 (100) | |||
Piptaz | 0.5 | 0.5 | 0.5 | 16 (100) | |||
Imipenem | 0.25 | 0.25 | 0.25 | 16 (100) | |||
Meropenem | 0.25 | 0.25 | 0.25 | 16 (100) | |||
Cefoxitin | 0.25–2 | 1 | 2 | ||||
Metronidazole | 0.5–4 | 2 | 4 | 16 (100) | |||
Moxifloxacin | 0.25–>2 | 0.5 | 0.5 | 1 (6) | 15 (94) | ||
Clindamycin | 0.06–>2 | 0.25 | 2 | 14 (87.5) | 2 (12.5) | ||
Doxycycline | 0.125–>4 | 0.125 | 2 | ||||
Tigecycline | 0.125 | 0.125 | 0.125 | 16 (100) | |||
Actinotignum schaalii n = 11 | Penicillin | 0.03–0.5 | 0.03 | 0.5 | 11 (100) | ||
Ampsulb | 0.5–1 | 0.5 | 0.5 | 11 (100) | |||
Piptaz | 0.5 | 0.5 | 0.5 | 11 (100) | |||
Imipenem | 0.25 | 0.25 | 0.25 | 11 (100) | |||
Meropenem | 0.25 | 0.25 | 0.25 | 11 (100) | |||
Cefoxitin | 0.25–1 | 0.25 | 0.5 | ||||
Metronidazole | >16 | >16 | >16 | 11 (100) | |||
Moxifloxacin | 1–2 | 1 | 1 | 11 (100) | |||
Clindamycin | 0.06–>2 | >2 | >2 | 5 (45.5) | 6 (54.5) | ||
Doxycycline | 0.125–>4 | 0.25 | 0.25 | ||||
Tigecycline | 0.125–0.5 | 0.125 | 0.25 | 11 (100) | |||
Lancefieldella spp. n = 13 | Penicillin | 0.03–>2 | 0.125 | 1 | 11 (85) | 2 (15) | |
Ampsulb | 0.5 | 0.5 | 0.5 | 13 (100) | |||
Piptaz | 0.5 | 0.5 | 0.5 | 13 (100) | |||
Imipenem | 0.25–0.5 | 0.25 | 0.5 | 13 (100) | |||
Meropenem | 0.25–0.5 | 0.25 | 0.25 | 13 (100) | |||
Cefoxitin | 1–8 | 2 | 4 | ||||
Metronidazole | 0.5–>4 | 1 | 4 | 12 (92) | 1 (8) | ||
Moxifloxacin | 0.125–>2 | 0.25 | 0.25 | 12 (92) | 1 (8) | ||
Clindamycin | 0.03–>2 | 0.5 | >2 | 8 (61.5) | 5 (38.5) | ||
Doxycycline | 0.25–2 | 1 | 2 | ||||
Tigecycline | 0.125–0.25 | 0.125 | 0.125 | 13 (100) | |||
Fannyhessae vaginae n = 1 | Penicillin | 0.5 | 1 (100) | ||||
Ampsulb | 0.5 | 1 (100) | |||||
Piptaz | 0.5 | 1 (100) | |||||
Imipenem | 0.25 | 1 (100) | |||||
Meropenem | 0.25 | 1 (100) | |||||
Cefoxitin | 1 | ||||||
Metronidazole | >16 | 1 (100) | |||||
Moxifloxacin | 0.125 | 1 (100) | |||||
Clindamycin | 0.03 | 1 (100) | |||||
Doxycycline | 4 | ||||||
Tigecycline | 0.125 | 1 (100) | |||||
Porphyromonas asaccharolytica n = 2 | Penicillin | 0.03 | 2 (100) | ||||
Ampsulb | 0.5 | 2 (100) | |||||
Piptaz | 0.5 | 2 (100) | |||||
Imipenem | 0.25 | 2 (100) | |||||
Meropenem | 0.25 | 2 (100) | |||||
Cefoxitin | 0.03 | ||||||
Metronidazole | 0.5–8 | 1 (50) | 1 (50) | ||||
Moxifloxacin | 0.125 | 2 (100) | |||||
Clindamycin | 0.03 | 2 (100) | |||||
Doxycycline | 0.125–0.5 | ||||||
Tigecycline | 0.125 | 2 (100) | |||||
Alistipes finegoldii n = 2 | Penicillin | 1–>2 | 2 (100) | ||||
Ampsulb | 1 | 2 (100) | |||||
Piptaz | 0.5–1 | 2 (100) | |||||
Imipenem | 1–2 | 2 (100) | |||||
Meropenem | 2 | 2 (100) | |||||
Cefoxitin | 8 | ||||||
Metronidazole | 1–>16 | 1 (50) | 1 (50) | ||||
Moxifloxacin | 2–>2 | 2 (100) | |||||
Clindamycin | 0.5–2 | 1 (50) | 1 (50) | ||||
Doxycycline | 2–4 | ||||||
Tigecycline | 0.25 | 2 (100) | |||||
Odoribacter splanchnicus n = 3 | Penicillin | >2 | 3 (100) | ||||
Ampsulb | 0.5 | 3 (100) | |||||
Piptaz | 0.5 | 3 (100) | |||||
Imipenem | 0.25–1 | 3 (100) | |||||
Meropenem | 0.25 | 3 (100) | |||||
Cefoxitin | 1–2 | ||||||
Metronidazole | 0.5 | 3 (100) | |||||
Moxifloxacin | 2–>2 | 3 (100) | |||||
Clindamycin | 0.03 | 3 (100) | |||||
Doxycycline | 0.125–>4 | ||||||
Tigecycline | 0.125–0.25 | 3 (100) | |||||
Eggerthella lenta n = 2 | Penicillin | 1–>2 | 2 (100) | ||||
Ampsulb | 2–4 | 1 (50) | 1 (50) | ||||
Piptaz | >16 | 2 (100) | |||||
Imipenem | 2 | 2 (100) | |||||
Meropenem | 0.5–2 | 2 (100) | |||||
Cefoxitin | 8–>8 | ||||||
Metronidazole | 0.5–2 | 2 (100) | |||||
Moxifloxacin | 0.25–>2 | 1 (50) | 1 (50) | ||||
Clindamycin | 0.25–0.5 | 2 (100) | |||||
Doxycycline | >4 | ||||||
Tigecycline | 0.25 | 2 (100) | |||||
Eubacterium callanderi n = 4 | Penicillin | 2–>2 | 4 (100) | ||||
Ampsulb | 0.5 | 4 (100) | |||||
Piptaz | 0.5 | 4 (100) | |||||
Imipenem | 0.25 | 4 (100) | |||||
Meropenem | 0.25 | 4 (100) | |||||
Cefoxitin | 2 | ||||||
Metronidazole | 0.5–>16 | 3 (75) | 1 (25) | ||||
Moxifloxacin | 1–>2 | 4 (100) | |||||
Clindamycin | 1–>2 | 4 (100) | |||||
Doxycycline | 4–>4 | ||||||
Tigecycline | 0.125 | 4 (100) | |||||
Mobiluncus curtsii n = 1 | Penicillin | 0.06 | 1 (100) | ||||
Ampsulb | 0.5 | 1 (100) | |||||
Piptaz | 4 | 1 (100) | |||||
Imipenem | 0.25 | 1 (100) | |||||
Meropenem | 0.25 | 1 (100) | |||||
Cefoxitin | 2 | ||||||
Metronidazole | 16 | 1 (100) | |||||
Moxifloxacin | 0.125 | 1 (100) | |||||
Clindamycin | >2 | 1 (100) | |||||
Doxycycline | 0.125 | ||||||
Tigecycline | 0.125 | 1 (100) | |||||
Slackia exigua n = 4 | Penicillin | 0.125–1 | 3 (75) | 1 (25) | |||
Ampsulb | 0.5 | 4 (100) | |||||
Piptaz | 0.5 | 4 (100) | |||||
Imipenem | 0.25 | 4 (100) | |||||
Meropenem | 0.25 | 4 (100) | |||||
Cefoxitin | 4–8 | ||||||
Metronidazole | 0.5 | 4 (100) | |||||
Moxifloxacin | 0.06–0.125 | 4 (100) | |||||
Clindamycin | 0.03–0.125 | 4 (100) | |||||
Doxycycline | 0.125–>4 | ||||||
Tigecycline | 0.125 | 4 (100) | |||||
Solobacterium moorei n = 1 | Penicillin | 0.03 | 1 (100) | ||||
Ampsulb | 0.5 | 1 (100) | |||||
Piptaz | 0.5 | 1 (100) | |||||
Imipenem | 0.25 | 1 (100) | |||||
Meropenem | 0.25 | 1 (100) | |||||
Cefoxitin | 1 | ||||||
Metronidazole | 2 | 1 (100) | |||||
Moxifloxacin | 0.5 | 1 (100) | |||||
Clindamycin | 0.03 | 1 (100) | |||||
Doxycycline | 0.25 | ||||||
Tigecycline | 0.125 | 1 (100) | |||||
Trueperella bernardiae n = 1 | Penicillin | 0.03 | 1 (100) | ||||
Ampsulb | 0.5 | 1 (100) | |||||
Piptaz | 0.5 | 1 (100) | |||||
Imipenem | 0.25 | 1 (100) | |||||
Meropenem | 0.25 | 1 (100) | |||||
Cefoxitin | 0.25 | ||||||
Metronidazole | >16 | 1 (100) | |||||
Moxifloxacin | 1 | 1 (100) | |||||
Clindamycin | 0.06 | 1 (100) | |||||
Doxycycline | 0.5 | ||||||
Tigecycline | 0.125 | 1 (100) |
MIC (mg/L) | No. of Isolates with Indicated Susceptibility (%) | ||||||
---|---|---|---|---|---|---|---|
Bacteria | Antibiotic | Range | 50% | 90% | S | I | R |
Prevotella spp. n = 25 | Penicillin | <0.03–>64 | 0.125 | 32 | 17 (68) | 8 (32) | |
Ampsulb ° | <0.03–1 | 0.03 | 0.25 | 25 (100) | |||
Imipenem | <0.03–0.25 | 0.06 | 0.125 | 25 (100) | |||
Meropenem | <0.03–0.125 | 0.06 | 0.125 | 24 (96) | 1 (4) | ||
Cefoxitin | <0.03–4 | 2 | 4 | ||||
Metronidazole | <0.03–1 | 0.25 | 0.5 | 25 (100) | |||
Moxifloxacin | <0.03–>32 | 1 | >32 | 1 (4) | 24 (96) | ||
Clindamycin | <0.03–>256 | <0.03 | >256 | 21 (84) | 4 (16) | ||
Doxycycline | <0.03–16 | 0.125 | 8 | ||||
Tigecycline | <0.03–4 | 0.125 | 0.25 | 24 (96) | 1 (4) | ||
Eravacycline | <0.03–0.125 | <0.03 | 0.06 | ||||
Capnocytophaga spp. n = 22 | Penicillin | <0.03–2 | 0.125 | 20.5 | 21 (96) | 1 (4) | |
Ampsulb | <0.03–1 | <0.03 | 0.25 | 22 (100) | |||
Imipenem | <0.03–1 | 0.25 | 0.5 | 22 (100) | |||
Meropenem | <0.03–0.25 | 0.06 | 0.125 | 22 (100) | |||
Cefoxitin | 0.125–8 | 2 | 4 | ||||
Metronidazole | 1–>256 | 32 | >256 | 3 (14) | 19 (86) | ||
Moxifloxacin | <0.03–8 | <0.03 | 2 | 19 (86) | 3 (14) | ||
Clindamycin | <0.03–>256 | >256 | >256 | 8 (36) | 14 (64) | ||
Doxycycline | <0.03–0.5 | 0.125 | 0.25 | ||||
Tigecycline | <0.03–0.25 | 0.06 | 0.125 | 22 (100) | |||
Eravacycline | <0.03–0.03 | <0.03 | 0.03 | ||||
Fusobacterium spp. n = 12 | Penicillin | <0.03–0.5 | <0.03 | 0.25 | 12 (100) | ||
Ampsulb | <0.03–1 | 0.06 | 1 | 12 (100) | |||
Imipenem | <0.03–2 | 0.125 | 1 | 12 (100) | |||
Meropenem | <0.03–0.25 | <0.03 | 0.125 | 12 (100) | |||
Cefoxitin | <0.03–>32 | 0.25 | 8 | ||||
Metronidazole | <0.03–>256 | 0.06 | 0.125 | 11 (92) | 1 (8) | ||
Moxifloxacin | 0.06–>32 | 0.5 | >32 | 6 (50) | 6 (50) | ||
Clindamycin | <0.03–>256 | 0.06 | 32 | 8 (67) | 4 (33) | ||
Doxycycline | <0.03–16 | 0.125 | 0.5 | ||||
Tigecycline | <0.03–0.5 | 0.03 | 0.25 | 12 (100) | |||
Eravacycline | <0.03–0.03 | <0.03 | <0.03 | ||||
Eggerthia catenaformis n = 16 | Penicillin | <0.03–0.06 | <0.03 | <0.03 | 16 (100) | ||
Ampsulb | <0.03 | <0.03 | <0.03 | 16 (100) | |||
Imipenem | <0.03–0.03 | <0.03 | 0.03 | 16 (100) | |||
Meropenem | 0.03–0.125 | 0.06 | 0.125 | 16 (100) | |||
Cefoxitin | <0.03–1 | 0.5 | 1 | ||||
Metronidazole | <0.03–4 | 1 | 4 | 16 (100) | |||
Moxifloxacin | 0.5–1 | 0.5 | 1 | 1 (6) | 13 (94) | ||
Clindamycin | 0.03–>256 | 0.25 | >256 | 13 (81) | 3 (19) | ||
Doxycycline | <0.03–32 | 0.1250.03 | 16 | ||||
Tigecycline | <0.03–0.03 | <0.03 | <0.03 | 16 (100) | |||
Eravacycline | <0.03 | <0.03 | <0.03 | ||||
Actinotignum schaalii n = 11 | Penicillin | <0.03–0.06 | <0.03 | 0.03 | 11 (100) | ||
Ampsulb | <0.03–0.03 | <0.03 | <0.03 | 11 (100) | |||
Imipenem | <0.03–0.25 | <0.03 | <0.03 | 11 (100) | |||
Meropenem | <0.03–0.25 | <0.03 | 0.06 | 11 (100) | |||
Cefoxitin | 0.25–1 | 0.25 | 0.5 | ||||
Metronidazole | >256 | >256 | >256 | 11 (100) | |||
Moxifloxacin | 0.5–8 | 1 | 4 | 11 (100) | |||
Clindamycin | <0.03–>256 | 0.125 | >256 | 7 (63.6) | 4 (36.4) | ||
Doxycycline | <0.03–8 | 0.06 | 0.125 | ||||
Tigecycline | <0.03–0.25 | <0.03 | 0.25 | 11 (100) | |||
Eravacycline | <0.03–0.06 | <0.03 | 0.03 | ||||
Lancefieldella spp. n = 13 | Penicillin | <0.03–0.25 | 0.06 | 0.25 | 13 (100) | ||
Ampsulb | <0.03–0.125 | <0.03 | 0.06 | 13 (100) | |||
Imipenem | <0.03–0.125 | <0.03 | 0.125 | 13 (100) | |||
Meropenem | <0.03–0.5 | 0.125 | 0.25 | 13 (100) | |||
Cefoxitin | 0.5–8 | 2 | 4 | ||||
Metronidazole | 0.06–>256 | 0.5 | >256 | 12 (92) | 1 (8) | ||
Moxifloxacin | 0.06–>32 | 0.25 | 0.5 | 9 (71) | 4 (29) | ||
Clindamycin | <0.03–8 | 1 | 4 | 6 (46) | 7 (54) | ||
Doxycycline | <0.03–1 | 0.5 | 1 | ||||
Tigecycline | <0.03–0.25 | 0.125 | 0.125 | 13 (100) | |||
Eravacycline | <0.03–0.06 | 0.03 | 0.06 | ||||
Fannyhessae vaginae n = 1 | Penicillin | 0.125 | 1 (100) | ||||
Ampsulb | 0.06 | 1 (100) | |||||
Imipenem | <0.03 | 1 (100) | |||||
Meropenem | <0.03 | 1 (100) | |||||
Cefoxitin | 2 | ||||||
Metronidazole | >256 | 1 (100) | |||||
Moxifloxacin | 0.125 | 1 (100) | |||||
Clindamycin | <0.03 | 1 (100) | |||||
Doxycycline | 4 | ||||||
Tigecycline | 0.03 | 1 (100) | |||||
Eravacycline | <0.03 | ||||||
Porphyromonas asaccharolytica n = 2 | Penicillin | <0.03–0.06 | 2 (100) | ||||
Ampsulb | <0.03 | 2 (100) | |||||
Imipenem | <0.03–0.06 | 2 (100) | |||||
Meropenem | <0.03 | 2 (100) | |||||
Cefoxitin | 0.125–0.5 | ||||||
Metronidazole | <0.03 | 2 (100) | |||||
Moxifloxacin | 0.125 | 2 (100) | |||||
Clindamycin | <0.03–64 | 2 (100) | |||||
Doxycycline | <0.03–2 | ||||||
Tigecycline | <0.03–0.06 | 2 (100) | |||||
Eravacycline | <0.03 | ||||||
Alistipes finegoldii n = 2 | Penicillin | <0.03–2 | 1 (50) | 1 (50) | |||
Ampsulb | <0.03–0.125 | 2 (100) | |||||
Imipenem | <0.03–1 | 2 (100) | |||||
Meropenem | <0.03–0.25 | 2 (100) | |||||
Cefoxitin | 0.06–4 | ||||||
Metronidazole | <0.03–0.125 | 2 (100) | |||||
Moxifloxacin | 0.5–>32 | 2 (100) | |||||
Clindamycin | 0.25–2 | 1 (50) | 1 (50) | ||||
Doxycycline | 0.125–2 | ||||||
Tigecycline | 0.06–0.25 | 2 (100) | |||||
Eravacycline | <0.03 | ||||||
Odoribacter splanchnicus n = 3 | Penicillin | <0.03–2 | 2 (67) | 1 (33) | |||
Ampsulb | <0.03 | 3 (100) | |||||
Imipenem | <0.03–0.03 | 3 (100) | |||||
Meropenem | <0.03 | 3 (100) | |||||
Cefoxitin | <0.03–1 | ||||||
Metronidazole | <0.03 | 3 (100) | |||||
Moxifloxacin | 2–>32 | 3 (100) | |||||
Clindamycin | <0.03 | 3 (100) | |||||
Doxycycline | <0.03–4 | ||||||
Tigecycline | <0.03–0.03 | 3 (100) | |||||
Eravacycline | <0.03 | ||||||
Eggerthella lenta n = 2 | Penicillin | 1–4 | 2 (100) | ||||
Ampsulb | 0.125–2 | 2 (100) | |||||
Imipenem | 0.125–2 | 2 (100) | |||||
Meropenem | 0.5 | 2 (100) | |||||
Cefoxitin | 8 | ||||||
Metronidazole | 0.125 | 2 (100) | |||||
Moxifloxacin | 0.25–4 | 1 (50) | 1 (50) | ||||
Clindamycin | 0.125–0.5 | 2 (100) | |||||
Doxycycline | 8 | ||||||
Tigecycline | 0.06 | 2 (100) | |||||
Eravacycline | <0.03–0.03 | ||||||
Eubacterium callanderi n = 4 | Penicillin | 0.25–2 | 1 (25) | 3 (75) | |||
Ampsulb | 0.06–0.125 | 4 (100) | |||||
Imipenem | <0.03–0.03 | 4 (100) | |||||
Meropenem | <0.03–0.06 | 4 (100) | |||||
Cefoxitin | 1–2 | ||||||
Metronidazole | <0.03–>256 | 1 (25) | 3 (75) | ||||
Moxifloxacin | 0.25–>32 | 4 (100) | |||||
Clindamycin | 0.5–>256 | 4 (100) | |||||
Doxycycline | 1–4 | ||||||
Tigecycline | <0.03–0.06 | 4 (100) | |||||
Eravacycline | <0.03–0.03 | ||||||
Mobiluncus curtsii n = 1 | Penicillin | <0.03 | 1 (100) | ||||
Ampsulb | 0.06 | 1 (100) | |||||
Imipenem | 0.06 | 1 (100) | |||||
Meropenem | 0.03 | 1 (100) | |||||
Cefoxitin | 2 | ||||||
Metronidazole | 32 | 1 (100) | |||||
Moxifloxacin | 0.03 | 1 (100) | |||||
Clindamycin | >256 | 1 (100) | |||||
Doxycycline | 0.125 | ||||||
Tigecycline | 0.03 | 1 (100) | |||||
Eravacycline | 0.03 | ||||||
Slackia exigua n = 4 | Penicillin | <0.03–0.25 | 4 (100) | ||||
Ampsulb | <0.03–0.25 | 4 (100) | |||||
Imipenem | <0.03–0.06 | 4 (100) | |||||
Meropenem | 0.03–0.06 | 4 (100) | |||||
Cefoxitin | 4–8 | ||||||
Metronidazole | <0.03–0.06 | 4 (100) | |||||
Moxifloxacin | 0.06 | 4 (100) | |||||
Clindamycin | <0.03 | 4 (100) | |||||
Doxycycline | 0.06–24 | ||||||
Tigecycline | <0.03–0.125 | 4 (100) | |||||
Eravacycline | <0.03 | ||||||
Solobacterium moorei n = 1 | Penicillin | <0.03 | 1 (100) | ||||
Ampsulb | <0.03 | 1 (100) | |||||
Imipenem | <0.03 | 1 (100) | |||||
Meropenem | 0.06 | 1 (100) | |||||
Cefoxitin | 0.25 | ||||||
Metronidazole | 0.25 | 1 (100) | |||||
Moxifloxacin | 0.5 | 1 (100) | |||||
Clindamycin | 0.125 | 1 (100) | |||||
Doxycycline | 0.125 | ||||||
Tigecycline | 0.125 | 1 (100) | |||||
Eravacycline | <0.03 | ||||||
Trueperella bernardiae n = 1 | Penicillin | <0.03 | 1 (100) | ||||
Ampsulb | 0.03 | 1 (100) | |||||
Imipenem | 0.03 | 1 (100) | |||||
Meropenem | 0.03 | 1 (100) | |||||
Cefoxitin | 0.06 | ||||||
Metronidazole | >256 | 1 (100) | |||||
Moxifloxacin | 1 | 1 (100) | |||||
Clindamycin | 0.06 | 1 (100) | |||||
Doxycycline | 0.25 | ||||||
Tigecycline | 0.06 | 1 (100) | |||||
Eravacycline | <0.03 |
Antibiotic | Essential Agreement (%) | Categorical Agreement (%) | Minor Error (%) | Major Error (%) | Very Major Error (%) |
---|---|---|---|---|---|
Penicillin | 90/120 (75) | 104/120 (86.7) | 16/120 (13.3) | ||
Ampicillin/sulbactam | 116/120 (96.7) | 117/120 (97.5) | 3/120 (2.5) | ||
Imipenem | 107/120 (89.2) | 120/120 (100) | |||
Meropenem | 112/120 (93.3) | 119/120 (99.2) | 1/120 (0.8) | ||
Cefoxitin | 102/120 (85) | ||||
Metronidazole * | 62/87 (71.3) | 78/87 (89.7) | 3/87 (3.4) | 6/87 (6.9) | |
Moxifloxacin | 108/120 (90) | 109/120 (91) | 8/120 (7.5) | 3/120 (2.5) | |
Clindamycin | 99/120 (82.5) | 109/120 (90.8) | 5/120 (4.5) | 6/120 (5) | |
Doxycycline | 87/120 (72.5) | ||||
Tigecycline | 116/120 (96.7) | 119/120 (99.2) | 1/120 (0.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolf, L.J.; Stingu, C.-S. Antimicrobial Susceptibility Profile of Rare Anaerobic Bacteria. Antibiotics 2023, 12, 63. https://doi.org/10.3390/antibiotics12010063
Wolf LJ, Stingu C-S. Antimicrobial Susceptibility Profile of Rare Anaerobic Bacteria. Antibiotics. 2023; 12(1):63. https://doi.org/10.3390/antibiotics12010063
Chicago/Turabian StyleWolf, Lena Josephine, and Catalina-Suzana Stingu. 2023. "Antimicrobial Susceptibility Profile of Rare Anaerobic Bacteria" Antibiotics 12, no. 1: 63. https://doi.org/10.3390/antibiotics12010063
APA StyleWolf, L. J., & Stingu, C. -S. (2023). Antimicrobial Susceptibility Profile of Rare Anaerobic Bacteria. Antibiotics, 12(1), 63. https://doi.org/10.3390/antibiotics12010063