Within-Host Diversity of Coagulase-Negative Staphylococci Resistome from Healthy Pigs and Pig Farmers, with the Detection of cfr-Carrying Strains and MDR-S. borealis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Collection
2.2. Antimicrobial Susceptibility Testing and Characterization of Resistance Genes
2.3. Molecular Typing of S. epidermidis and MRCoNS Strains
2.4. Tests for Virulence Genes
2.5. Statistical Analysis
3. Results
3.1. Antimicrobial Resistance Phenotypes and Genotypes of Non-Repetitive CoNS
3.2. Comparison of AMR Phenotype Frequencies in the Pig Farms
3.3. Unusual Antimicrobial Resistance Genes
3.4. Antimicrobial Resistome Diversity across Pigs and Pig Farmers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- World Health Organization. Antimicrobial Resistance. Fact Sheets. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 15 February 2023).
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Serwecinska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Abdullahi, I.N.; Lozano, C.; Saidenberg, A.B.S.; Latorre-Fernández, J.; Zarazaga, M.; Torres, C. Comparative review of the nasal carriage and genetic characteristics of Staphylococcus aureus in healthy livestock: Insight into zoonotic and anthroponotic clones. Infect. Genet. Evol. 2023, 109, 105408. [Google Scholar] [CrossRef]
- Michalik, M.; Samet, A.; Podbielska-Kubera, A.; Savini, V.; Międzobrodzki, J.; Kosecka-Strojek, M. Coagulase-negative staphylococci (CoNS) as a significant etiological factor of laryngological infections: A review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 26. [Google Scholar] [CrossRef] [PubMed]
- Michels, R.; Last, K.; Becker, S.L.; Papan, C. Update on Coagulase-Negative Staphylococci-What the Clinician Should Know. Microorganisms 2021, 9, 830. [Google Scholar] [CrossRef]
- Pain, M.; Wolden, R.; Jaén-Luchoro, D.; Salvà-Serra, F.; Iglesias, B.P.; Karlsson, R.; Klingenberg, C.; Cavanagh, J.P. Staphylococcus borealis sp. nov., isolated from human skin and blood. Int. J. Syst. Evol. Microbiol. 2020, 70, 6067–6078. [Google Scholar] [CrossRef]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef]
- Smith, J.T.; Andam, C.P. Extensive Horizontal Gene Transfer within and between Species of Coagulase-Negative Staphylococcus. Genome Biol. Evol. 2021, 13, evab206. [Google Scholar] [CrossRef]
- Gostev, V.; Leyn, S.; Kruglov, A.; Likholetova, D.; Kalinogorskaya, O.; Baykina, M.; Dmitrieva, N.; Grigorievskaya, Z.; Priputnevich, T.; Lyubasovskaya, L.; et al. Global Expansion of Linezolid-Resistant Coagulase-Negative Staphylococci. Front. Microbiol. 2021, 12, 661798. [Google Scholar] [CrossRef]
- Bonvegna, M.; Grego, E.; Sona, B.; Stella, M.C.; Nebbia, P.; Mannelli, A.; Tomassone, L. Occurrence of Methicillin-Resistant Coagulase-Negative Staphylococci (MRCoNS) and Methicillin-Resistant Staphylococcus aureus (MRSA) from Pigs and Farm Environment in Northwestern Italy. Antibiotics 2021, 10, 676. [Google Scholar] [CrossRef]
- Cuny, C.; Arnold, P.; Hermes, J.; Eckmanns, T.; Mehraj, J.; Schoenfelder, S.; Ziebuhr, W.; Zhao, Q.; Wang, Y.; Feßler, A.T.; et al. Occurrence of cfr-mediated multiresistance in staphylococci from veal calves and pigs, from humans at the corresponding farms, and from veterinarians and their family members. Vet. Microbiol. 2017, 200, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, I.N.; Lozano, C.; Simon, C.; Latorre, F.; Zaragaza, M.; Torres, C. Nasal staphylococci community of healthy pigs and pig farmers in Aragon (Spain). Predominance and within-host resistome diversity in MRSA-CC398 and MSSA-CC9 lineages. One Health 2023, 126, 100505. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 11.0. 2021. Available online: http://www.eucast.org (accessed on 2 April 2023).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; McClure, J.A.; Elsayed, S.; Louie, T.; Conly, J.M. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2005, 43, 5026–5033. [Google Scholar] [CrossRef] [PubMed]
- Soundararajan, M.; Marincola, G.; Liong, O.; Marciniak, T.; Wencker, F.D.R.; Hofmann, F.; Schollenbruch, H.; Kobusch, I.; Linnemann, S.; Wolf, S.A.; et al. Farming Practice Influences Antimicrobial Resistance Burden of Non-aureus Staphylococci in Pig Husbandries. Microorganisms 2022, 11, 31. [Google Scholar] [CrossRef]
- Mamfe, L.M.; Akwuobu, C.A.; Ngbede, E.O. Phenotypic detection, antimicrobial susceptibility and virulence profile of staphylococci in the pig production setting, Makurdi, Nigeria. Access Microbiol. 2021, 3, 000293. [Google Scholar] [CrossRef]
- Lawal, O.U.; Adekanmbi, A.O.; Adelowo, O.O. Occurrence of methicillin-resistant staphylococci in the pig-production chain in Ibadan, Nigeria. Onderstepoort J. Vet. Res. 2021, 88, e1–e4. [Google Scholar] [CrossRef]
- Schlattmann, A.; von Lützau, K.; Kaspar, U.; Becker, K. The Porcine Nasal Microbiota with Particular Attention to Livestock-Associated Methicillin-Resistant Staphylococcus aureus in Germany-A Culturomic Approach. Microorganisms 2020, 8, 514. [Google Scholar] [CrossRef]
- Li, L.; Chen, Z.; Guo, D.; Li, S.; Huang, J.; Wang, X.; Yao, Z.; Chen, S.; Ye, X. Nasal carriage of methicillin-resistant coagulase-negative staphylococci in healthy humans is associated with occupational pig contact in a dose-response manner. Vet. Microbiol. 2017, 208, 231–238. [Google Scholar] [CrossRef]
- Momoh, A.H.; Kwaga, J.K.P.; Bello, M.; Sackey, A.K.B. Prevalence and antimicrobial resistance pattern of coagulase negative staphylococci isolated from pigs and in-contact humans in Jos Metropolis, Nigeria. Niger. Vet. J. 2016, 37, 140–147. Available online: https://www.ajol.info/index.php/nvj/article/view/147364 (accessed on 15 February 2023).
- Tulinski, P.; Fluit, A.C.; Wagenaar, J.A.; Mevius, D.; van de Vijver, L.; Duim, B. Methicillin-resistant coagulase-negative staphylococci on pig farms as a reservoir of heterogeneous staphylococcal cassette chromosome mec elements. Appl. Environ. Microbiol. 2012, 78, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Ugwu, C.C.; Gomez-Sanz, E.; Agbo, I.C.; Torres, C.; Chah, K.F. Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria. Braz. J. Microbiol. 2015, 46, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Rattanamuang, M.; Butr-indr, B.; Anukool, U. Livestock-associated methicillin-resistant coagulase-negative staphylococci in pig in Lamphun Province, Thailand, carrying Type-IX SCCmec element. Bull. Chiang Mai Assoc. Med. Sci. 2013, 46, 250–259. [Google Scholar]
- Yang, X.; Zhang, T.; Lei, C.W.; Wang, Q.; Huang, Z.; Chen, X.; Wang, H.N. Florfenicol and oxazolidone resistance status in livestock farms revealed by short- and long-read metagenomic sequencing. Front. Microbiol. 2022, 13, 1018901. [Google Scholar] [CrossRef]
- Ruiz-Ripa, L.; Feßler, A.T.; Hanke, D.; Sanz, S.; Olarte, C.; Mama, O.M.; Eichhorn, I.; Schwarz, S.; Torres, C. Coagulase-negative staphylococci carrying cfr and PVL genes, and MRSA/MSSA-CC398 in the swine farm environment. Vet. Microbiol. 2020, 243, 108631. [Google Scholar] [CrossRef]
- Pholwat, S.; Pongpan, T.; Chinli, R.; Rogawski McQuade, E.T.; Thaipisuttikul, I.; Ratanakorn, P.; Liu, J.; Taniuchi, M.; Houpt, E.R.; Foongladda, S. Antimicrobial Resistance in Swine Fecal Specimens Across Different Farm Management Systems. Front. Microbiol. 2020, 11, 1238. [Google Scholar] [CrossRef]
- Brenciani, A.; Morroni, G.; Schwarz, S.; Giovanetti, E. Oxazolidinones: Mechanisms of resistance and mobile genetic elements involved. J. Antimicrob. Chemother. 2022, 77, 2596–2621. [Google Scholar] [CrossRef]
- Martins-Silva, P.; Dias, C.P.; Vilar, L.C.; de Queiroz Silva, S.; Rossi, C.C.; Giambiagi-deMarval, M. Dispersion and persistence of antimicrobial resistance genes among Staphylococcus spp. and Mammaliicoccus spp. isolated along a swine manure treatment plant. Environ. Sci. Pollut. Res. Int. 2023, 30, 34709–34719. [Google Scholar] [CrossRef]
- Rossi, C.C.; Pereira, M.F.; Giambiagi-deMarval, M. Underrated Staphylococcus species and their role in antimicrobial resistance spreading. Genet. Mol. Biol. 2020, 43, e20190065. [Google Scholar] [CrossRef]
- Chen, C.J.; Unger, C.; Hoffmann, W.; Lindsay, J.A.; Huang, Y.C.; Götz, F. Characterization and comparison of 2 distinct epidemic community-associated methicillin-resistant Staphylococcus aureus clones of ST59 lineage. PLoS One 2013, 8, e63210. [Google Scholar] [CrossRef]
- Shelburne, S.A.; Dib, R.W.; Endres, B.T.; Reitzel, R.; Li, X.; Kalia, A.; Sahasrabhojane, P.; Chaftari, A.M.; Hachem, R.; Vargas-Cruz, N.S.; et al. Whole-genome sequencing of Staphylococcus epidermidis bloodstream isolates from a prospective clinical trial reveals that complicated bacteraemia is caused by a limited number of closely related sequence types. Clin. Microbiol. Infect. 2020, 26, 646.e1–646.e8. [Google Scholar] [CrossRef]
- Reynaga, E.; Navarro, M.; Vilamala, A.; Roure, P.; Quintana, M.; Garcia-Nuñez, M.; Figueras, R.; Torres, C.; Lucchetti, G.; Sabrià, M. Prevalence of colonization by methicillin-resistant Staphylococcus aureus ST398 in pigs and pig farm workers in an area of Catalonia, Spain. BMC Infect. Dis. 2016, 16, 716. [Google Scholar] [CrossRef] [PubMed]
- Miragaia, M. Factors Contributing to the Evolution of mecA-Mediated β-lactam Resistance in Staphylococci: Update and New Insights From Whole Genome Sequencing (WGS). Front. Microbiol. 2018, 9, 2723. [Google Scholar] [CrossRef]
- Mama, O.M.; Aspiroz, C.; Ruiz-Ripa, L.; Ceballos, S.; Iñiguez-Barrio, M.; Cercenado, E.; Azcona, J.M.; López-Cerero, L.; Seral, C.; López-Calleja, A.I.; et al. Prevalence and Genetic Characteristics of Staphylococcus aureus CC398 Isolates from Invasive Infections in Spanish Hospitals, Focusing on the Livestock-Independent CC398-MSSA Clade. Front. Microbiol. 2021, 12, 623108. [Google Scholar] [CrossRef] [PubMed]
- Schnellmann, C.; Gerber, V.; Rossano, A.; Jaquier, V.; Panchaud, Y.; Doherr, M.G.; Thomann, A.; Straub, R.; Perreten, V. Presence of new mecA and mph(C) variants conferring antibiotic resistance in Staphylococcus spp. isolated from the skin of horses before and after clinic admission. J. Clin. Microbiol. 2006, 44, 4444–4454. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, A.B.; Skov, R.; Pallesen, L.V. Detection of methicillin resistance in coagulase-negative staphylococci and in staphylococci directly from simulated blood cultures using the EVIGENE MRSA Detection Kit. J. Antimicrob. Chemother. 2003, 51, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Cuny, C.; Layer, F.; Strommenger, B.; Witte, W. Rare occurrence of methicillin-resistant Staphylococcus aureus CC130 with a novel mecA homologue in humans in Germany. PLoS ONE 2011, 6, e24360. [Google Scholar] [CrossRef]
- Sutcliffe, J.; Grebe, T.; Tait-Kamradt, A.; Wondrack, L. Detection of erythromycin-resistant determinants by PCR. Antimicrob. Agents Chemother. 1996, 40, 2562–2566. [Google Scholar] [CrossRef]
- Gómez-Sanz, E.; Torres, C.; Lozano, C.; Fernández-Pérez, R.; Aspiroz, C.; Ruiz-Larrea, F.; Zarazaga, M. Detection, molecular characterization, and clonal diversity of methicillin-resistant Staphylococcus aureus CC398 and CC97 in Spanish slaughter pigs of different age groups. Foodborne Pathog. Dis. 2010, 7, 1269–1277. [Google Scholar] [CrossRef]
- Schwendener, S.; Perreten, V. New MLSB resistance gene erm(43) in Staphylococcus lentus. Antimicrob. Agents Chemother. 2012, 56, 4746–4752. [Google Scholar] [CrossRef]
- Wondrack, L.; Massa, M.; Yang, B.V.; Sutcliffe, J. Clinical strain of Staphylococcus aureus inactivates and causes efflux of macrolides. Antimicrob. Agents Chemother. 1996, 40, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Lina, G.; Quaglia, A.; Reverdy, M.E.; Leclercq, R.; Vandenesch, F.; Etienne, J. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob. Agents Chemother. 1999, 43, 1062–1066. [Google Scholar] [CrossRef] [PubMed]
- Bozdogan, B.; Berrezouga, L.; Kuo, M.S.; Yurek, D.A.; Farley, K.A.; Stockman, B.J.; Leclercq, R. A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob. Agents Chemother. 1999, 43, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Hot, C.; Berthet, N.; Chesneau, O. Characterization of sal(A), a novel gene responsible for lincosamide and streptogramin A resistance in Staphylococcus sciuri. Antimicrob. Agents Chemother. 2014, 58, 3335–3341. [Google Scholar] [CrossRef] [PubMed]
- Lozano, C.; Aspiroz, C.; Rezust, A.; Gómez-Sanz, E.; Simon, C.; Gómez, P.; Ortega, C.; Revillo, M.J.; Zarazaga, M.; Torres, C. Identification of novel vga(A)-carrying plasmids and a Tn5406-like transposon in meticillin-resistant Staphylococcus aureus and Staphylococcus epidermidis of human and animal origin. Int. J. Antimicrob. Agents 2012, 40, 306–312. [Google Scholar] [CrossRef]
- Van de Klundert, J.; Vliegenthart, J. PCR detection of genes coding for aminoglycoside-modifying enzymes. Diagn. Mol. Microbiol. 1993, 547–552. [Google Scholar]
- Aarestrup, F.M.; Agerso, Y.; Gerner-Smidt, P.; Madsen, M.; Jensen, L.B. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn. Microbiol. Infect. Dis. 2000, 37, 127–137. [Google Scholar] [CrossRef]
- Kehrenberg, C.; Schwarz, S. Florfenicol-chloramphenicol exporter gene fexA is part of the novel transposon Tn558. Antimicrob. Agents Chemother. 2005, 49, 813–815. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Wu, C.; Schwarz, S.; Shen, Z.; Jeon, B.; Ding, S.; Zhang, Q.; Shen, J. A novel phenicol exporter gene, fexB, found in enterococci of animal origin. J. Antimicrob. Chemother. 2012, 67, 322–325. [Google Scholar] [CrossRef]
- Kehrenberg, C.; Schwarz, S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob. Agents Chemother. 2006, 50, 1156–1163. [Google Scholar] [CrossRef]
- Lee, S.M.; Huh, H.J.; Song, D.J.; Shim, H.J.; Park, K.S.; Kang, C.I.; Ki, C.S.; Lee, N.Y. Resistance mechanisms of linezolid-nonsusceptible enterococci in Korea: Low rate of 23S rRNA mutations in Enterococcus faecium. J. Med. Microbiol. 2017, 66, 1730–1735. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ripa, L.; Feßler, A.T.; Hanke, D.; Eichhorn, I.; Azcona-Gutiérrez, J.M.; Pérez-Moreno, M.O.; Seral, C.; Aspiroz, C.; Alonso, C.A.; Torres, L.; et al. Mechanisms of Linezolid Resistance Among Enterococci of Clinical Origin in Spain-Detection of optrA- and cfr(D)-Carrying E. faecalis. Microorganisms 2020, 8, 1155. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lv, Y.; Cai, J.; Schwarz, S.; Cui, L.; Hu, Z.; Zhang, R.; Li, J.; Zhao, Q.; He, T.; et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 2015, 70, 2182–2190. [Google Scholar] [CrossRef] [PubMed]
- Udo, E.E.; Al-Sweih, N.; Noronha, B.C. A chromosomal location of the mupA gene in Staphylococcus aureus expressing high-level mupirocin resistance. J. Antimicrob. Chemother. 2003, 51, 1283–1286. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.C.; Vargas, M.R.; Miragaia, M.; Peacock, S.J.; Archer, G.L.; Enright, M.C. Improved multilocus sequence typing scheme for Staphylococcus epidermidis. J. Clin. Microbiol. 2007, 45, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Jarraud, S.; Mougel, C.; Thioulouse, J.; Lina, G.; Meugnier, H.; Forey, F.; Nesme, X.; Etienne, J.; Vandenesch, F. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect. Immun. 2002, 70, 631–641. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Nishifuji, K.; Sasaki, M.; Fudaba, Y.; Aepfelbacher, M.; Takata, T.; Ohara, M.; Komatsuzawa, H.; Amagai, M.; Sugai, M. Identification of the Staphylococcus aureus etd pathogenicity island which encodes a novel exfoliative toxin, ETD, and EDIN-B. Infect. Immun. 2002, 70, 5835–5845. [Google Scholar] [CrossRef]
- Lina, G.; Piémont, Y.; Godail-Gamot, F.; Bes, M.; Peter, M.O.; Gauduchon, V.; Vandenesch, F.; Etienne, J. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 1999, 29, 1128–1132. [Google Scholar] [CrossRef]
CoNS Species | Total Strains | Non-Repetitive Strains a | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strains with MDR Phenotype b | Strains with MDR Phenotype in Pigs | Strains with MDR Phenotype in Pig Farmers | ||||||||||||
Pigs | Pig Farmers | Pigs and Pig farmers | All Farms | Farm A | Farm B | Farm C | Farm D | All Farms | Farm A | Farm B | Farm C | Farm D | ||
S. sciuri | 29 | 17 | 0 | 17 | 17 | 4 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
S. haemolyticus | 5 | 3 | 1 | 4 | 3 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
S. borealis | 12 | 10 | 0 | 10 | 10 | 5 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
S. chromogenes | 15 | 11 | 2 | 9 | 7 | 5 | 1 | 0 | 1 | 2 | 0 | 0 | 0 | 2 |
S. epidermidis | 13 | 5 | 5 | 10 | 5 | 4 | 1 | 0 | 0 | 5 | 2 | 2 | 1 | 0 |
S. hyicus | 11 | 8 | 1 | 9 | 8 | 3 | 3 | 2 | 0 | 1 | 0 | 1 | 0 | 0 |
S. saprophyticus | 7 | 3 | 1 | 4 | 3 | 2 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
S. simulans | 4 | 1 | 3 | 4 | 1 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 2 |
S. xylosus | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S. pasteuri | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total (%) | 101 | 62 | 13 | 69 (92) | 56 (83.6) | 26 | 13 | 15 | 2 | 13 (100) | 2 | 4 | 2 | 5 |
Antimicrobial Resistance Phenotype | Farm A (%) | Farm B (%) | Farm C (%) | Farm D (%) | χ2 | p Value |
---|---|---|---|---|---|---|
PEN | 23 (76.7) | 15 (88.2) | 17 (80.9) | 3 (42.9) | 5.078 | 0.166 |
FOX | 16 (53.3) | 10 (58.8) | 10 (47.6) | 3 (42.9) | 0.734 | 0.865 |
ERY-CLI constitutive | 28 (93.3) | 12 (40) | 12 (57.1) | 6 (85.7) | 9.987 | 0.018 * |
CLI | 0 | 4 (13.3) | 7 (33.3) | 1 (14.3) | 11.141 | 0.011 * |
ERY | 1 (3.3) | 0 | 0 | 0 | 1.520 | 0.677 |
TET | 30 (100) | 15 (88.2) | 20 (95.2) | 6 (85.7) | 4.208 | 0.239 |
TOB | 17 (56.7) | 14 (82.3) | 5 (23.8) | 2 (28.6) | 14.688 | 0.002* |
TOB-GEN | 2 (6.7) | 2 (11.7) | 3 (14.3) | 2 (28.6) | 2.733 | 0.434 |
SXT | 24 (80) | 12 (70.6) | 8 (38.1) | 6 (85.7) | 11.375 | 0.009 * |
CIP | 12 (40) | 15 (88.2) | 9 (42.9) | 3 (42.9) | 11.611 | 0.008 * |
CHL | 9 (30) | 4 (23.5) | 2 (9.5) | 1 (14.3) | 3.344 | 0.341 |
LZD | 1 (3.3) | 1 (5.9) | 0 | 0 | 1.496 | 0.683 |
MUP | 0 | 0 | 2 (9.5) | 0 | 5.284 | 0.152 |
MDR | 28 (93.3) | 17 (100) | 17 (80.9) | 7 (100) | 5.642 | 0.130 |
Host/Farm | Staphylococcal Species | AMR Phenotype | AMR Genes Detected | LZD Resistance | ST | SCCmec Type | |
---|---|---|---|---|---|---|---|
Genes | MIC a | ||||||
Pig 1/A | S. epidermidis | PEN-FOX-TET-ERY-CLI-SXT-TOB | blaZ, mecA, tetL, tetM, ermB, dfrD, aac6′-aph2″, ant4′ | - | - | ST25 | IVc |
S. hyicus | PEN-TET-ERY- CLI | blaZ, tetL, ermC | - | - | - | - | |
S. simulans | TET-ERY-CLI-SXT-GEN | tetK, ermA, dfrG, aac6′-aph6″ | - | - | - | - | |
Pig 2/A | S. sciuri | PEN-FOX-TET-ERY-CLI-SXT-CHL-CN-TOB-CIP | mecA, tetL, tetM, ermA, ermB, ermC, lnuA, salA, dfrD, fexA, aac6′-aph2″, ant4′ | ND | - | - | IVb |
S. epidermidis | PEN-FOX-TET-ERY-CLI-SXT-TOB | blaZ, mecA, tetM, erm43, ermC, dfrG, dfrK, ant4′ | - | - | ST25 | V | |
S. borealis | PEN-FOX-TET-ERY-CLI-SXT-CHL-TOB-CIP | blaZ, mecA, tetL, tetM, ermC, ermT, lnuB, dfrK, catPC221, fexA, ant4′ | ND | - | - | V | |
Pig 3/A | S. sciuri | PEN-FOX-TET-ERY-CLI-SXT-CHL-TOB-CIP | blaZ, mecA, tetL, tetM, ermC, ermT, lnuB, dfrK, catPC221, fexA, ant4′ | ND | - | - | IVb |
S. sciuri | PEN-FOX-TET-ERY-CLI-SXT-CHL-TOB-CIP | mecA, tetL, tetM, ermC, msrA, dfrK, catPC221, ant4′ | ND | - | - | IVb | |
S. chromogenes | PEN-TET-ERY-CLI-TOB-SXT | blaZ, tetL, erm43, ermT, dfrA, dfrG, dfrK, ant4′ | - | - | - | - | |
Pig 4/A | S. chromogenes | TET-ERY-CLI-SXT-TOB | tetL, tetM, ermA, dfrA, ant4′ | - | - | - | - |
S. chromogenes | PEN-FOX-TET-ERY-CLI-SXT | blaZ, mecA, tetL, erm43, ermA, ermT, dfrA, dfrG, dfrK | - | - | - | NT | |
Pig 7/A | S. chromogenes | PEN-TET-ERY-CLI-SXT-TOB | blaZ, tetL, erm43, ermT, dfrA, dfrG, dfrK, ant4′ | - | - | - | - |
S. epidermidis | PEN-FOX-TET-ERY-CLI-SXT-TOB | blaZ, mecA, tetM, ermC, dfrK, aac6′-aph2″, ant4′ | - | - | ST25 | IVc | |
S. saprophyticus | PEN-FOX-TET-ERY-CLI-SXT | blaZ, mecA, tetL, tetM, ermC, ermA, dfrK | - | - | - | III | |
S. borealis | PEN-FOX-TET-ERY-CLI-SXT-CHL-TOB-CIP | blaZ, mecA, tetL, tetM, ermC, ermT, lnuB, catPC221, fexA, dfrK, ant4′ | ND | - | V | ||
Pig 8/A | S. chromogenes | TET-ERY-CLI-TOB | tetL, tetM, ermC, ant4′ | - | - | - | - |
S. chromogenes | TET-ERY-CLI | tetL, ermC | - | - | - | - | |
S. epidermidis | TET-ERY-CLI-SXT | blaZ, tetO, tetL, tetM, ermC, dfrK | - | - | ST977 | - | |
S. borealis | PEN-FOX-TET-ERY-CLI-TOB-CIP | blaZ, mecA, tetL, tetM, erm43, dfrA, dfrG, dfrK, ant4′ | - | - | - | V | |
S. borealis | PEN-FOX-TET-ERY-CLI-SXT-CHL-TOB-CIP | blaZ, mecA, tetL, tetM, ermC, ermT, lnuB, dfrK, fexA, ant4′ | ND | - | - | V | |
S. pastueri | PEN-FOX-TET-ERY-CLI-SXT- TOB-CIP | blaZ, mecA, tetK, tetL tetM, ermC, dfrK, ant4′ | - | - | - | V | |
Pig 9/A | S. sciuri | PEN-TET-ERY-CLI-SXT-CHL-TOB | mecA, tetL, tetM, ermC, lnuA, fexA, dfrK, ant4′, aac6′-aph2″ | ND | - | - | IVb |
S. borealis | PEN-FOX-TET-ERY-CLI-SXT-CHL-TOB-CIP | blaZ, mecA, tetL, tetM, ermC, ermT, lnuB, catPC221, fexA, dfrK, ant4′ | ND | - | - | V | |
Pig 10/A | S. chromogenes | TET-ERY-CLI | tetL, ermC | - | - | - | - |
S. saprophyticus | FOX-TET-ERY-CHL-CLI-TOB-SXT | mecA, tetL, tetM, ermC, dfrK, fexA, ant4′ | cfr | 12 | - | V | |
S. pasteuri | PEN-FOX-TET-ERY-CLI-SXT-TOB-CIP | blaZ, mecA, tetL, tetM, ermC, dfrG, dfrK, ant4′ | - | - | - | V | |
Farmer 1/A | S. epidermidis | PEN-FOX-TET-ERY- SXT-CIP | blaZ, mecA, tetO, msrA, dfrA, dfrG | - | - | ST59 | V |
S. epidermidis | PEN-FOX-TET- SXT-CIP | blaZ, mecA, tetL, dfrA, dfrG | - | - | ST59 | V | |
Pig 1/B | S. haemolyticus | PEN-TET-ERY-CLI-SXT-GEN-TOB | blaZ, mecA, tetL, tetM, erm43, ermC, dfrA, aac6′-aph2″, ant4′ | - | - | - | V |
S. haemolyticus | PEN-FOX-TET-ERY-CLI-GEN-TOB-CIP | mecA, tetL, ermA, ermT, dfrA, dfrG, aac6′-aph2″, ant4′ | - | - | - | V | |
S. epidermidis | PEN-TET-ERY-CLI-TOB | blaZ, tetL, tetM, tetK, ermC, ant4′ | - | - | ST100 | - | |
S. hyicus | PEN-TET-ERY-CLI-TOB-GEN-CIP | blaZ, tetL, ermT, aac6′-aph2″ | - | - | - | - | |
Pig 4/B | S. borealis | PEN-FOX-TET-ERY-CLI-SXT-TOB-CIP | mecA, tetK, tetL, ermA, ermC, dfrK, ant4′ | - | - | - | V |
S. borealis | PEN-FOX-TET-ERY-CLI-CHL-SXT-GEN-TOB-CIP | blaZ, mecA, tetL, tetM, ermT, fexA, dfrK, aac6′-aph2″, ant4′ | ND | - | - | V | |
S. haemolyticus | PEN-TET-CLI-GEN-TOB-CIP | tetL ermC, lnuA, aac6′-aph2″, ant4′ | - | - | - | - | |
Pig 5/B | S. borealis | PEN-FOX-TET-ERY-CLI-CHL-SXT-GEN-TOB-CIP | blaZ, mecA, tetL, tetM, ermA, ermT, catPC221, fexA, dfrK, aac6′-aph2″, ant4′ | ND | - | - | V |
S. borealis | PEN-FOX-TET-ERY-CLI-SXT-TOB-CIP | mecA, tetK, tetL, ermA, ermC, dfrK, ant4′ | - | - | - | V | |
Farmer 1/B | S. epidermidis | PEN-FOX-TET-CLI-CHL-SXT-TOB-CIP | blaZ, mecA, tetL, tetK, fexA, dfrK, ant4′ | cfr | 1.5 | ST16 | V |
S. hyicus | PEN-FOX-TET-CIP-SXT | blaZ, mecA, tetK, tetO, dfrA, dfrG | - | - | - | NT | |
S. saprophyticus | PEN-FOX-TET-ERY-CLI-SXT-TOB-GEN-SXT-CIP | blaZ, mecA, tetK, tetM, ermC, dfrG, ant4′, aac6′-aph2″ | - | - | - | V | |
Pig 1/C | S. sciuri | PEN-FOX-TET-ERY-CLI-SXT-CIP | mecA, tetL, tetM, ermB, erm43, dfrK | - | - | - | NT |
S. chromogenes | TET-ERY-CLI | tetM, ermC, lnuB | - | - | - | - | |
S. hyicus | PEN-TET-ERY-CLI-SXT-CIP | blaZ, tetL, ermT, dfrK | - | - | - | - | |
Pig 4/C | S. sciuri | PEN-FOX-TET-ERY-CLI-TOB | mecA, tetL, tetM, ermB, dfrK, ant4′ | - | - | - | NT |
S. sciuri | PEN-FOX-TET-ERY-CLI-CIP-TOB-GEN | mecA, tetL, ermC, aac6′-aph2″ | - | - | - | V | |
Pig 6/C | S. sciuri | PEN-TET-ERY-CLI-SXT-CIP | mecA, tetL, tetM, ermT, dfrG, dfrK | - | - | - | NT |
S. sciuri | PEN-FOX-TET-CLI-TOB | mecA, tetL, tetM, lnuA, ant4′ | - | - | - | IVb | |
Pig 8/C | S. sciuri | TET-CLI-PEN-TOB | tetL, lnuA, ant4′ | - | - | - | - |
S. sciuri | PEN-FOX-TET-ERY-CLI | mecA, tetM, ermB | - | - | - | IVb | |
S. sciuri | PEN-FOX-TET-ERY-CLI-SXT | mecA, tetL, tetM, ermB, dfrK | - | - | - | - | |
Pig 9/C | S. hyicus | PEN- FOX-TET-CLI-SXT-TOB-GEN-CIP | blaZ, mecA, tetM, lnuA, lnuB, dfrD, aac6′-aph2″ | - | - | - | V |
S. xylosus | PEN-TET | blaZ, tetK | - | - | - | - | |
Pig 10/C | S. sciuri | PEN-FOX-TET-ERY-CLI-SXT-CIP | mecA, tetL, tetM, ermB, dfrK | - | - | - | NT |
S. sciuri | TET-ERY-CLI-CHL-SXT-CIP | tetL, tetM, ermA, lnuA, catPC221, dfrK | ND | - | - | - | |
S. xylosus | PEN-TET | blaZ, tetK | - | - | - | - | |
Farmer 1/C | S. epidermidis | PEN-TET-ERY-CLI-TOB-MUP | blaZ, tetK, tetL, tetM, erm43, dfrA, dfrK, ant4′, mupA | - | - | ST100 | - |
S. simulans | TET-CLI-CHL | tetK, lnuA, fexA | ND | - | - | - | |
Farmer 2/D | S. simulans | PEN-FOX-TET-ERY-CLI-TOB-GEN | blaZ, mecA, tetL, ermA, aac6′-aph2″ | - | - | - | NT |
S. simulans | TET-ERY-CLI-SXT | tetM, ermC, dfrG | - | - | - | - | |
S. haemolyticus | PEN-FOX-TET-CLI-SXT-TOB-GEN-CIP | blaZ, mecA, tetK, lnuA, dfrG, aac6′-aph2″ | - | - | - | II | |
Farmer 3/D | S. chromogenes | TET-ERY-CLI-SXT | tetL ermT, dfrA, dfrG | - | - | - | - |
S. chromogenes | ERY-CLI-CHL-SXT | mecA, tetL, tetM, ermC, dfrK, fexA | ND | - | - | IVb |
Host/Farm | Staphylococcal Species | AMR Phenotype | AMR Genes Detected | ST | SCCmec Type |
---|---|---|---|---|---|
Pig 5/A | S. hyicus | PEN-TET-ERY-CLI-SXT | blaZ, tetM, ermC, dfrA, dfrG | - | - |
Pig 6/A | S. hyicus | PEN-TET-ERY-CLI | blaZ, tetL, ermC | - | - |
Pig 2/B | S. hycius | CLI-SXT-GEN-TOB-CIP | lnuA, lnuB, dfrK, aac6′-aph2″, ant4′ | - | - |
Pig 3/B | S. hyicus | CLI-SXT-GEN-TOB-CIP | lnuA, lnuB, dfrK, aac6′-aph2″, ant4′ | - | - |
Pig 6/B | S. saprophyticus | PEN-FOX-TET-ERY-CLI-SXT-TOB-GEN- SXT-CIP | blaZ, mecA, tetM, ermC, dfrA, dfrG, ant4′, aac6′-aph2″ | - | V |
Pig 9/B | S. chromogenes | PEN-TET-ERY-CLI-GEN-TOB-CIP | blaZ, tetL, ermT, aac6′-aph2″, ant4′ | - | - |
Farmer 2/B | S. epidermidis | PEN-FOX-TET-ERY-CLI-CHL-SXT-TOB- GEN-CIP | blaZ, mecA, tetL, tetM, ermT, lnuB, catPC221, fexA, dfrA, dfrK, aac6′-aph2″, ant4′ | ST59 | V |
Pig 2/C | S. sciuri | PEN-FOX-TET-CLI-CIP-TOB-GEN-MUP | mecA, tetL, tetM, lnuA, ant4′, mupA | - | IVb |
Pig 3/C | S. sciuri | PEN-FOX-TET-ERY-CLI-SXT-CIP | mecA, tetL, tetM, ermB, dfrK | - | NT |
Pig 5/C | S. chromogenes | CLI | lnuB | - | - |
Pig 7/C | S. sciuri | TET-CLI-PEN-TOB | tetL, lnuA, ant4′ | - | - |
Pig 1/D | S. chromogenes | TET-ERY-CLI-SXT-TOB-CIP | tetL, tetM, tetK, ermC, dfrK, ant4′ | - | - |
Pig 5/D | S. borealis | PEN-FOX-TET-ERY-CLI-SXT-TOB-CIP | blaZ, mecA, tetL, ermT, dfrA, dfrK, ant4′, aac6′-aph2″ | - | NT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullahi, I.N.; Lozano, C.; Simón, C.; Zarazaga, M.; Torres, C. Within-Host Diversity of Coagulase-Negative Staphylococci Resistome from Healthy Pigs and Pig Farmers, with the Detection of cfr-Carrying Strains and MDR-S. borealis. Antibiotics 2023, 12, 1505. https://doi.org/10.3390/antibiotics12101505
Abdullahi IN, Lozano C, Simón C, Zarazaga M, Torres C. Within-Host Diversity of Coagulase-Negative Staphylococci Resistome from Healthy Pigs and Pig Farmers, with the Detection of cfr-Carrying Strains and MDR-S. borealis. Antibiotics. 2023; 12(10):1505. https://doi.org/10.3390/antibiotics12101505
Chicago/Turabian StyleAbdullahi, Idris Nasir, Carmen Lozano, Carmen Simón, Myriam Zarazaga, and Carmen Torres. 2023. "Within-Host Diversity of Coagulase-Negative Staphylococci Resistome from Healthy Pigs and Pig Farmers, with the Detection of cfr-Carrying Strains and MDR-S. borealis" Antibiotics 12, no. 10: 1505. https://doi.org/10.3390/antibiotics12101505
APA StyleAbdullahi, I. N., Lozano, C., Simón, C., Zarazaga, M., & Torres, C. (2023). Within-Host Diversity of Coagulase-Negative Staphylococci Resistome from Healthy Pigs and Pig Farmers, with the Detection of cfr-Carrying Strains and MDR-S. borealis. Antibiotics, 12(10), 1505. https://doi.org/10.3390/antibiotics12101505