Current Uses and Future Perspectives of Genomic Technologies in Clinical Microbiology
Abstract
:1. Introduction
2. Nucleic Acid Sequencing Technologies and Their Evolution
2.1. First-Generation Sequencing
2.2. NGS, or Second-Generation Sequencing
2.3. Third-Generation Sequencing
3. Genomic Analyses in Clinical Microbiology
3.1. Whole Genome Sequencing
3.2. Targeted Sequencing
3.3. Metagenomics
4. Use of Genomic Approaches to Detect Antimicrobial Resistance
4.1. Preface
4.2. Status and Perspectives
5. Use of Genome Sequencing in Hospital Outbreak Investigations
6. Genomic Surveillance of Infectious Diseases and Dissemination of Antimicrobial Resistance
7. One Health Genomics and Perspectives
8. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMR | Antimicrobial resistance |
AST | Antimicrobial susceptibility testing |
CAESAR | Central Asian and European Surveillance of Antimicrobial Resistance |
CDC | Centre for Disease Control and Prevention |
cgMLST | Core genome multilocus sequence typing |
ddNTPs | Dideoxynucleotides |
dNTPs | Deoxynucleotides |
E. coli | Escherichia coli |
EARS-Net | European Antimicrobial Resistance Surveillance Network |
ECDC | European Centre for Disease Prevention and Control |
EISN | European Influenza Surveillance Network |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
GWAS | Genome-wide association studies |
IPC | Infection prevention and control |
IPSN | Pathogen Surveillance Network |
ISS | Italian National Institute of Health |
K. pneumoniae | Klebsiella pneumoniae |
LRS | Long-read sequencing |
M. tuberculosis | Mycobacterium tuberculosis |
MIC | Minimal inhibitory concentration |
MLST | Multilocus sequence typing |
mNGS | Metagenomics next-generation sequencing |
NGS | Next-generation sequencing |
OECD | Organization for Economic Cooperation and Development |
ONT | Oxford nanopore technologies |
P. aeruginosa | Pseudomonas aeruginosa |
PPi | Pyrophosphate |
REDI-NET | Remote Emerging Disease Intelligence—NETwork |
RT | Real-time |
RVI | Respiratory Virus and Microbiome Initiative |
S. aureus | Staphylococcus aureus |
S. pneumoniae | Streptococcus pneumoniae |
SBS | Sequencing-by-synthesis |
SM | Single molecule |
SMRT | Single molecule real time |
SNPs | Single nucleotide polymorphisms |
SPSP | Swiss Pathogen Surveillance Platform |
tNGS | Targeted next-generation sequencing |
WGS | Whole genome sequencing |
WHO | World Health Organization |
ZMWs | Zero-mode wavelengths |
References
- Knyazev, S.; Chhugani, K.; Sarwal, V.; Ayyala, R.; Singh, H.; Karthikeyan, S.; Deshpande, D.; Baykal, P.I.; Comarova, Z.; Lu, A.; et al. Unlocking Capacities of Genomics for the COVID-19 Response and Future Pandemics. Nat. Methods 2022, 19, 374–380. [Google Scholar] [PubMed]
- Maljkovic Berry, I.; Melendrez, M.C.; Bishop-Lilly, K.A.; Rutvisuttinunt, W.; Pollett, S.; Talundzic, E.; Morton, L.; Jarman, R.G. Next Generation Sequencing and Bioinformatics Methodologies for Infectious Disease Research and Public Health: Approaches, Applications, and Considerations for Development of Laboratory Capacity. J. Infect. Dis. 2020, 221, S292–S307. [Google Scholar] [CrossRef] [PubMed]
- Di Paola, N.; Sanchez-Lockhart, M.; Zeng, X.; Kuhn, J.H.; Palacios, G. Viral Genomics in Ebola Virus Research. Nat. Rev. Microbiol. 2020, 18, 365–378. [Google Scholar] [PubMed]
- Nieuwenhuijse, D.F.; van der Linden, A.; Kohl, R.H.G.; Sikkema, R.S.; Koopmans, M.P.G.; Oude Munnink, B.B. Towards Reliable Whole Genome Sequencing for Outbreak Preparedness and Response. BMC Genom. 2022, 23, 569. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Dong, Y.Q.; Yin, J.; Qiu, Y.Q. Diagnostic Accuracy of Metagenomic Next-Generation Sequencing in Diagnosing Infectious Diseases: A Meta-Analysis. Sci. Rep. 2022, 12, 21032. [Google Scholar] [CrossRef] [PubMed]
- d’Humières, C.; Salmona, M.; Dellière, S.; Leo, S.; Rodriguez, C.; Angebault, C.; Alanio, A.; Fourati, S.; Lazarevic, V.; Woerther, P.L.; et al. The Potential Role of Clinical Metagenomics in Infectious Diseases: Therapeutic Perspectives. Drugs 2021, 81, 1453–1466. [Google Scholar] [CrossRef]
- Waddington, C.; Carey, M.E.; Boinett, C.J.; Higginson, E.; Veeraraghavan, B.; Baker, S. Exploiting Genomics to Mitigate the Public Health Impact of Antimicrobial Resistance. Genome Med. 2022, 14, 15. [Google Scholar]
- Sherry, N.L.; Horan, K.A.; Ballard, S.A.; Gonçalves da Silva, A.; Gorrie, C.L.; Schultz, M.B.; Stevens, K.; Valcanis, M.; Sait, M.L.; Stinear, T.P.; et al. An ISO-Certified Genomics Workflow for Identification and Surveillance of Antimicrobial Resistance. Nat. Commun. 2023, 14, 60. [Google Scholar] [CrossRef]
- Watson, J.D.; Crick, F.H.C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef]
- Sanger, F.; Coulson, A.R. A Rapid Method for Determining Sequences in DNA by Primed Synthesis with DNA Polymerase. J. Mol. Biol. 1975, 94, 441–448. [Google Scholar] [CrossRef]
- Sanger, F.; Air, G.M.; Barrell, B.G.; Brown, N.L.; Coulson, A.R.; Fiddes, J.C.; Hutchison, C.A.; Slocombe, P.M.; Smith, M. Nucleotide Sequence of Bacteriophage Φx174 DNA. Nature 1977, 265, 687–695. [Google Scholar] [CrossRef]
- Hunkapiller, T.; Kaiser, R.J.; Koop, B.F.; Hood, L. Large-Scale and Automated DNA Sequence Determination. Science 1991, 254, 59–67. [Google Scholar] [PubMed]
- Watts, D.; MacBeath, J.R. Automated Fluorescent DNA Sequencing on the ABI PRISM 310 Genetic Analyzer. Methods Mol. Biol. 2001, 167, 153–170. [Google Scholar] [PubMed]
- Tibayrenc, M. Genetics and Evolution of Infectious Diseases, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Mohammadi, M.M.; Bavi, O. DNA Sequencing: An Overview of Solid-State and Biological Nanopore-Based Methods. Biophys. Rev. 2022, 14, 99–110. [Google Scholar] [PubMed]
- Ronaghi, M. Pyrosequencing Sheds Light on DNA Sequencing. Genome Res. 2001, 11, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Dash, H.R. Microbial Diversity in the Genomic Era; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Cummings, P.J.; Ahmed, R.; Durocher, J.A.; Jessen, A.; Vardi, T.; Obom, K.M. Pyrosequencing for Microbial Identification and Characterization. J. Vis. Exp. 2013, 78, e50405. [Google Scholar] [CrossRef]
- Rothberg, J.M.; Hinz, W.; Rearick, T.M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J.H.; Johnson, K.; Milgrew, M.J.; Edwards, M.; et al. An Integrated Semiconductor Device Enabling Non-Optical Genome Sequencing. Nature 2011, 475, 348–352. [Google Scholar] [CrossRef]
- Hasman, H.; Saputra, D.; Sicheritz-Ponten, T.; Lund, O.; Svendsen, C.A.; Frimodt-Moller, N.; Aarestrup, F.M. Rapid Whole-Genome Sequencing for Detection and Characterization of Microorganisms Directly from Clinical Samples. J. Clin. Microbiol. 2014, 52, 139–146. [Google Scholar] [CrossRef]
- Besser, J.; Carleton, H.A.; Gerner-Smidt, P.; Lindsey, R.L.; Trees, E. Next-Generation Sequencing Technologies and Their Application to the Study and Control of Bacterial Infections. Clin. Microbiol. Infect. 2018, 24, 335–341. [Google Scholar] [CrossRef]
- Bentley, D.R.; Balasubramanian, S.; Swerdlow, H.P.; Smith, G.P.; Milton, J.; Brown, C.G.; Hall, K.P.; Evers, D.J.; Barnes, C.L.; Bignell, H.R.; et al. Accurate Whole Human Genome Sequencing Using Reversible Terminator Chemistry. Nature 2008, 456, 53–59. [Google Scholar] [CrossRef]
- Kobras, C.M.; Fenton, A.K.; Sheppard, S.K. Next-Generation Microbiology: From Comparative Genomics to Gene Function. Genome Biol. 2021, 22, 123. [Google Scholar] [CrossRef] [PubMed]
- Hilt, E.E.; Ferrieri, P. Next Generation and Other Sequencing Technologies in Diagnostic Microbiology and Infectious Diseases. Genes 2022, 13, 1566. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-Generation Sequencing Technologies: An Overview. Hum. Immunol. 2021, 82, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Schadt, E.E.; Turner, S.; Kasarskis, A. A Window into Third-Generation Sequencing. Hum. Mol. Genet. 2010, 19, R227–R240. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, E.L.; Jaszczyszyn, Y.; Naquin, D.; Thermes, C. The Third Revolution in Sequencing Technology. Trends Genet. 2018, 34, 666–681. [Google Scholar] [CrossRef]
- Pushkarev, D.; Neff, N.F.; Quake, S.R. Single-Molecule Sequencing of an Individual Human Genome. Nat. Biotechnol. 2009, 27, 847–850. [Google Scholar] [CrossRef]
- Levene, H.J.; Korlach, J.; Turner, S.W.; Foquet, M.; Craighead, H.G.; Webb, W.W. Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations. Science 2003, 299, 682–686. [Google Scholar] [CrossRef]
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of Next-Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef]
- Mikheyev, A.S.; Tin, M.M.Y. A First Look at the Oxford Nanopore MinION Sequencer. Mol. Ecol. Resour. 2014, 14, 1097–1102. [Google Scholar] [CrossRef]
- Lin, B.; Hui, J.; Mao, H. Nanopore Technology and Its Applications in Gene Sequencing. Biosensors 2021, 11, 214. [Google Scholar] [CrossRef]
- Chandak, S.; Tatwawadi, K.; Sridhar, S.; Weissman, T. Impact of Lossy Compression of Nanopore Raw Signal Data on Basecalling and Consensus Accuracy. Bioinformatics 2020, 36, 5313–5321. [Google Scholar] [CrossRef]
- Fleischmann, R.D.; Adams, M.D.; White, O.; Clayton, R.A.; Kirkness, E.F.; Kerlavage, A.R.; Bult, C.J.; Tomb, J.F.; Dougherty, B.A.; Merrick, J.M.; et al. Whole-Genome Random Sequencing and Assembly of Haemophilus Influenzae Rd. Science 1995, 269, 496–512. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Manual for the Surveillance of Vaccine-Preventable Diseases. In VPD Surveillance Manual; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2012. [Google Scholar]
- Van Goethem, N.; Descamps, T.; Devleesschauwer, B.; Roosens, N.H.C.; Boon, N.A.M.; Van Oyen, H.; Robert, A. Status and Potential of Bacterial Genomics for Public Health Practice: A Scoping Review. Implement. Sci. 2019, 14, 79. [Google Scholar] [PubMed]
- Armstrong, G.L.; MacCannell, D.R.; Taylor, J.; Carleton, H.A.; Neuhaus, E.B.; Bradbury, R.S.; Posey, J.E.; Gwinn, M. Pathogen Genomics in Public Health. N. Engl. J. Med. 2019, 381, 2569–2580. [Google Scholar] [CrossRef]
- Sheppard, S.K.; Didelot, X.; Meric, G.; Torralbo, A.; Jolley, K.A.; Kelly, D.J.; Bentley, S.D.; Maiden, M.C.J.; Parkhill, J.; Falush, D. Genome-Wide Association Study Identifies Vitamin B5 Biosynthesis as a Host Specificity Factor in Campylobacter. Proc. Natl. Acad. Sci. USA 2013, 110, 11923–11927. [Google Scholar] [CrossRef]
- Chen, P.E.; Shapiro, B.J. The Advent of Genome-Wide Association Studies for Bacteria. Curr. Opin. Microbiol. 2015, 25, 17–24. [Google Scholar]
- Lees, J.A.; Mai, T.T.; Galardini, M.; Wheeler, N.E.; Horsfield, S.T.; Parkhill, J.; Corander, J. Improved Prediction of Bacterial Genotype-Phenotype Associations Using Interpretable Pangenome-Spanning Regressions. mBio 2020, 11, e01344-20. [Google Scholar] [CrossRef]
- Allen, J.P.; Snitkin, E.; Pincus, N.B.; Hauser, A.R. Forest and Trees: Exploring Bacterial Virulence with Genome-Wide Association Studies and Machine Learning. Trends Microbiol. 2021, 29, 621–633. [Google Scholar]
- Saber, M.M.; Shapiro, J. Benchmarking Bacterial Genome-Wide Association Study (GWAS) Methods Using Simulated Genomes and Phenotypes. bioRxiv 2019, 795492. [Google Scholar] [CrossRef]
- Vermeulen, S. Bacterial GWAS: A Comprehensive Assessment of Challenges, Methods, and Alternatives. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2023. [Google Scholar]
- San, J.E.; Baichoo, S.; Kanzi, A.; Moosa, Y.; Lessells, R.; Fonseca, V.; Mogaka, J.; Power, R.; de Oliveira, T. Current Affairs of Microbial Genome-Wide Association Studies: Approaches, Bottlenecks and Analytical Pitfalls. Front. Microbiol. 2020, 10, 3119. [Google Scholar]
- Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; de Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D. Genome-Wide Association Studies. Nat. Rev. Methods Primers 2021, 1, 59. [Google Scholar] [CrossRef]
- Chernov, V.M.; Chernova, O.A.; Mouzykantov, A.A.; Lopukhov, L.L.; Aminov, R.I. Omics of Antimicrobials and Antimicrobial Resistance. Expert Opin. Drug Discov. 2019, 14, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.K.; van der Putten, B.C.L.; Fuchs, T.M.; Vinh, T.N.; Bootsma, M.; Oldenkamp, R.; La Ragione, R.; Matamoros, S.; Hoa, N.T.; Berens, C.; et al. Genome-Wide Association Reveals Host-Specific Genomic Traits in Escherichia coli. BMC Biol. 2023, 21, 76. [Google Scholar] [CrossRef]
- Denamur, E.; Condamine, B.; Esposito-Farèse, M.; Royer, G.; Clermont, O.; Laouenan, C.; Lefort, A.; de Lastours, V.; Galardini, M. Genome Wide Association Study of Escherichia Coli Bloodstream Infection Isolates Identifies Genetic Determinants for the Portal of Entry but Not Fatal Outcome. PLoS Genet 2022, 18, e1010112. [Google Scholar] [CrossRef]
- Pei, X.M.; Yeung, M.H.Y.; Wong, A.N.N.; Tsang, H.F.; Yu, A.C.S.; Yim, A.K.Y.; Wong, S.C.C. Targeted Sequencing Approach and Its Clinical Applications for the Molecular Diagnosis of Human Diseases. Cells 2023, 12, 493. [Google Scholar]
- Boers, S.A.; Jansen, R.; Hays, J.P. Understanding and Overcoming the Pitfalls and Biases of Next-Generation Sequencing (NGS) Methods for Use in the Routine Clinical Microbiological Diagnostic Laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1059–1070. [Google Scholar]
- Greninger, A.L.; Bard, J.D.; Colgrove, R.C.; Graf, E.H.; Hanson, K.E.; Hayden, M.K.; Humphries, R.M.; Lowe, C.F.; Miller, M.B.; Pillai, D.R.; et al. Clinical and Infection Prevention Applications of Severe Acute Respiratory Syndrome Coronavirus 2 Genotyping: An Infectious Diseases Society of America/American Society for Microbiology Consensus Review Document. J. Clin. Microbiol. 2022, 60, e0165921. [Google Scholar] [CrossRef]
- Mohamed, S.; Boulmé, R.; Sayada, C. From Capillary Electrophoresis to Deep Sequencing: An Improved HIV-1 Drug Resistance Assessment Solution Using In Vitro Diagnostic (IVD) Assays and Software. Viruses 2023, 15, 571. [Google Scholar] [CrossRef]
- Benjamino, J.; Leopold, B.; Phillips, D.; Adams, M.D. Genome-Based Targeted Sequencing as a Reproducible Microbial Community Profiling Assay. mSphere 2021, 6, e01325-20. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, X.; Tang, L.V.; Xia, L.; Hu, Y. Nanopore-Targeted Sequencing Improves the Diagnosis and Treatment of Patients with Serious Infections. mBio 2023, 14, e0305522. [Google Scholar] [CrossRef]
- Zhao, N.; Cao, J.; Xu, J.; Liu, B.; Liu, B.; Chen, D.; Xia, B.; Chen, L.; Zhang, W.; Zhang, Y.; et al. Targeting RNA with Next- and Third-Generation Sequencing Improves Pathogen Identification in Clinical Samples. Adv. Sci. 2021, 8, 2102593. [Google Scholar] [CrossRef] [PubMed]
- de Araujo, L.; Cabibbe, A.M.; Mhuulu, L.; Ruswa, N.; Dreyer, V.; Diergaardt, A.; Günther, G.; Claassens, M.; Gerlach, C.; Utpatel, C.; et al. Implementation of Targeted Next-Generation Sequencing for the Diagnosis of Drug-Resistant Tuberculosis in Low-Resource Settings: A Programmatic Model, Challenges, and Initial Outcomes. Front. Public Health 2023, 11, 1204064. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.G.; Smith, C.; Lapierre, P.; Shea, J.; Patel, K.; Halse, T.A.; Dickinson, M.; Escuyer, V.; Rowlinson, M.C.; Musser, K.A. Direct Detection of Drug-Resistant Mycobacterium Tuberculosis Using Targeted next Generation Sequencing. Front. Public Health 2023, 11, 1206056. [Google Scholar] [CrossRef] [PubMed]
- Gaston, D.C.; Miller, H.B.; Fissel, J.A.; Jacobs, E.; Gough, E.; Wu, J.; Klein, E.Y.; Carroll, K.C.; Simner, P.J. Evaluation of Metagenomic and Targeted Next-Generation Sequencing Workflows for Detection of Respiratory Pathogens from Bronchoalveolar Lavage Fluid Specimens. J. Clin. Microbiol. 2022, 60, e0052622. [Google Scholar] [CrossRef]
- Ghansah, A.; Kamau, E.; Amambua-Ngwa, A.; Ishengoma, D.S.; Maiga-Ascofare, O.; Amenga-Etego, L.; Deme, A.; Yavo, W.; Randrianarivelojosia, M.; Ochola-Oyier, L.I.; et al. Targeted Next Generation Sequencing for Malaria Research in Africa: Current Status and Outlook. Proc. Malar. J. 2019, 18, 324. [Google Scholar] [CrossRef]
- Gantuya, B.; El Serag, H.B.; Saruuljavkhlan, B.; Azzaya, D.; Matsumoto, T.; Uchida, T.; Oyuntsetseg, K.; Oyunbileg, N.; Davaadorj, D.; Yamaoka, Y. Advantage of 16S RRNA Amplicon Sequencing in Helicobacter Pylori Diagnosis. Helicobacter 2021, 26, e12790. [Google Scholar] [CrossRef]
- Aggarwal, D.; Kanitkar, T.; Narouz, M.; Azadian, B.S.; Moore, L.S.P.; Mughal, N. Clinical Utility and Cost-Effectiveness of Bacterial 16S RRNA and Targeted PCR Based Diagnostic Testing in a UK Microbiology Laboratory Network. Sci. Rep. 2020, 10, 7965. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct Target Ther. 2022, 7, 135. [Google Scholar]
- Quaglio, A.E.V.; Grillo, T.G.; De Oliveira, E.C.S.; Di Stasi, L.C.; Sassaki, L.Y. Gut Microbiota, Inflammatory Bowel Disease and Colorectal Cancer. World J. Gastroenterol. 2022, 28, 4053. [Google Scholar] [CrossRef]
- Li, S.; Song, J.; Ke, P.; Kong, L.; Lei, B.; Zhou, J.; Huang, Y.; Li, H.; Li, G.; Chen, J.; et al. The Gut Microbiome Is Associated with Brain Structure and Function in Schizophrenia. Sci. Rep. 2021, 11, 9743. [Google Scholar] [CrossRef]
- Usyk, M.; Peters, B.A.; Karthikeyan, S.; McDonald, D.; Sollecito, C.C.; Vazquez-Baeza, Y.; Shaffer, J.P.; Gellman, M.D.; Talavera, G.A.; Daviglus, M.L.; et al. Comprehensive Evaluation of Shotgun Metagenomics, Amplicon Sequencing, and Harmonization of These Platforms for Epidemiological Studies. Cell Rep. Methods 2023, 3, 100391. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.L.; Simner, P.J. Next-Generation Sequencing in Clinical Microbiology: Are We There Yet? Clin. Lab Med. 2019, 39, 405–418. [Google Scholar] [PubMed]
- Quince, C.; Walker, A.W.; Simpson, J.T.; Loman, N.J.; Segata, N. Shotgun Metagenomics, from Sampling to Analysis—Supplementary BOX 1. Nat. Biotechnol. 2017, 35, 833–844. [Google Scholar] [PubMed]
- Mei, J.; Hu, H.; Zhu, S.; Ding, H.; Huang, Z.; Li, W.; Yang, B.; Zhang, W.; Fang, X. Diagnostic Role of MNGS in Polymicrobial Periprosthetic Joint Infection. J. Clin. Med. 2023, 12, 1838. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.R.; Sample, H.A.; Zorn, K.C.; Arevalo, S.; Yu, G.; Neuhaus, J.; Federman, S.; Stryke, D.; Briggs, B.; Langelier, C.; et al. Clinical Metagenomic Sequencing for Diagnosis of Meningitis and Encephalitis. N. Engl. J. Med. 2019, 380, 2327–2340. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Y.; Zhou, J.; Zhang, Y.; Qi, X.; Bai, K.; Lou, Z.; Li, Y.; Xia, H.; Bu, H. Metagenomic Next-Generation Sequencing of Cell-Free and Whole-Cell DNA in Diagnosing Central Nervous System Infections. Front. Cell. Infect. Microbiol. 2022, 12, 951703. [Google Scholar] [CrossRef]
- Geng, S.; Mei, Q.; Zhu, C.; Fang, X.; Yang, T.; Zhang, L.; Fan, X.; Pan, A. Metagenomic Next-Generation Sequencing Technology for Detection of Pathogens in Blood of Critically Ill Patients. Int. J. Infect. Dis. 2021, 103, 81–87. [Google Scholar] [CrossRef]
- Gu, B.; Zhuo, C.; Xu, X.; El Bissati, K. Editorial: Molecular Diagnostics for Infectious Diseases: Novel Approaches, Clinical Applications and Future Challenges. Front. Microbiol. 2023, 14, 1153827. [Google Scholar] [CrossRef]
- Lin, M.; Wang, K.; Qiu, L.; Liang, Y.; Tu, C.; Chen, M.; Wang, Z.; Wu, J.; Huang, Y.; Tan, C.; et al. Tropheryma Whipplei Detection by Metagenomic Next-Generation Sequencing in Bronchoalveolar Lavage Fluid: A Cross-Sectional Study. Front. Cell. Infect. Microbiol. 2022, 12, 961297. [Google Scholar] [CrossRef]
- Pecora, N.D.; Li, N.; Allard, M.; Li, C.; Albano, E.; Delaney, M.; Dubois, A.; Onderdonk, A.B.; Bry, L. Genomically Informed Surveillance for Carbapenem-Resistant Enterobacteriaceae in a Health Care System. mBio 2015, 6, e01030-15. [Google Scholar] [CrossRef]
- Duarte, A.S.R.; Röder, T.; Van Gompel, L.; Petersen, T.N.; Hansen, R.B.; Hansen, I.M.; Bossers, A.; Aarestrup, F.M.; Wagenaar, J.A.; Hald, T. Metagenomics-Based Approach to Source-Attribution of Antimicrobial Resistance Determinants—Identification of Reservoir Resistome Signatures. Front. Microbiol. 2021, 11, 601407. [Google Scholar] [CrossRef] [PubMed]
- Blauwkamp, T.A.; Thair, S.; Rosen, M.J.; Blair, L.; Lindner, M.S.; Vilfan, I.D.; Kawli, T.; Christians, F.C.; Venkatasubrahmanyam, S.; Wall, G.D.; et al. Analytical and Clinical Validation of a Microbial Cell-Free DNA Sequencing Test for Infectious Disease. Nat. Microbiol. 2019, 4, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Robert, S.; Filkins, L. Clinical Metagenomics for Infection Diagnosis. In Genomic and Precision Medicine: Infectious and Inflammatory Disease; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Gu, W.; Miller, S.; Chiu, C.Y. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 319–338. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation (WHO). 10 Global Health Issues to Track in 2021; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Ikuta, K.S.; Swetschinski, L.R.; Robles Aguilar, G.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Davis Weaver, N.; Wool, E.E.; Han, C.; Gershberg Hayoon, A.; et al. Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Larkin, H. Increasing Antimicrobial Resistance Poses Global Threat, WHO Says. JAMA 2023, 329, 200. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control; World Health Organization. Antimicrobial Resistance Surveillance in Europe 2023–2021 Data; European Centre for Disease Prevention and Control: Stockholm, Sweden; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics 2022, 11, 427. [Google Scholar]
- Kekre, M.; Arevalo, S.A.; Valencia, M.F.; Lagrada, M.L.; Macaranas, P.K.V.; Nagaraj, G.; Oaikhena, A.O.; Olorosa, A.M.; Aanensen, D.M.; Abudahab, K.; et al. Integrating Scalable Genome Sequencing into Microbiology Laboratories for Routine Antimicrobial Resistance Surveillance. Clin. Infect. Dis. 2021, 73, S258–S266. [Google Scholar] [CrossRef]
- Ransom, E.M.; Potter, R.F.; Dantas, G.; Burnham, C.A.D. Genomic Prediction of Antimicrobial Resistance: Ready or Not, Here It Comes! Clin. Chem. 2020, 66, 1278–1289. [Google Scholar]
- Price, T.K.; Realegeno, S.; Mirasol, R.; Tsan, A.; Chandrasekaran, S.; Garner, O.B.; Yang, S. Validation, Implementation, and Clinical Utility of Whole Genome Sequence-Based Bacterial Identification in the Clinical Microbiology Laboratory. J. Mol. Diagn. 2021, 23, 1468–1477. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Bortolaia, V.; Tate, H.; Tyson, G.H.; Aarestrup, F.M.; McDermott, P.F. Using Genomics to Track Global Antimicrobial Resistance. Front. Public Health 2019, 7, 242. [Google Scholar] [CrossRef] [PubMed]
- Babiker, A.; Mustapha, M.M.; Pacey, M.P.; Shutt, K.A.; Ezeonwuka, C.D.; Ohm, S.L.; Cooper, V.S.; Marsh, J.W.; Doi, Y.; Harrison, L.H. Use of Online Tools for Antimicrobial Resistance Prediction by Whole-Genome Sequencing in Methicillin-Resistant Staphylococcus Aureus (MRSA) and Vancomycin-Resistant Enterococci (VRE). J. Glob. Antimicrob. Resist. 2019, 19, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Król, Z.J.; Dobosz, P.; Ślubowska, A.; Mroczek, M. WGS Data Collections: How Do Genomic Databases Transform Medicine? Int. J. Mol. Sci. 2023, 24, 3031. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Martin, N.; Magnus, D. Privacy and Ethical Challenges in Next-Generation Sequencing. Expert Rev. Precis. Med. Drug Dev. 2019, 4, 95–104. [Google Scholar] [CrossRef]
- Cason, C.; D’Accolti, M.; Soffritti, I.; Mazzacane, S.; Comar, M.; Caselli, E. Next-Generation Sequencing and PCR Technologies in Monitoring the Hospital Microbiome and Its Drug Resistance. Front. Microbiol. 2022, 13, 969863. [Google Scholar] [CrossRef]
- Gil-Gil, T.; Ochoa-Sánchez, L.E.; Baquero, F.; Martínez, J.L. Antibiotic Resistance: Time of Synthesis in a Post-Genomic Age. Comput. Struct. Biotechnol. J. 2021, 19, 3110–3124. [Google Scholar] [CrossRef]
- Su, M.; Satola, S.W.; Read, T.D. Genome-Based Prediction of Bacterial Antibiotic Resistance. J. Clin. Microbiol. 2019, 57, 10–1128. [Google Scholar] [CrossRef]
- Kaprou, G.D.; Bergšpica, I.; Alexa, E.A.; Alvarez-Ordóñez, A.; Prieto, M. Rapid Methods for Antimicrobial Resistance Diagnostics. Antibiotics 2021, 10, 209. [Google Scholar] [CrossRef]
- Ellington, M.J.; Ekelund, O.; Aarestrup, F.M.; Canton, R.; Doumith, M.; Giske, C.; Grundman, H.; Hasman, H.; Holden, M.T.G.; Hopkins, K.L.; et al. The Role of Whole Genome Sequencing in Antimicrobial Susceptibility Testing of Bacteria: Report from the EUCAST Subcommittee. Clin. Microbiol. Infect. 2017, 23, 2–22. [Google Scholar] [CrossRef]
- Vegyari, C.; Underwood, A.; Kekre, M.; Argimon, S.; Muddyman, D.; Abrudan, M.; Carlos, C.; Donado-Godoy, P.; Okeke, I.N.; Ravikumar, K.L.; et al. Whole-Genome Sequencing as Part of National and International Surveillance Programmes for Antimicrobial Resistance: A Roadmap. BMJ Glob. Health 2020, 5, e002244. [Google Scholar]
- Banerjee, R.; Patel, R. Molecular Diagnostics for Genotypic Detection of Antibiotic Resistance: Current Landscape and Future Directions. JAC Antimicrob. Resist. 2023, 5, dlad018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.N.; Gaston, J.M.; Dai, C.L.; Zhao, S.; Poyet, M.; Groussin, M.; Yin, X.; Li, L.G.; van Loosdrecht, M.C.M.; Topp, E.; et al. An Omics-Based Framework for Assessing the Health Risk of Antimicrobial Resistance Genes. Nat. Commun. 2021, 12, 4765. [Google Scholar] [CrossRef] [PubMed]
- Fondi, M.; Liò, P. Multi -Omics and Metabolic Modelling Pipelines: Challenges and Tools for Systems Microbiology. Microbiol. Res. 2015, 171, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Didelot, X.; Bowden, R.; Wilson, D.J.; Peto, T.E.A.; Crook, D.W. Transforming Clinical Microbiology with Bacterial Genome Sequencing. Nat. Rev. Genet. 2012, 13, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Duval, A.; Opatowski, L.; Brisse, S. Defining Genomic Epidemiology Thresholds for Common-Source Bacterial Outbreaks: A Modelling Study. Lancet Microbe 2023, 4, e349–e357. [Google Scholar] [CrossRef]
- Parcell, B.J.; Gillespie, S.H.; Pettigrew, K.A.; Holden, M.T.G. Clinical Perspectives in Integrating Whole-Genome Sequencing into the Investigation of Healthcare and Public Health Outbreaks—Hype or Help? J. Hosp. Infect. 2021, 109, 1–9. [Google Scholar] [CrossRef]
- Ruan, Z.; Yu, Y.; Feng, Y. The Global Dissemination of Bacterial Infections Necessitates the Study of Reverse Genomic Epidemiology. Brief Bioinform 2020, 21, 741–750. [Google Scholar] [CrossRef]
- Ribot, E.M.; Freeman, M.; Hise, K.B.; Gerner-Smidt, P. PulseNet: Entering the Age of Next-Generation Sequencing. Foodborne Pathog. Dis. 2019, 16, 451–456. [Google Scholar] [CrossRef]
- Westberg, R.; Stegger, M.; Söderquist, B. Molecular Epidemiology of Neonatal-Associated Staphylococcus Haemolyticus Reveals Endemic Outbreak. Microbiol. Spectr. 2022, 10, e0245222. [Google Scholar] [CrossRef]
- Mendes, G.; Ramalho, J.F.; Duarte, A.; Pedrosa, A.; Silva, A.C.; Méndez, L.; Caneiras, C. First Outbreak of NDM-1-Producing Klebsiella Pneumoniae ST11 in a Portuguese Hospital Centre during the COVID-19 Pandemic. Microorganisms 2022, 10, 251. [Google Scholar] [CrossRef]
- Schürch, A.C.; Arredondo-Alonso, S.; Willems, R.J.L.; Goering, R.V. Whole Genome Sequencing Options for Bacterial Strain Typing and Epidemiologic Analysis Based on Single Nucleotide Polymorphism versus Gene-by-Gene–Based Approaches. Clin. Microbiol. Infect. 2018, 24, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Ranade, K.; Chang, M.S.; Ting, C.T.; Pei, D.; Hsiao, C.F.; Olivier, M.; Pesich, R.; Hebert, J.; Chen, Y.D.I.; Dzau, V.J.; et al. High-Throughput Genotyping with Single Nucleotide Polymorphisms. Genome Res. 2001, 11, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Olson, N.D.; Lund, S.P.; Colman, R.E.; Foster, J.T.; Sahl, J.W.; Schupp, J.M.; Keim, P.; Morrow, J.B.; Salit, M.L.; Zook, J.M. Best Practices for Evaluating Single Nucleotide Variant Calling Methods for Microbial Genomics. Front. Genet. 2015, 6, 235. [Google Scholar] [CrossRef]
- Dougherty, C.E.; Graf, E. Next-Generation Sequencing for Outbreak Investigation in the Clinical Microbiology Laboratory. Am. Soc. Clin. Lab. Sci. 2019, 32, 70–77. [Google Scholar] [CrossRef]
- Mamede, R.; Vila-Cerqueira, P.; Silva, M.; Carriço, J.A.; Ramirez, M. Chewie Nomenclature Server (Chewie-NS): A Deployable Nomenclature Server for Easy Sharing of Core and Whole Genome MLST Schemas. Nucleic Acids Res. 2021, 49, D660–D666. [Google Scholar] [CrossRef]
- Jamin, C.; de Koster, S.; van Koeveringe, S.; de Coninck, D.; Mensaert, K.; de Bruyne, K.; Selva, N.P.; Lammens, C.; Goossens, H.; Hoebe, C.; et al. Harmonization of Whole-Genome Sequencing for Outbreak Surveillance of Enterobacteriaceae and Enterococci. Microb. Genom. 2021, 7, 000567. [Google Scholar] [CrossRef]
- Han, G.B.; Cho, D.H. Genome Classification Improvements Based on K-Mer Intervals in Sequences. Genomics 2019, 111, 1574–1582. [Google Scholar] [CrossRef]
- Uelze, L.; Grützke, J.; Borowiak, M.; Hammerl, J.A.; Juraschek, K.; Deneke, C.; Tausch, S.H.; Malorny, B. Typing Methods Based on Whole Genome Sequencing Data. One Health Outlook 2020, 2, 3. [Google Scholar] [CrossRef]
- Maechler, F.; Weber, A.; Schwengers, O.; Schwab, F.; Denkel, L.; Behnke, M.; Gastmeier, P.; Kola, A. Split K-Mer Analysis Compared to CgMLST and SNP-Based Core Genome Analysis for Detecting Transmission of Vancomycin-Resistant Enterococci: Results from Routine Outbreak Analyses across Different Hospitals and Hospitals Networks in Berlin, Germany. Microb. Genom. 2023, 9, 000937. [Google Scholar] [CrossRef]
- WHO. SARS-CoV-2 Genomic Sequencing for Public Health Goals. In WHO—Interim Guid; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Robishaw, J.D.; Alter, S.M.; Solano, J.J.; Shih, R.D.; DeMets, D.L.; Maki, D.G.; Hennekens, C.H. Genomic Surveillance to Combat COVID-19: Challenges and Opportunities. Lancet Microbe 2021, 2, e481–e484. [Google Scholar] [CrossRef]
- Lee, N.K.; Stewart, M.A.; Dymond, J.S.; Lewis, S.L. An Implementation Strategy to Develop Sustainable Surveillance Activities Through Adoption of a Target Operating Model. Front. Public Health 2022, 10, 871114. [Google Scholar] [CrossRef] [PubMed]
- Hill, V.; Githinji, G.; Vogels, C.B.F.; Bento, A.I.; Chaguza, C.; Carrington, C.V.F.; Grubaugh, N.D. Toward a Global Virus Genomic Surveillance Network. Cell Host Microbe 2023, 31, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Stevens, B.M.; Creed, T.B.; Reardon, C.L.; Manter, D.K. Comparison of Oxford Nanopore Technologies and Illumina MiSeq Sequencing with Mock Communities and Agricultural Soil. Sci. Rep. 2023, 13, 9323. [Google Scholar] [CrossRef] [PubMed]
- Linde, J.; Brangsch, H.; Hölzer, M.; Thomas, C.; Elschner, M.C.; Melzer, F.; Tomaso, H. Comparison of Illumina and Oxford Nanopore Technology for Genome Analysis of Francisella Tularensis, Bacillus Anthracis, and Brucella Suis. BMC Genom. 2023, 24, 258. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Halse, T.A.; Shea, J.; Modestil, H.; Fowler, R.C.; Musser, K.A.; Escuyer, V.; Lapierre, P. Assessing Nanopore Sequencing for Clinical Diagnostics: A Comparison of Next-Generation Sequencing (NGS) Methods for Mycobacterium Tuberculosis. J. Clin. Microbiol. 2021, 59, 10–1128. [Google Scholar] [CrossRef]
- Foster-Nyarko, E.; Cottingham, H.; Wick, R.R.; Judd, L.M.; Lam, M.M.C.; Wyres, K.L.; Stanton, T.D.; Tsang, K.K.; David, S.; Aanensen, D.M.; et al. Nanopore-Only Assemblies for Genomic Surveillance of the Global Priority Drug-Resistant Pathogen, Klebsiella Pneumoniae. Microb. Genom. 2023, 9, 000936. [Google Scholar] [CrossRef]
- Ling-Hu, T.; Rios-Guzman, E.; Lorenzo-Redondo, R.; Ozer, E.A.; Hultquist, J.F. Challenges and Opportunities for Global Genomic Surveillance Strategies in the COVID-19 Era. Viruses 2022, 14, 2532. [Google Scholar] [CrossRef]
- Akande, O.W.; Carter, L.L.; Abubakar, A.; Achilla, R.; Barakat, A.; Gumede, N.; Guseinova, A.; Inbanathan, F.Y.; Kato, M.; Koua, E.; et al. Strengthening Pathogen Genomic Surveillance for Health Emergencies: Insights from the World Health Organization’s Regional Initiatives. Front. Public Health 2023, 11, 1146730. [Google Scholar] [CrossRef]
- Carter, L.L.; Yu, M.A.; Sacks, J.A.; Barnadas, C.; Pereyaslov, D.; Cognat, S.; Briand, S.; Ryan, M.J.; Samaan, G. Global Genomic Surveillance Strategy for Pathogens with Pandemic and Epidemic Potential 2022–2032. Bull. World Health Organ. 2022, 100, 239. [Google Scholar] [CrossRef]
- Burki, T. A New Network for Pathogen Surveillance. Lancet Infect. Dis. 2023, 23, 792–793. [Google Scholar] [CrossRef]
- Hill, V.; Ruis, C.; Bajaj, S.; Pybus, O.G.; Kraemer, M.U.G. Progress and Challenges in Virus Genomic Epidemiology. Trends Parasitol. 2021, 37, 1038–1049. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Azman, A.S.; Chen, X.; Zou, J.; Tian, Y.; Sun, R.; Xu, X.; Wu, Y.; Lu, W.; Ge, S.; et al. Global Landscape of SARS-CoV-2 Genomic Surveillance and Data Sharing. Nat. Genet. 2022, 54, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Nogales, A.; Martínez-Sobrido, L. Reverse Genetics Approaches for the Development of Influenza Vaccines. Int. J. Mol. Sci. 2017, 18, 20. [Google Scholar] [CrossRef] [PubMed]
- Van Poelvoorde, L.A.E.; Saelens, X.; Thomas, I.; Roosens, N.H. Next-Generation Sequencing: An Eye-Opener for the Surveillance of Antiviral Resistance in Influenza. Trends Biotechnol. 2020, 38, 360–367. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Systematic Review of the Efficacy, Effectiveness and Safety of Newer and Enhanced Seasonal Influenza Vaccines for the Prevention of Laboratory-Confirmed Influenza in Individuals Aged 18 Years and Over; European Centre for Disease Prevention and Control: Solna, Sweden, 2020. [Google Scholar] [CrossRef]
- Cheng, V.C.; To, K.K.; Tse, H.; Hung, I.F.; Yuen, K.Y. Two Years after Pandemic Influenza A/2009/H1N1: What Have We Learned? Clin. Microbiol. Rev. 2012, 25, 223–263. [Google Scholar] [CrossRef]
- ECDC. Influenza Virus Characterization; ECDC: Solna, Sweden, 2005. [Google Scholar]
- CDC. NCIRD Influenza Virus Genome Sequencing and Genetic Characterization; CDC: Atlanta, GA, USA, 2022. [Google Scholar]
- World Health Organization. Global Influenza Strategy 2019–2030; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- European Centre for Disease Prevention and Control. Data Quality Monitoring and Surveillance System Evaluation: A Handbook of Methods and Applications; ECDC: Solna, Sweden, 2014; ISBN 9789291935925. [Google Scholar]
- Makoni, M. Launch of Genomic Surveillance System for Respiratory Viruses. Lancet Microbe 2023, 4, e214. [Google Scholar] [CrossRef]
- World Health Organization (WHO). GLASS Whole-Genome Sequencing for Surveillance of Antimicrobial Resistance: Global Antimicrobial Resistance and Use Surveillance System (GLASS); WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Antimicrobial Resistance in the EU/EEA A One Health Response; European Centre for Disease Prevention and Control: Solna, Sweden, 2022; Available online: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-eueea-one-health-response (accessed on 26 September 2023).
- Diaz Hogberg, L. March 2023 TESSy-The European Surveillance System Antimicrobial Resistance (AMR) Reporting Protocol 2023 European Antimicrobial Resistance Surveillance Network (EARS-Net) Surveillance Data for 2022; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Adisasmito, W.B.; Almuhairi, S.; Behravesh, C.B.; Bilivogui, P.; Bukachi, S.A.; Casas, N.; Becerra, N.C.; Charron, D.F.; Chaudhary, A.; Ciacci Zanella, J.R.; et al. One Health: A New Definition for a Sustainable and Healthy Future. PLoS Pathog. 2022, 18, e1010537. [Google Scholar] [CrossRef]
- Cook, R.; Karesh, W.; Osofsky, S. One World—One Health. In Proceedings of the Conference summary: One World, One Health: Building Interdisciplinary Bridges to Health in a Globalized World, Manhattan, CA, USA, 29 September 2004. [Google Scholar]
- Gardy, J.L.; Loman, N.J. Towards a Genomics-Informed, Real-Time, Global Pathogen Surveillance System. Nat. Rev. Genet. 2018, 19, 9–20. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO); United Nations Environment Programme (UNEP); World Health Organization (WHO); World Organisation for Animal Health (WHOA). One Health Joint Plan of Action, 2022–2026; FAO: Rome, Italy; UNEP: Nairobi, Kenya; WHO: Geneva, Switzerland; World Organisation for Animal Health (WOAH) (Founded as OIE): Paris, France, 2022. [Google Scholar]
- The Lancet. Zoonoses: Beyond the Human–Animal–Environment Interface. Lancet 2020, 396, 1. [Google Scholar] [CrossRef]
- Allen, T.; Murray, K.A.; Zambrana-Torrelio, C.; Morse, S.S.; Rondinini, C.; Di Marco, M.; Breit, N.; Olival, K.J.; Daszak, P. Global Hotspots and Correlates of Emerging Zoonotic Diseases. Nat. Commun. 2017, 8, 1124. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Taking a Multisectoral, One Health Approach: A Tripartite Guide to Addressing Zoonotic Diseases in Countries; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Conrad, P.A.; Meek, L.A.; Dumit, J. Operationalizing a One Health Approach to Global Health Challenges. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Cella, E.; Giovanetti, M.; Benedetti, F.; Scarpa, F.; Johnston, C.; Borsetti, A.; Ceccarelli, G.; Azarian, T.; Zella, D.; Ciccozzi, M. Joining Forces against Antibiotic Resistance: The One Health Solution. Pathogens 2023, 12, 1074. [Google Scholar] [CrossRef] [PubMed]
- Devos, Y.; Bray, E.; Bronzwaer, S.; Gallani, B.; Url, B. Advancing Food Safety: Strategic Recommendations from the ONE—Health, Environment & Society—Conference 2022. EFSA J. 2022, 20, e201101. [Google Scholar] [PubMed]
- Urban, L.; Perlas, A.; Francino, O.; Martí-Carreras, J.; Muga, B.A.; Mwangi, J.W.; Boykin Okalebo, L.; Stanton, J.L.; Black, A.; Waipara, N.; et al. Real-time Genomics for One Health. Mol. Syst. Biol. 2023, 19, e11686. [Google Scholar] [CrossRef]
- Khoury, M.J.; Holt, K.E. The Impact of Genomics on Precision Public Health: Beyond the Pandemic. Genome. Med. 2021, 13, 67. [Google Scholar] [CrossRef] [PubMed]
- The Lancet. Microbe Avian Influenza: The Need to Apply Experience. Lancet Microbe 2022, 3, e553. [Google Scholar] [CrossRef]
- Short, K.R.; Richard, M.; Verhagen, J.H.; van Riel, D.; Schrauwen, E.J.A.; van den Brand, J.M.A.; Mänz, B.; Bodewes, R.; Herfst, S. One Health, Multiple Challenges: The Inter-Species Transmission of Influenza A Virus. One Health 2015, 1, 1–13. [Google Scholar] [CrossRef]
- Mthembu, T.P.; Zishiri, O.T.; El Zowalaty, M.E. Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-associated Salmonella Species. Animals 2021, 11, 872. [Google Scholar] [CrossRef]
- Bharat, A.; Mataseje, L.; Jane Parmley, E.; Avery, B.P.; Cox, G.; Carson, C.A.; Irwin, R.J.; Deckert, A.E.; Daignault, D.; Alexander, D.C.; et al. One Health Genomic Analysis of Extended-Spectrum β-Lactamase-Producing Salmonella Enterica, Canada, 2012-2016. Emerg. Infect. Dis. 2022, 28, 1410–1420. [Google Scholar] [CrossRef]
- Karesh, W.B. Predict: Surveillance and Prediction for Emerging Pathogens of Wildlife. BMC Proc. 2011, 5, L7-1. [Google Scholar] [CrossRef]
- Shu, Y.; McCauley, J. GISAID: Global Initiative on Sharing All Influenza Data–From Vision to Reality. Eurosurveillance 2017, 22, 30494. [Google Scholar] [CrossRef] [PubMed]
- Knijn, A.; Michelacci, V.; Gigliucci, F.; Tozzoli, R.; Chiani, P.; Minelli, F.; Scavia, G.; Ventola, E.; Morabito, S. IRIDA-ARIES Genomics, a Key Player in the One Health Surveillance of Diseases Caused by Infectious Agents in Italy. Front. Public Health 2023, 11, 1151568. [Google Scholar] [CrossRef] [PubMed]
- Adrian, E.; Blanc Dominique, S.; Gilbert, G.; Keller Peter, M.; Vladimir, L.; Aitana, L.; Stephen, L.; Neher Richard, A.; Vincent, P.; Alban, R.; et al. Improving the Quality and Workflow of Bacterial Genome Sequencing and Analysis: Paving the Way for a Switzerland-Wide Molecular Epidemiological Surveillance Platform. Swiss Med. Wkly. 2018, 148, w14693. [Google Scholar]
- Neves, A.; Walther, D.; Martin-Campos, T.; Barbie, V.; Bertelli, C.; Blanc, D.; Bouchet, G.; Erard, F.; Greub, G.; Hirsch, H.H.; et al. The Swiss Pathogen Surveillance Platform—Towards a Nationwide One Health Data Exchange Platform for Bacterial, Viral and Fungal Genomics and Associated Metadata. Microb. Genom. 2023, 9, 001001. [Google Scholar] [CrossRef]
- Svraka, S.; Rosario, K.; Duizer, E.; Van Der Avoort, H.; Breitbart, M.; Koopmans, M. Metagenomic Sequencing for Virus Identification in a Public-Health Setting. J. Gen. Virol. 2010, 91, 2846–2856. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.; Morzaria, S.; Briand, S.; Johnson, C.K.; Morens, D.; Sumption, K.; Tomori, O.; Wacharphaueasadee, S. Preventing the next Pandemic: The Power of a Global Viral Surveillance Network. BMJ 2021, 372, n485. [Google Scholar] [CrossRef]
- Carroll, D.; Daszak, P.; Wolfe, N.D.; Gao, G.F.; Morel, C.M.; Morzaria, S.; Pablos-Méndez, A.; Tomori, O.; Mazet, J.A.K. The Global Virome Project. Science 2018, 359, 872–874. [Google Scholar] [CrossRef]
- Achee, N.L. The Remote Emerging Disease Intelligence—NETwork. Front. Microbiol. 2022, 13, 961065. [Google Scholar] [CrossRef]
- Takhampunya, R.; Linton, Y.-M.; von Fricken, M.E.; Melendrez, M.C. Metagenomics for Epidemiological Surveillance in ONE HEALTH; Frontiers Research Topics; Frontier Media SA: Lausanne, Switzerland, 2023; ISBN 9782832521755. [Google Scholar]
- van Leth, F.; Schultsz, C. Unbiased Antimicrobial Resistance Prevalence Estimates through Population-Based Surveillance. Clin. Microbiol. Infect. 2023, 29, 429–433. [Google Scholar] [CrossRef]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial Resistance: One Health Approach. Vet. World 2022, 15, 743–749. [Google Scholar] [CrossRef]
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and Combating Antibiotic Resistance from One Health and Global Health Perspectives. Nat. Microbiol. 2019, 4, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Muloi, D.M.; Hassell, J.M.; Wee, B.A.; Ward, M.J.; Bettridge, J.M.; Kivali, V.; Kiyong’a, A.; Ndinda, C.; Gitahi, N.; Ouko, T.; et al. Genomic Epidemiology of Escherichia Coli: Antimicrobial Resistance through a One Health Lens in Sympatric Humans, Livestock and Peri-Domestic Wildlife in Nairobi, Kenya. BMC Med. 2022, 20, 471. [Google Scholar] [CrossRef] [PubMed]
- Ludden, C.; Raven, K.E.; Jamrozy, D.; Gouliouris, T.; Blane, B.; Coll, F.; de Goffau, M.; Naydenova, P.; Horner, C.; Hernandez-Garcia, J.; et al. One Health Genomic Surveillance of Escherichia Coli Demonstrates Distinct Lineages and Mobile Genetic Elements in Isolates from Humans versus Livestock. mBio 2019, 10, e02693-18. [Google Scholar] [CrossRef] [PubMed]
- Despotovic, M.; de Nies, L.; Busi, S.B.; Wilmes, P. Reservoirs of Antimicrobial Resistance in the Context of One Health. Curr. Opin. Microbiol. 2023, 73, 102291. [Google Scholar] [CrossRef]
- Babu Rajendran, N.; Arieti, F.; Mena-Benítez, C.A.; Galia, L.; Tebon, M.; Alvarez, J.; Gladstone, B.P.; Collineau, L.; De Angelis, G.; Duro, R.; et al. EPI-Net One Health Reporting Guideline for Antimicrobial Consumption and Resistance Surveillance Data: A Delphi Approach. Lancet Reg. Health-Eur. 2023, 26, 100563. [Google Scholar] [CrossRef]
- Vasala, A.; Hytönen, V.P.; Laitinen, O.H. Modern Tools for Rapid Diagnostics of Antimicrobial Resistance. Front. Cell. Infect. Microbiol. 2020, 10, 308. [Google Scholar] [CrossRef]
- Avershina, E.; Khezri, A.; Ahmad, R. Clinical Diagnostics of Bacterial Infections and Their Resistance to Antibiotics—Current State and Whole Genome Sequencing Implementation Perspectives. Antibiotics 2023, 12, 781. [Google Scholar] [CrossRef]
- Kim, D.W.; Cha, C.J. Antibiotic Resistome from the One-Health Perspective: Understanding and Controlling Antimicrobial Resistance Transmission. Exp. Mol. Med. 2021, 53, 301–309. [Google Scholar] [CrossRef]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
Culture Testing | PCR/RT-PCR | Genomic Technologies | |
---|---|---|---|
Advantages | Widely available and cheaper than NGS | Rapidly completed in 4–8 h | Pathogen identification and characterisation independent of culturing and microbe isolation |
Only basic equipment necessary | Increased identification of less common organisms such as viruses | Reduced time for slow growing pathogen identification, typing and characterisation | |
Test multiple targets in one sample | Faster identification of outbreak clusters | ||
Higher sensitivity than culture testing | Higher sensitivity and specificity, better resolution | ||
Disadvantages | Failures in the identification of fastidious bacteria and organisms that cannot be cultured | Higher costs than culturing | Higher costs than culturing |
Increased time for slow-growing pathogen identification and typing | High specific design of primers and need for a list of potential pathogens | Requirement of highly specialised laboratory equipment and trained personnel | |
Requires special media and specific condition for the different microorganisms | Inability to determine the MIC of a compound | Inability to determine the MIC of a compound |
Second Generation—Short Reads | Third Generation—Long Reads | |
---|---|---|
Platforms | Ion Torrent, Illumina | PacBio, Oxford Nanopore |
Sequencing principle | Sequencing-By-Synthesis (SBS) | Single-Molecule Sequencing (SMS) |
Maximum reads length | 400 bp or 2 × 300 pb | >100 kb |
Advantages | High sequence accuracy | Easier library preparation and portable technologies |
Able to sequence fragmented DNA | Suitable for the analysis of epigenetic markers | |
High throughput (parallelisation of sequencing reaction) | Generation of very long reads | |
Disadvantages | Not able to resolve structural variants | Overall lower accuracy |
Not appropriate for analysing highly homologous genomic regions or epigenetic markers | Signals obtained from individual fragments can be weak | |
Challenges for WGS due to the short reads |
Methodology | Common Use | |
---|---|---|
Whole Genome Sequencing (WGS) | Sequencing the entire genome | Identifying mutations, genomic structure |
Genome-Wide Association Studies (GWAS) | Analysing genetic variations | Identifying associations between genetic variations and traits or diseases |
Target Sequencing (tNGS) | Focusing on specific genomic regions | Studying specific genes or regions of interest |
Amplicon Sequencing | Amplifying and sequencing specific DNA fragments | Microbial community analysis, genetic markers |
16S Metagenomics | Sequencing the 16S rRNA gene | Studying microbial diversity and taxonomy |
Shotgun Metagenomics (mNGS) | Sequencing all DNA in a sample | Analysing the entire genomic content of a microbial community |
Advantages | Disadvantages | |
---|---|---|
Whole Genome Sequencing (WGS) | Rapid results, especially for slow-growing pathogens | Complex data analysis |
Can predict drug resistance profile | Interdisciplinary collaboration needed for clinical integration | |
Potential to unveil novel resistance mechanisms | Interlaboratory variability | |
Accessible for other studies (e.g., phylogenetics) | Cost and resource barriers | |
Supports public health decisions and policies | Regulatory and ethical concerns (data privacy and consent) | |
Metagenomics (including amplicon and shotgun metagenomics) | Faster and higher throughput than conventional methods. | Resource and time barriers to genome analysis |
mNGS is culture-independent and can identify all pathogens | Limitations in detecting unknown resistance genes or genetic variants | |
Can detect and quantify numerous AMR genes without prior selection | Cannot provide MIC of a compound. | |
Real-time AMR surveillance for outbreak detection. | ||
Multiomics Analysis | Provides insights into dynamic mechanisms behind AMR | Challenges in data integration, limited information for specific bacteria and resistance types |
Integration of genomics, transcriptomics, and proteomics offers a holistic view | Accounting for biological variations | |
Improved accuracy of resistance forecasts. | Requires rigorous validation and interpretation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianconi, I.; Aschbacher, R.; Pagani, E. Current Uses and Future Perspectives of Genomic Technologies in Clinical Microbiology. Antibiotics 2023, 12, 1580. https://doi.org/10.3390/antibiotics12111580
Bianconi I, Aschbacher R, Pagani E. Current Uses and Future Perspectives of Genomic Technologies in Clinical Microbiology. Antibiotics. 2023; 12(11):1580. https://doi.org/10.3390/antibiotics12111580
Chicago/Turabian StyleBianconi, Irene, Richard Aschbacher, and Elisabetta Pagani. 2023. "Current Uses and Future Perspectives of Genomic Technologies in Clinical Microbiology" Antibiotics 12, no. 11: 1580. https://doi.org/10.3390/antibiotics12111580
APA StyleBianconi, I., Aschbacher, R., & Pagani, E. (2023). Current Uses and Future Perspectives of Genomic Technologies in Clinical Microbiology. Antibiotics, 12(11), 1580. https://doi.org/10.3390/antibiotics12111580