Real-Time Monitoring of Antibiotics in the Critically Ill Using Biosensors
Abstract
:1. Therapeutic Drug Monitoring in the Critically Ill Is Challenging
2. Current Analytical Approaches to Determining Drug Concentrations
3. Application of Biosensors for TDM
4. Application of Biosensors to Individualize Antibiotic Use in the Critically Ill
4.1. Point of Care Devices for Single Timepoint Measurements
4.2. Continuous Real-Time Measurements
5. Clinical Development of Biosensors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdul-Aziz, M.-H.; Alffenaar, J.-W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.-A.; Pea, F.; Sjovall, F.; et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: A Position Paper#. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef]
- Novy, E.; Martinière, H.; Roger, C. The Current Status and Future Perspectives of Beta-Lactam Therapeutic Drug Monitoring in Critically Ill Patients. Antibiotics 2023, 12, 681. [Google Scholar] [CrossRef]
- Chaudhri, K.; Stocker, S.L.; Williams, K.M.; McLeay, R.C.; E Marriott, D.J.; Di Tanna, G.L.; O Day, R.; E Carland, J. Voriconazole: An audit of hospital-based dosing and monitoring and evaluation of the predictive performance of a dose-prediction software package. J. Antimicrob. Chemother. 2020, 75, 1981–1984. [Google Scholar] [CrossRef]
- Ryan, A.C.; Carland, J.E.; McLeay, R.C.; Lau, C.; Marriott, D.J.; Day, R.O.; Stocker, S.L. Evaluation of amikacin use and comparison of the models implemented in two Bayesian forecasting software packages to guide dosing. Br. J. Clin. Pharmacol. 2020, 87, 1422–1431. [Google Scholar] [CrossRef]
- Cunio, C.B.; Uster, D.W.; Carland, J.E.; Buscher, H.; Liu, Z.; Brett, J.; Stefani, M.; Jones, G.R.; Day, R.O.; Wicha, S.G.; et al. Towards precision dosing of vancomycin in critically ill patients: An evaluation of the predictive performance of pharmacometric models in ICU patients. Clin. Microbiol. Infect. 2020, 27, 783.e7–783.e14. [Google Scholar] [CrossRef]
- Heus, A.; Uster, D.W.; Grootaert, V.; Vermeulen, N.; Somers, A.; Veld, D.H.I.; Wicha, S.G.; De Cock, P.A. Model-informed precision dosing of vancomycin via continuous infusion: A clinical fit-for-purpose evaluation of published PK models. Int. J. Antimicrob. Agents 2022, 59, 106579. [Google Scholar] [CrossRef]
- Duong, A.; Simard, C.; Wang, Y.L.; Williamson, D.; Marsot, A. Aminoglycosides in the Intensive Care Unit: What Is New in Population PK Modeling? Antibiotics 2021, 10, 507. [Google Scholar] [CrossRef]
- Dhaese, S.A.M.; Farkas, A.; Colin, P.; Lipman, J.; Stove, V.; Verstraete, A.G.; A Roberts, J.; De Waele, J.J. Population pharmacokinetics and evaluation of the predictive performance of pharmacokinetic models in critically ill patients receiving continuous infusion meropenem: A comparison of eight pharmacokinetic models. J. Antimicrob. Chemother. 2018, 74, 432–441. [Google Scholar] [CrossRef]
- Guo, T.; Abdulla, A.; Koch, B.C.P.; van Hasselt, J.G.C.; Endeman, H.; Schouten, J.A.; Elbers, P.W.G.; Brüggemann, R.J.M.; van Hest, R.M.; Roggeveen, L.F.; et al. Pooled Population Pharmacokinetic Analysis for Exploring Ciprofloxacin Pharmacokinetic Variability in Intensive Care Patients. Clin. Pharmacokinet. 2022, 61, 869–879. [Google Scholar] [CrossRef]
- Swartling, M.; Smekal, A.-K.; Furebring, M.; Lipcsey, M.; Jönsson, S.; Nielsen, E.I. Population pharmacokinetics of cefotaxime in intensive care patients. Eur. J. Clin. Pharmacol. 2021, 78, 251–258. [Google Scholar] [CrossRef]
- Hanafin, P.O.; Nation, R.L.; Scheetz, M.H.; Zavascki, A.P.; Sandri, A.M.; Kwa, A.L.; Cherng, B.P.Z.; Kubin, C.J.; Yin, M.T.; Wang, J.; et al. Assessing the predictive performance of population pharmacokinetic models for intravenous polymyxin B in critically ill patients. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 1525–1537. [Google Scholar] [CrossRef]
- Turner, R.B.; Kojiro, K.; Shephard, E.A.; Won, R.; Chang, E.; Chan, D.; Elbarbry, F. Review and Validation of Bayesian Dose-Optimizing Software and Equations for Calculation of the Vancomycin Area Under the Curve in Critically Ill Patients. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018, 38, 1174–1183. [Google Scholar] [CrossRef]
- Luo, Q.; Yu, N.; Shi, C.; Wang, X.; Wu, J. Surface plasmon resonance sensor for antibiotics detection based on photo-initiated polymerization molecularly imprinted array. Talanta 2016, 161, 797–803. [Google Scholar] [CrossRef]
- Morales, M.A.; Halpern, J.M. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjugate Chem. 2018, 29, 3231–3239. [Google Scholar] [CrossRef]
- Tomassetti, M.; Conta, G.; Campanella, L.; Favero, G.; Sanzò, G.; Mazzei, F.; Antiochia, R. A Flow SPR Immunosensor Based on a Sandwich Direct Method. Biosensors 2016, 6, 22. [Google Scholar] [CrossRef]
- Zhu, Y.; Qu, C.; Kuang, H.; Xu, L.; Liu, L.; Hua, Y.; Wang, L.; Xu, C. Simple, rapid and sensitive detection of antibiotics based on the side-by-side assembly of gold nanorod probes. Biosens. Bioelectron. 2011, 26, 4387–4392. [Google Scholar] [CrossRef]
- Meneghello, A.; Tartaggia, S.; Alvau, M.D.; Polo, F.; Toffoli, G. Biosensing Technologies for Therapeutic Drug Monitoring. Curr. Med. Chem. 2018, 25, 4354–4377. [Google Scholar] [CrossRef]
- Ong, J.J.; Pollard, T.D.; Goyanes, A.; Gaisford, S.; Elbadawi, M.; Basit, A.W. Optical biosensors—Illuminating the path to personalized drug dosing. Biosens. Bioelectron. 2021, 188, 113331. [Google Scholar] [CrossRef]
- Ramanathan, K.; Danielsson, B. Principles and applications of thermal biosensors. Biosens. Bioelectron. 2001, 16, 417–423. [Google Scholar] [CrossRef]
- Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. [Google Scholar] [CrossRef]
- Krinsley, J.S.; Chase, J.G.; Gunst, J.; Martensson, J.; Schultz, M.J.; Taccone, F.S.; Wernerman, J.; Bohe, J.; De Block, C.; Desaive, T.; et al. Continuous glucose monitoring in the ICU: Clinical considerations and consensus. Crit. Care 2017, 21, 197. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; El-Laboudi, A.; Reddy, M.; Jugnee, N.; Sivasubramaniyam, S.; El Sharkawy, M.; Georgiou, P.; Johnston, D.; Oliver, N.; Cass, A.E.G. A pilot study in humans of microneedle sensor arrays for continuous glucose monitoring. Anal. Methods 2018, 10, 2088–2095. [Google Scholar] [CrossRef]
- Crapnell, R.D.; Tridente, A.; Banks, C.E.; Dempsey-Hibbert, N.C. Evaluating the Possibility of Translating Technological Advances in Non-Invasive Continuous Lactate Monitoring into Critical Care. Sensors 2021, 21, 879. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Mitchell, K.M.; Albahadily, F.N.; Michaelis, E.K.; Wilson, G.S. Direct measurement of glutamate release in the brain using a dual enzyme-based electrochemical sensor. Brain Res. 1994, 659, 117–125. [Google Scholar] [CrossRef]
- Rawson, T.M.; Gowers, S.A.N.; E Freeman, D.M.; Wilson, R.C.; Sharma, S.; Gilchrist, M.; MacGowan, A.; Lovering, A.; Bayliss, M.; Kyriakides, M.; et al. Microneedle biosensors for real-time, minimally invasive drug monitoring of phenoxymethylpenicillin: A first-in-human evaluation in healthy volunteers. Lancet Digit. Health 2019, 1, e335–e343. [Google Scholar] [CrossRef]
- Kling, A.; Chatelle, C.; Armbrecht, L.; Qelibari, E.; Kieninger, J.; Dincer, C.; Weber, W.; Urban, G. Multianalyte Antibiotic Detection on an Electrochemical Microfluidic Platform. Anal. Chem. 2016, 88, 10036–10043. [Google Scholar] [CrossRef]
- Dauphin-Ducharme, P.; Yang, K.; Arroyo-Currás, N.; Ploense, K.L.; Zhang, Y.; Gerson, J.; Kurnik, M.; Kippin, T.E.; Stojanovic, M.N.; Plaxco, K.W. Electrochemical Aptamer-Based Sensors for Improved Therapeutic Drug Monitoring and High-Precision, Feedback-Controlled Drug Delivery. ACS Sens. 2019, 4, 2832–2837. [Google Scholar] [CrossRef]
- Lin, S.; Cheng, X.; Zhu, J.; Wang, B.; Jelinek, D.; Zhao, Y.; Wu, T.-Y.; Horrillo, A.; Tan, J.; Yeung, J.; et al. Wearable microneedle-based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows. Sci. Adv. 2022, 8, eabq4539. [Google Scholar] [CrossRef]
- Yu Z-g Sutlief, A.L.; Lai, R.Y. Towards the development of a sensitive and selective electrochemical aptamer-based ampicillin sensor. Sens. Actuators B Chem. 2018, 258, 722–729. [Google Scholar]
- Toma, K.; Satomura, Y.; Iitani, K.; Arakawa, T.; Mitsubayashi, K. Long-range surface plasmon aptasensor for label-free monitoring of vancomycin. Biosens. Bioelectron. 2023, 222, 114959. [Google Scholar] [CrossRef]
- Tenaglia, E.; Ferretti, A.; Decosterd, L.A.; Werner, D.; Mercier, T.; Widmer, N.; Buclin, T.; Guiducci, C. Comparison against current standards of a DNA aptamer for the label-free quantification of tobramycin in human sera employed for therapeutic drug monitoring. J. Pharm. Biomed. Anal. 2018, 159, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Cappi, G.; Spiga, F.M.; Moncada, Y.; Ferretti, A.; Beyeler, M.; Bianchessi, M.; Decosterd, L.; Buclin, T.; Guiducci, C. Label-Free Detection of Tobramycin in Serum by Transmission-Localized Surface Plasmon Resonance. Anal. Chem. 2015, 87, 5278–5285. [Google Scholar] [CrossRef] [PubMed]
- Schoukroun-Barnes, L.R.; Macazo, F.C.; Gutierrez, B.; Lottermoser, J.; Liu, J.; White, R.J. Reagentless, Structure-Switching, Electrochemical Aptamer-Based Sensors. Annu. Rev. Anal. Chem. 2016, 9, 163–181. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Currás, N.; Somerson, J.; Vieira, P.A.; Ploense, K.L.; Kippin, T.E.; Plaxco, K.W. Real-time measurement of small molecules directly in awake, ambulatory animals. Proc. Natl. Acad. Sci. USA 2017, 114, 645–650. [Google Scholar] [CrossRef] [PubMed]
- De-Los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. SPR sensing of small molecules with modified RNA aptamers: Detection of neomycin B. Biosens. Bioelectron. 2009, 24, 2547–2553. [Google Scholar] [CrossRef]
- Ates, H.C.; Mohsenin, H.; Wenzel, C.; Glatz, R.T.; Wagner, H.J.; Bruch, R.; Hoefflin, N.; Spassov, S.; Streicher, L.; Lozano-Zahonero, S.; et al. Biosensor-Enabled Multiplexed On-Site Therapeutic Drug Monitoring of Antibiotics. Adv. Mater. 2021, 34, e2104555. [Google Scholar] [CrossRef]
- Ranamukhaarachchi, S.A.; Padeste, C.; Dübner, M.; Hafeli, U.O.; Stoeber, B.; Cadarso, V.J. Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes. Sci. Rep. 2016, 6, 29075. [Google Scholar] [CrossRef]
- Friedel, M.; Werbovetz, B.; Drexelius, A.; Watkins, Z.; Bali, A.; Plaxco, K.W.; Heikenfeld, J. Continuous molecular monitoring of human dermal interstitial fluid with microneedle-enabled electrochemical aptamer sensors. Lab A Chip 2023, 23, 3289–3299. [Google Scholar] [CrossRef]
- Achanti, A.; Szerlip, H.M. Acid-Base Disorders in the Critically Ill Patient. Clin. J. Am. Soc. Nephrol. 2022, 18, 102–112. [Google Scholar] [CrossRef]
- Vieira, P.A.; Shin, C.B.; Arroyo-Currás, N.; Ortega, G.; Li, W.; Keller, A.A.; Plaxco, K.W.; Kippin, T.E. Ultra-High-Precision, in-vivo Pharmacokinetic Measurements Highlight the Need for and a Route Toward More Highly Personalized Medicine. Front. Mol. Biosci. 2019, 6, 69. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Dai, J.; Li, C.; Zhu, M.; Li, H.; Lou, X.; Xia, F.; Plaxco, K.W. High frequency, calibration-free molecular measurements in situ in the living body. Chem. Sci. 2019, 10, 10843–10848. [Google Scholar] [CrossRef] [PubMed]
- McDonough, M.H.; Stocker, S.L.; Kippin, T.E.; Meiring, W.; Plaxco, K.W. Using seconds-resolved pharmacokinetic datasets to assess pharmacokinetic models encompassing time-varying physiology. Br. J. Clin. Pharmacol. 2023, 89, 2798–2812. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Tehrani, F.; Teymourian, H.; Mack, J.; Shaver, A.; Reynoso, M.; Kavner, J.; Huang, N.; Furmidge, A.; Duvvuri, A.; et al. Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring. Anal. Chem. 2022, 94, 8335–8345. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Currás, N.; Ortega, G.; Copp, D.A.; Ploense, K.L.; Plaxco, Z.A.; Kippin, T.E.; Hespanha, J.P.; Plaxco, K.W. High-Precision Control of Plasma Drug Levels Using Feedback-Controlled Dosing. ACS Pharmacol. Transl. Sci. 2018, 1, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.K.; Downs, A.M.; Ortega, G.; Kurnik, M.; Plaxco, K.W. Elucidating the Mechanisms Underlying the Signal Drift of Electrochemical Aptamer-Based Sensors in Whole Blood. ACS Sens. 2021, 6, 3340–3347. [Google Scholar] [CrossRef]
- Ravizza, A.; De Maria, C.; Di Pietro, L.; Sternini, F.; Audenino, A.L.; Bignardi, C. Comprehensive Review on Current and Future Regulatory Requirements on Wearable Sensors in Preclinical and Clinical Testing. Front. Bioeng. Biotechnol. 2019, 7, 313. [Google Scholar] [CrossRef]
Detection Method | Recognition Element | Mechanism |
---|---|---|
Electrochemical | DNA, antibodies, membranes, and aptamers | Uses an electrode transducer that translates chemical signal into measurable electric signal, e.g., current or voltage change [17] |
Optical | Enzymes, antibodies, aptamers, cells or tissue, and molecularly imprinted polymers [18] | Analyte leads to a signal through interactions with light, such as laser or LED. The signal produced correlates to the concentration of the measured analyte [18] |
Thermometric | Enzymes | Measures the changes in temperature of the circulating fluid after the reaction of a substrate with immobilized enzyme [19] |
Magnetic | Magnetic nanoparticles | Detect magnetic micro and nanoparticles in microfluidic channels using magnetoresistance [20] |
Aptamers | Antibodies | Enzymes | Molecularly Imprinted Polymers | |
---|---|---|---|---|
Thermal stability | High | Low | Low | High |
Production time | Few months | >6 months | Several weeks | Few weeks |
Production method | Developed using chemical modifications or SELEX | Must be obtained from animals | Fermentation | Chemical synthesis |
Production cost | Medium | High | High | Low |
Binding Affinity | Moderate | Moderate | High | High |
Specificity | High | High | High | High |
Biorecognition Element | Sensor | Antibiotic | Matrix | References |
---|---|---|---|---|
Aptamer | Microneedle-based electrochemical aptamer biosensing patch (µNEAB-patch) | Vancomycin Tobramycin | Interstitial fluid | [28] |
Electrochemical aptamer based (EAB) | Vancomycin Ampicillin | Blood Saliva | [27] [29] | |
Long-range surface plasmon | Vancomycin | Serum | [30] | |
Surface plasmon resonance | Neomycin B Tobramycin | Solution Blood | [31,35] | |
Transmission-localized surface plasmon resonance (T-LSPR) | Tobramycin | Buffer Undiluted Blood Serum | [32] | |
Enzyme a | Electrochemical | Tetracyclines and streptogrammins | Human plasma | [26] |
Electrochemical | Piperacillin/tazobactam | Plasma Saliva Urine Whole blood | [36] | |
Optical | Vancomycin | Interstitial fluid | [37] | |
Microneedle-based β-lactam | Phenoxymethylpenicillin | Interstitial fluid | [25] | |
Antibody | Surface plasmon resonance | Ampicillin Gentamycin | Solution buffer Solution buffer | [15] [16] |
Molecularly imprinted polymers | Surface plasmon resonance | Ciprofloxacin | Solution buffer | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishi, R.D.; Stokes, M.A.; Campbell, C.A.; Plaxco, K.W.; Stocker, S.L. Real-Time Monitoring of Antibiotics in the Critically Ill Using Biosensors. Antibiotics 2023, 12, 1478. https://doi.org/10.3390/antibiotics12101478
Mishi RD, Stokes MA, Campbell CA, Plaxco KW, Stocker SL. Real-Time Monitoring of Antibiotics in the Critically Ill Using Biosensors. Antibiotics. 2023; 12(10):1478. https://doi.org/10.3390/antibiotics12101478
Chicago/Turabian StyleMishi, Ruvimbo Dephine, Michael Andrew Stokes, Craig Anthony Campbell, Kevin William Plaxco, and Sophie Lena Stocker. 2023. "Real-Time Monitoring of Antibiotics in the Critically Ill Using Biosensors" Antibiotics 12, no. 10: 1478. https://doi.org/10.3390/antibiotics12101478
APA StyleMishi, R. D., Stokes, M. A., Campbell, C. A., Plaxco, K. W., & Stocker, S. L. (2023). Real-Time Monitoring of Antibiotics in the Critically Ill Using Biosensors. Antibiotics, 12(10), 1478. https://doi.org/10.3390/antibiotics12101478