Mechanisms and Applications of Citral’s Antimicrobial Properties in Food Preservation and Pharmaceuticals Formulations
Abstract
:1. Introduction
2. Characteristics and Biosynthesis
3. Biological Activities
3.1. Antibacterial Activity
Antibiofilm Activity of Citral against Bacteria
3.2. Antifungal Activity
Antibiofilm Activity of Citral against Fungi
3.3. Antiproliferative Effect against Cancer Cells
3.4. Anti-Inflammatory
3.5. Antiparasitic
3.6. Antioxidant
4. Use as a Possible Food Additive
5. Use as Possible Pharmaceutical
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silva, C.d.B.d.; Guterres, S.S.; Weisheimer, V.; Schapoval, E.E. Antifungal activity of the lemongrass oil and citral against Candida spp. J. Braz. J. Infect. Dis. 2008, 12, 63–66. [Google Scholar] [CrossRef]
- Wolken, W.A.; ten Have, R.; van der Werf, M. Amino acid-catalyzed conversion of citral: Cis-trans isomerization and its conversion into 6-methyl-5-hepten-2-one and acetaldehyde. J. Agric. Food Chem. 2000, 48, 5401–5405. [Google Scholar] [CrossRef]
- Ress, N.; Hailey, J.; Maronpot, R.; Bucher, J.; Travlos, G.; Haseman, J.; Orzech, D.; Johnson, J.; Hejtmancik, M. Toxicology and carcinogenesis studies of microencapsulated citral in rats and mice. Toxicol. Sci. 2003, 71, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Liu, G.; Li, J.; Chen, J.; Li, L.; Li, Z.; Zhang, X.; Zhang, S.; Thorne, R.F.; Zhang, S. Antimicrobial Activity of Lemongrass Essential Oil (Cymbopogon flexuosus) and Its Active Component Citral Against Dual-Species Biofilms of Staphylococcus aureus and Candida Species. Front. Cell. Infect. Microbiol. 2020, 10, 603858. [Google Scholar] [CrossRef]
- Viktorová, J.; Stupák, M.; Řehořová, K.; Dobiasová, S.; Hoang, L.; Hajšlová, J.; Van Thanh, T.; Van Tri, L.; Van Tuan, N.; Ruml, T. Lemon Grass Essential Oil does not Modulate Cancer Cells Multidrug Resistance by Citral—Its Dominant and Strongly Antimicrobial Compound. Foods 2020, 9, 585. [Google Scholar] [CrossRef]
- Ortega-Ramirez, L.A.; Gutiérrez-Pacheco, M.M.; Vargas-Arispuro, I.; González-Aguilar, G.A.; Martínez-Téllez, M.A.; Ayala-Zavala, J.F.J.A. Inhibition of Glucosyltransferase Activity and Glucan Production as an Antibiofilm Mechanism of Lemongrass Essential Oil against Escherichia coli O157: H7. Antibiotics 2020, 9, 102. [Google Scholar] [CrossRef]
- Valliammai, A.; Sethupathy, S.; Ananthi, S.; Priya, A.; Selvaraj, A.; Nivetha, V.; Aravindraja, C.; Mahalingam, S.; Pandian, S.K. Proteomic profiling unveils citral modulating expression of IsaA, CodY and SaeS to inhibit biofilm and virulence in Methicillin-resistant Staphylococcus aureus. Int. J. Biol. Macromol. 2020, 158, 208–221. [Google Scholar] [CrossRef]
- Santoro, G.; Cardoso, M.; Guimarães, L.; Freire, J.; Soares, M. Anti-proliferative effect of the essential oil of Cymbopogon citratus (DC) Stapf (lemongrass) on intracellular amastigotes, bloodstream trypomastigotes and culture epimastigotes of Trypanosoma cruzi (Protozoa: Kinetoplastida). Parasitology 2007, 134, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Bustos, E.; Velazquez, C.; Garibay-Escobar, A.; Garcia, Z.; Plascencia-Jatomea, M.; Cortez-Rocha, M.O.; Hernandez-Martinez, J.; Robles-Zepeda, R.E. Antibacterial and antifungal activities of some Mexican medicinal plants. J. Med. Food 2009, 12, 1398–1402. [Google Scholar] [CrossRef] [PubMed]
- Martins, H.B.; das Neves Selis, N.; Silva e Souza, C.L.; Nascimento, F.S.; de Carvalho, S.P.; D’Oliveira Gusmão, L.; dos Santos Nascimento, J.; Brito, A.K.P.; Sde Souza, S.I.; de Oliveira, M.V.; et al. Anti-Inflammatory Activity of the Essential Oil Citral in Experimental Infection with Staphylococcus aureus in a Model Air Pouch. Evid.-Based Complement. Altern. Med. 2017, 2017, 2505610. [Google Scholar] [CrossRef] [PubMed]
- Habib, S.; Gupta, P.; Bhat, S.S.; Gupta, J. In silico, in-vitro and in-vivo screening of biological activities of citral. Int. J. Vitam. Nutr. Res. 2020, 91, 251–260. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Z.-T.; Li, R. Antioxidant activity, free radical scavenging potential and chemical composition of Litsea cubeba essential oil. J. Essent. Oil Bear. Plants 2012, 15, 134–143. [Google Scholar] [CrossRef]
- Kim, J.; Marshall, M.; Cornell, J.; III, J.P.; Wei, C. Antibacterial activity of carvacrol, citral, and geraniol against Salmonella typhimurium in culture medium and on fish cubes. J. Food Sci. 1995, 60, 1364–1368. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.; Faleiro, M.L.; Miguel, M.G.; Antunes, M.D. Edible coatings enriched with essential oils for extending the shelf-life of ‘Bravo de Esmolfe’fresh-cut apples. Int. J. Food Sci. Technol. 2016, 51, 87–95. [Google Scholar] [CrossRef]
- Chien, S.-Y.; Sheen, S.; Sommers, C.; Sheen, L.-Y. Modeling the inactivation of Escherichia coli O157: H7 and uropathogenic E. coli in ground beef by high pressure processing and citral. Food Control 2017, 73, 672–680. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Zhang, R.; Yao, W. Synergistic inhibition effect of citral and eugenol against Aspergillus niger and their application in bread preservation. Food Chem. 2020, 310, 125974. [Google Scholar] [CrossRef]
- López-Romero, J.C.; García-Dávila, J.; Peña-Ramos, E.A.; González-Ríos, H.; Valenzuela-Melendres, M.; Osoria, M.; Juneja, V.K. Effect of Citral on the Thermal Inactivation of Escherichia coli O104: H4 in Ground Beef. J. Food Prot. 2022, 85, 1635–1639. [Google Scholar] [CrossRef]
- Nordin, N.; Yeap, S.K.; Rahman, H.S.; Zamberi, N.R.; Abu, N.; Mohamad, N.E.; How, C.W.; Masarudin, M.J.; Abdullah, R.; Alitheen, N.B. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci. Rep. 2019, 9, 1614. [Google Scholar] [CrossRef]
- Batohi, N.; Lone, S.A.; Marimani, M.; Wani, M.Y.; Al-Bogami, A.S.; Ahmad, A. Citral and its derivatives inhibit quorum sensing and biofilm formation in Chromobacterium violaceum. Arch. Microbiol. 2021, 203, 1451–1459. [Google Scholar] [CrossRef]
- Kang, S.; Li, X.; Xing, Z.; Liu, X.; Bai, X.; Yang, Y.; Guo, D.; Xia, X.; Zhang, C.; Shi, C. Antibacterial effect of citral on Yersinia enterocolitica and its mechanism. Food Control 2022, 135, 108775. [Google Scholar] [CrossRef]
- Ganjewala, D.; Gupta, A.K.; Muhury, R. An Update on Bioactive Potential of a Monoterpene Aldehyde Citral. J. Biol. Act. Prod. Nat. 2012, 2, 186–199. [Google Scholar] [CrossRef]
- Pubchem. PubChem Compound Summary for CID 638011, Citral. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Citral (accessed on 15 August 2021).
- Ganjewala, D.; Luthra, R. Geranyl acetate esterase controls and regulates the level of geraniol in lemongrass (Cymbopogon flexuosus Nees ex Steud.) mutant cv. GRL-1 leaves. Z. Naturforschung C 2009, 64, 251–259. [Google Scholar] [CrossRef]
- Ganjewala, D.; Luthra, R. Essential oil biosynthesis and regulation in the genus Cymbopogon. Nat. Prod. Commun. 2010, 5, 163–172. [Google Scholar] [CrossRef]
- Trung, N.Q. Citral-bearing Plants from Vietnam the Valuable Material for Fragrance and Pharmaceutical Industry. Asian J. Res. Bot. 2021, 6, 16–22. [Google Scholar]
- Rana, V.S.; Das, M.; Blazqeuz, M. Essential oil yield, chemical composition, and total citral content of nine cultivars of Cymbopogon species from Western India. J. Herbs Spices Med. Plants 2016, 22, 289–299. [Google Scholar] [CrossRef]
- Tajidin, N.; Ahmad, S.; Rosenani, A.; Azimah, H.; Munirah, M. Chemical composition and citral content in lemongrass (Cymbopogon citratus) essential oil at three maturity stages. Afr. J. Biotechnol. 2012, 11, 2685–2693. [Google Scholar] [CrossRef]
- Gaonkar, R.; Yallappa, S.; Dhananjaya, B.L.; Hegde, G. Development and validation of reverse phase high performance liquid chromatography for citral analysis from essential oils. J. Chromatogr. B 2016, 1036–1037, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Boukhatem, M.N.; Ferhat, M.A.; Rajabi, M.; Mousa, S.A. Solvent-free microwave extraction: An eco-friendly and rapid process for green isolation of essential oil from lemongrass. Nat. Prod. Res. 2020, 36, 664–667. [Google Scholar] [CrossRef]
- Alves, M.d.S.; Campos, I.M.; Brito, D.d.M.C.d.; Cardoso, C.M.; Pontes, E.G.; Souza, M.A.A.d. Efficacy of lemongrass essential oil and citral in controlling Callosobruchus maculatus (Coleoptera: Chrysomelidae), a post-harvest cowpea insect pest. Crop Prot. 2019, 119, 191–196. [Google Scholar] [CrossRef]
- Ajayi, E.O.; Sadimenko, A.P.; Afolayan, A.J. GC–MS evaluation of Cymbopogon citratus (DC) Stapf oil obtained using modified hydrodistillation and microwave extraction methods. Food Chem. 2016, 209, 262–266. [Google Scholar] [CrossRef]
- Jaleel, H.; Khan, M.M.A.; Ahmad, B.; Shabbir, A.; Sadiq, Y.; Uddin, M.; Varshney, L. Essential oil and citral production in field-grown lemongrass in response to gamma-irradiated chitosan. J. Herbs Spices Med. Plants 2017, 23, 378–392. [Google Scholar] [CrossRef]
- Yen, H.Y.; Lin, Y.C. Green extraction of Cymbopogon citrus essential oil by solar energy. Ind. Crops Prod. 2017, 108, 716–721. [Google Scholar] [CrossRef]
- da Silva Júnior, A.Q.; da Silva, D.S.; Figueiredo, P.L.B.; Sarrazin, S.L.F.; Bouillet, L.E.M.; de Oliveira, R.B.; Maia, J.G.S.; Mourão, R.H.V. Seasonal and circadian evaluation of a citral-chemotype from Lippia alba essential oil displaying antibacterial activity. Biochem. Syst. Ecol. 2019, 85, 35–42. [Google Scholar] [CrossRef]
- Marques, A.M.; Kaplan, M.A.C. Preparative isolation and characterization of monoterpene isomers present in the citral-rich essential oil of Pectis brevipedunculata. J. Essent. Oil Res. 2013, 25, 210–215. [Google Scholar] [CrossRef]
- Pereira, S.F.; Barroso, A.; Mourão, R.H.V.; Fernandes, C.P. A Low Energy Approach for the Preparation of Nano-Emulsions with a High Citral-Content Essential Oil. Molecules 2021, 26, 3666. [Google Scholar] [CrossRef]
- Usach, I.; Margarucci, E.; Manca, M.L.; Caddeo, C.; Aroffu, M.; Petretto, G.L.; Manconi, M.; Peris, J.-E. Comparison between Citral and Pompia Essential Oil Loaded in Phospholipid Vesicles for the Treatment of Skin and Mucosal Infections. Nanomaterials 2020, 10, 286. [Google Scholar] [CrossRef]
- Ebadi, M.-T.; Abbasi, S.; Harouni, A.; Sefidkon, F. Effect of cold plasma on essential oil content and composition of lemon verbena. Food Sci. Nutr. 2019, 7, 1166–1171. [Google Scholar] [CrossRef]
- Marcus, J.; Klossek, M.L.; Touraud, D.; Kunz, W. Nano-droplet formation in fragrance tinctures. Flavour Fragr. J. 2013, 28, 294–299. [Google Scholar] [CrossRef]
- Baschieri, A.; Ajvazi, M.D.; Tonfack, J.L.F.; Valgimigli, L.; Amorati, R. Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chem. 2017, 232, 656–663. [Google Scholar] [CrossRef]
- Ghosh, K. Anticancer effect of lemongrass oil and citral on cervical cancer cell lines. Pharmacogn. Commun. 2013, 3, 41–48. [Google Scholar] [CrossRef]
- Gonçalves, E.C.D.; Assis, P.M.; Junqueira, L.A.; Cola, M.; Santos, A.R.S.; Raposo, N.R.B.; Dutra, R.C. Citral Inhibits the Inflammatory Response and Hyperalgesia in Mice: The Role of TLR4, TLR2/Dectin-1, and CB2 Cannabinoid Receptor/ATP-Sensitive K+ Channel Pathways. J. Nat. Prod. 2020, 83, 1190–1200. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Ganjewala, D. A study on biosynthesis of “citral” in lemongrass (C. flexuosus) cv. Suvarna. Acta Physiol. Plant. 2015, 37, 240. [Google Scholar] [CrossRef]
- Saddiq, A.A.; Khayyat, S.A. Chemical and antimicrobial studies of monoterpene: Citral. Pestic. Biochem. Physiol. 2010, 98, 89–93. [Google Scholar] [CrossRef]
- Thielmann, J.; Theobald, M.; Wutz, A.; Krolo, T.; Buergy, A.; Niederhofer, J.; Welle, F.; Muranyi, P. Litsea cubeba fruit essential oil and its major constituent citral as volatile agents in an antimicrobial packaging material. Food Microbiol. 2021, 96, 103725. [Google Scholar] [CrossRef]
- Adukwu, E.C.; Bowles, M.; Edwards-Jones, V.; Bone, H. Antimicrobial activity, cytotoxicity and chemical analysis of lemongrass essential oil (Cymbopogon flexuosus) and pure citral. Appl. Microbiol. Biotechnol. 2016, 100, 9619–9627. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Liu, H.; Wang, Y.; He, X.; Jiang, H.; Yao, J.; Xia, F.; Zhao, Y.; Chen, X. Antimicrobial and antivirulence efficacies of citral against foodborne pathogen Vibrio parahaemolyticus RIMD2210633. Food Control 2021, 120, 107507. [Google Scholar] [CrossRef]
- Aiemsaard, J.; Aiumlamai, S.; Aromdee, C.; Taweechaisupapong, S.; Khunkitti, W. The effect of lemongrass oil and its major components on clinical isolate mastitis pathogens and their mechanisms of action on Staphylococcus aureus DMST 4745. Res. Vet. Sci. 2011, 91, e31–e37. [Google Scholar] [CrossRef] [PubMed]
- Chueca, B.; Pagán, R.; García-Gonzalo, D. Oxygenated monoterpenes citral and carvacrol cause oxidative damage in Escherichia coli without the involvement of tricarboxylic acid cycle and Fenton reaction. Int. J. Food Microbiol. 2014, 189, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Espina, L.; Berdejo, D.; Alfonso, P.; García-Gonzalo, D.; Pagán, R. Potential use of carvacrol and citral to inactivate biofilm cells and eliminate biofouling. Food Control 2017, 82, 256–265. [Google Scholar] [CrossRef]
- Silva-Angulo, A.; Zanini, S.; Rosenthal, A.; Rodrigo, D.; Klein, G.; Martínez, A. Combined effect of carvacrol and citral on the growth of Listeria monocytogenes and Listeria innocua and on the occurrence of damaged cells. Food Control 2015, 53, 156–162. [Google Scholar] [CrossRef]
- Zanini, S.; Silva-Angulo, A.; Rosenthal, A.; Rodrigo, D.; Martínez, A. Effect of citral and carvacrol on the susceptibility of Listeria monocytogenes and Listeria innocua to antibiotics. Lett. Appl. Microbiol. 2014, 58, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Dubois-Brissonnet, F.; Naïtali, M.; Mafu, A.A.; Briandet, R.J.A.; Microbiology, E. Induction of fatty acid composition modifications and tolerance to biocides in Salmonella enterica serovar Typhimurium by plant-derived terpenes. Appl. Environ. Microbiol. 2011, 77, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, W.; Yan, H.; Neng, J.; Zheng, Y.; Yang, K.; Xing, F.; Sun, P. iTRAQ proteome analysis of the antifungal mechanism of citral on mycelial growth and OTA production in Aspergillus ochraceus. J. Sci. Food 2021, 101, 4969–4979. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhou, D.; Zhang, X.; Xiao, X.; Yu, Y.; Li, X. Synergistic effect of citral and carvacrol and their combination with mild heat against Cronobacter sakazakii CICC 21544 in reconstituted infant formula. LWT 2021, 138, 110617. [Google Scholar] [CrossRef]
- Zheng, S.; Jing, G.; Wang, X.; Ouyang, Q.; Jia, L.; Tao, N. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function. Food Chem. 2015, 178, 76–81. [Google Scholar] [CrossRef]
- Scariot, F.J.; Pansera, M.S.; Delamare, A.P.L.; Echeverrigaray, S.J. Citral and geraniol induce necrotic and apoptotic cell death on Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 2021, 37, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Hu, M.; Zhang, Y.; Niu, C.; Yue, T.; Yuan, Y.; Wang, Z. Antifungal activity and mechanism of citral, limonene and eugenol against Zygosaccharomyces rouxii. LWT 2019, 106, 50–56. [Google Scholar] [CrossRef]
- Leite, M.C.A.; Bezerra, A.P.d.B.; Sousa, J.P.d.; Guerra, F.Q.S.; Lima, E.d.O. Evaluation of Antifungal Activity and Mechanism of Action of Citral against Candida albicans. Evid.-Based Complement. Altern. Med. 2014, 2014, 378280. [Google Scholar] [CrossRef]
- Shi, C.; Song, K.; Zhang, X.; Sun, Y.; Sui, Y.; Chen, Y.; Jia, Z.; Sun, H.; Sun, Z.; Xia, X. Antimicrobial activity and possible mechanism of action of citral against Cronobacter sakazakii. PLoS ONE 2016, 11, e0159006. [Google Scholar] [CrossRef] [PubMed]
- Langeveld, W.T.; Veldhuizen, E.J.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Bisignano, G.; Laganà, M.G.; Trombetta, D.; Arena, S.; Nostro, A.; Uccella, N.; Mazzanti, G.; Saija, A. In vitro antibacterial activity of some aliphatic aldehydes from Olea europaea L. FEMS Microbiol. Lett. 2001, 198, 9–13. [Google Scholar] [CrossRef]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol. 2008, 124, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Ramirez, L.A.; Silva-Espinoza, B.A.; Vargas-Arispuro, I.; Gonzalez-Aguilar, G.A.; Cruz-Valenzuela, M.R.; Nazzaro, F.; Ayala-Zavala, J.F. Combination of Cymbopogon citratus and Allium cepa essential oils increased antibacterial activity in leafy vegetables. J. Sci. Food Agric. 2016, 97, 2166–2173. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Larraínzar, M.; Rúa, J.; Caro, I.; de Castro, C.; de Arriaga, D.; García-Armesto, M.R.; del Valle, P. Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control 2012, 26, 555–563. [Google Scholar] [CrossRef]
- Bassolé, I.H.N.; Lamien-Meda, A.; Bayala, B.; Obame, L.C.; Ilboudo, A.J.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Chemical composition and antimicrobial activity of Cymbopogon citratus and Cymbopogon giganteus essential oils alone and in combination. Phytomedicine 2011, 18, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Mah, T.-F.C.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef]
- Vikram, A.; Jayaprakasha, G.K.; Uckoo, R.M.; Patil, B.S. Inhibition of Escherichia coli O157:H7 motility and biofilm by β-Sitosterol glucoside. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2013, 1830, 5219–5228. [Google Scholar] [CrossRef]
- Beuchat, L.R. Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes Infect. 2002, 4, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, I.; Harper, I.; Coventry, M.; Taylor, P.; Wan, J.; Hickey, M. Bacterial colonization and biofilm development on minimally processed vegetables. J. Appl. Microbiol. 1998, 85, 45S–51S. [Google Scholar] [CrossRef]
- Cooley, M.B.; Miller, W.G.; Mandrell, R.E. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157: H7 and competition by Enterobacter asburiae. Appl. Environ. Microbiol. 2003, 69, 4915–4926. [Google Scholar] [CrossRef]
- Fett, W.F. Naturally occurring biofilms on alfalfa and other types of sprouts. J. Food Prot. 2000, 63, 625–632. [Google Scholar] [CrossRef]
- Pérez-Conesa, D.; McLandsborough, L.; Weiss, J. Inhibition and Inactivation of Listeria monocytogenes and Escherichia coli O157:H7 Colony Biofilms by Micellar-Encapsulated Eugenol and Carvacrol. J. Food Prot. 2006, 69, 2947–2954. [Google Scholar] [CrossRef] [PubMed]
- Valliammai, A.; Selvaraj, A.; Mathumitha, P.; Aravindraja, C.; Pandian, S.K. Polymeric antibiofilm coating comprising synergistic combination of citral and thymol prevents methicillin-resistant Staphylococcus aureus biofilm formation on titanium. Mater. Sci. Eng. C 2021, 121, 111863. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Sun, Y.; Liu, Z.; Guo, D.; Sun, H.; Sun, Z.; Chen, S.; Zhang, W.; Wen, Q.; Peng, X. Inhibition of Cronobacter sakazakii virulence factors by citral. Sci. Rep. 2017, 7, 43243. [Google Scholar] [CrossRef] [PubMed]
- Zogaj, X.; Nimtz, M.; Rohde, M.; Bokranz, W.; Römling, U. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 2001, 39, 1452–1463. [Google Scholar] [CrossRef]
- Beloin, C.; Roux, A.; Ghigo, J.-M. Escherichia coli Biofilms. In Bacterial Biofilms; Romeo, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 249–289. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Lee, J.-H.; Gwon, G.; Kim, S.-I.; Park, J.G.; Lee, J. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7. Sci. Rep. 2016, 6, 36377. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, N.; Wang, D.; Wang, M. Effects of essential oil citral on the growth, mycotoxin biosynthesis and transcriptomic profile of Alternaria alternata. Toxins 2019, 11, 553. [Google Scholar] [CrossRef] [PubMed]
- OuYang, Q.; Tao, N.; Zhang, M. A damaged oxidative phosphorylation mechanism is involved in the antifungal activity of citral against Penicillium digitatum. Front. Microbiol. 2018, 9, 239. [Google Scholar] [CrossRef]
- Tang, N.; Chen, N.; Hu, N.; Deng, W.; Chen, Z.; Li, Z. Comparative metabolomics and transcriptomic profiling reveal the mechanism of fruit quality deterioration and the resistance of citrus fruit against Penicillium digitatum. Postharvest Biol. Technol. 2018, 145, 61–73. [Google Scholar] [CrossRef]
- Wei, L.; Chen, C.; Chen, J.; Lin, L.; Wan, C. Possible fungicidal effect of citral on kiwifruit pathogens and their mechanisms of actions. Physiol. Mol. Plant Pathol. 2021, 114, 101631. [Google Scholar] [CrossRef]
- Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Mohan Karuppayil, S. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling 2013, 29, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.A.; Ahmad, I. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J. Ethnopharmacol. 2012, 140, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, T.M.; Ożarowski, M.; Seremak-Mrozikiewicz, A.; Wolski, H.; Adamczak, A. Plant Preparations and Compounds with Activities against Biofilms Formed by Candida spp. J. Fungi 2021, 7, 360. [Google Scholar] [CrossRef] [PubMed]
- Chatrath, A.; Gangwar, R.; Kumari, P.; Prasad, R. In vitro anti-biofilm activities of citral and thymol against Candida tropicalis. J. Fungi 2019, 5, 13. [Google Scholar] [CrossRef]
- Chatrath, A.; Kumar, M.; Prasad, R. Comparative proteomics and variations in extracellular matrix of Candida tropicalis biofilm in response to citral. Protoplasma 2021, 259, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Mohd Izham, M.N.; Hussin, Y.; Aziz, M.N.M.; Yeap, S.K.; Rahman, H.S.; Masarudin, M.J.; Mohamad, N.E.; Abdullah, R.; Alitheen, N.B. Preparation and characterization of self nano-emulsifying drug delivery system loaded with citraland its antiproliferative effect on colorectal cells in vitro. Nanomaterials 2019, 9, 1028. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, B.Y.; Sarker, M.M.R.; Kamarudin, M.N.A.; Mohan, G. Antiproliferative and apoptosis inducing effects of citral via p53 and ROS-induced mitochondrial-mediated apoptosis in human colorectal HCT116 and HT29 cell lines. Biomed. Pharmacother. 2017, 96, 834–846. [Google Scholar] [CrossRef]
- Fitsiou, E.; Karafoulidou, E.; Arabatzis, S.; Vlachou, D.; Kotsianidis, I.; Pappa, A. Evaluation of the anticancer potential of Lippia citriodora and its major component, citral, and their potential synergy with conventional chemotherapeutic drugs in human colon carcinoma. Facta Univ. Ser. Phys. Chem. Technol. 2018, 16, 175. [Google Scholar]
- Balusamy, S.R.; Ramani, S.; Natarajan, S.; Kim, Y.J.; Perumalsamy, H. Integrated transcriptome and in vitro analysis revealed anti-proliferative effect of citral in human stomach cancer through apoptosis. Sci. Rep. 2019, 9, 4883. [Google Scholar] [CrossRef]
- Sanches, L.J.; Marinello, P.C.; Panis, C.; Fagundes, T.R.; Morgado-Díaz, J.A.; de-Freitas-Junior, J.C.M.; Cecchini, R.; Cecchini, A.L.; Luiz, R.C. Cytotoxicity of citral against melanoma cells: The involvement of oxidative stress generation and cell growth protein reduction. Tumor Biol. 2017, 39, 1010428317695914. [Google Scholar] [CrossRef] [PubMed]
- Upekkhawong, L.; Tohtong, R. Study of Anti-Cancer Activity of Citral against Cholangiocarcinoma Cell Lines. NGRC Congressional. 2020. Available online: https://api.semanticscholar.org/CorpusID:231696310 (accessed on 22 June 2023).
- Balusamy, S.R.; Perumalsamy, H.; Veerappan, K.; Huq, M.A.; Rajeshkumar, S.; Lakshmi, T.; Kim, Y.J. Citral induced apoptosis through modulation of key genes involved in fatty acid biosynthesis in human prostate cancer cells: In silico and in vitro study. BioMed Res. Int. 2020, 2020, 6040727. [Google Scholar] [CrossRef]
- Di Mola, A.; Massa, A.; De Feo, V.; Basile, A.; Pascale, M.; Aquino, R.P.; De Caprariis, P.J.M.C.R. Effect of citral and citral related compounds on viability of pancreatic and human B-lymphoma cell lines. Med. Chem. Res. 2017, 26, 631–639. [Google Scholar] [CrossRef]
- Szkoda, B.E. The Effects of Citral on Caspase-3 Activation in M624 and Hacat Cells. Ph.D. Thesis, Marietta College, Marietta, OH, USA, 2016. [Google Scholar]
- Xia, H.; Liang, W.; Song, Q.; Chen, X.; Chen, X.; Hong, J. The in vitro study of apoptosis in NB4 cell induced by citral. Cytotechnology 2013, 65, 49–57. [Google Scholar] [CrossRef]
- Zielińska, A.; Martins-Gomes, C.; Ferreira, N.R.; Silva, A.M.; Nowak, I.; Souto, E.B. Anti-inflammatory and anti-cancer activity of citral: Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®. Int. J. Pharm. 2018, 553, 428–440. [Google Scholar] [CrossRef]
- Bachiega, T.F.; Sforcin, J.M. Lemongrass and citral effect on cytokines production by murine macrophages. J. Ethnopharmacol. 2011, 137, 909–913. [Google Scholar] [CrossRef]
- Long, N.; Tang, H.; Sun, F.; Lin, L.; Dai, M. Effect and mechanism of citral against methicillin-resistant Staphylococcus aureus in vivo. J. Sci. Food Agric. 2019, 99, 4423–4429. [Google Scholar] [CrossRef]
- Zarandi, M.H.; Sharifiyazdi, H.; Nazifi, S.; Ghaemi, M.; Bakhtyari, M.K. Effects of citral on serum inflammatory factors and liver gene expression of IL-6 and TNF-alpha in experimental diabetes. Comp. Clin. Pathol. 2021, 30, 351–361. [Google Scholar] [CrossRef]
- Emílio-Silva, M.T.; Rodrigues, V.P.; Bueno, G.; Ohara, R.; Martins, M.G.; Horta-Júnior, J.A.C.; Branco, L.G.S.; Rocha, L.R.M.; Hiruma-Lima, C.A. Hypothermic Effect of Acute Citral Treatment during LPS-induced Systemic Inflammation in Obese Mice: Reduction of Serum TNF-α and Leptin Levels. Biomolecules 2020, 10, 1454. [Google Scholar] [CrossRef] [PubMed]
- Uchida, N.S.; Silva-Filho, S.E.; Cardia, G.F.E.; Cremer, E.; Silva-Comar, F.M.d.S.; Silva, E.L.; Bersani-Amado, C.A.; Cuman, R.K.N. Hepatoprotective Effect of Citral on Acetaminophen-Induced Liver Toxicity in Mice. Evid.-Based Complement. Altern. Med. 2017, 2017, 1796209. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, Z.; Guo, X. Citral inhibits lipopolysaccharide-induced acute lung injury by activating PPAR-γ. Eur. J. Pharmacol. 2015, 747, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.-C.; Yang, T.-S.; Chou, J.-C.; Chen, J.; Lee, S.-C.; Kuo, Y.-H.; Ho, C.-L.; Chao, L.K.-P. Anti-inflammatory activity of neral and geranial isolated from fruits of Litsea cubeba Lour. J. Funct. Foods 2015, 19, 248–258. [Google Scholar] [CrossRef]
- Pucci, M.; Raimondo, S.; Zichittella, C.; Tinnirello, V.; Corleone, V.; Aiello, G.; Moschetti, M.; Conigliaro, A.; Fontana, S.; Alessandro, R. Biological Properties of a Citral-Enriched Fraction of Citrus limon Essential Oil. Foods 2020, 9, 1290. [Google Scholar] [CrossRef]
- Han, X.; Parker, T.L. Lemongrass (Cymbopogon flexuosus) essential oil demonstrated anti-inflammatory effect in pre-inflamed human dermal fibroblasts. Biochim. Open 2017, 4, 107–111. [Google Scholar] [CrossRef]
- dos Santos, G.C.M.; Gomes, G.A.; Gonçalves, G.M.; de Sousa, L.M.; Santiago, G.M.P.; de Carvalho, M.G.; Marinho, B.G. Essential Oil from Myrcia ovata: Chemical Composition, Antinociceptive and Anti-Inflammatory Properties in Mice. Planta Med. 2014, 80, 1588–1596. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, H.; Liu, J.; Fang, C.; Miao, R. Effects of Citral on Lipopolysaccharide-Induced Inflammation in Human Umbilical Vein Endothelial Cells. Inflammation 2016, 39, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Minatel, I.O.; Francisqueti, F.V.; Corrêa, C.R.; Lima, G.P.P. Antioxidant activity of γ-oryzanol: A complex network of interactions. Int. J. Mol. Sci. 2016, 17, 1107. [Google Scholar] [CrossRef]
- Campos, C.A.; Lima, B.S.; Trindade, G.G.; Souza, E.P.; Mota, D.S.; Heimfarth, L.; Quintans, J.S.; Quintans-Júnior, L.J.; Sussuchi, E.M.; Sarmento, V.H. Anti-hyperalgesic and anti-inflammatory effects of citral with β-cyclodextrin and hydroxypropyl-β-cyclodextrin inclusion complexes in animal models. Life Sci. 2019, 229, 139–148. [Google Scholar] [CrossRef]
- Lee, H.J.; Jeong, H.S.; Kim, D.J.; Noh, Y.H.; Yuk, D.Y.; Hong, J.T. Inhibitory effect of citral on NO production by suppression of iNOS expression and NF-κB activation in RAW264.7 cells. Arch. Pharmacal Res. 2008, 31, 342–349. [Google Scholar] [CrossRef]
- Azeredo, C.M.; Soares, M.J. Combination of the essential oil constituents citral, eugenol and thymol enhance their inhibitory effect on Crithidia fasciculata and Trypanosoma cruzi growth. Rev. Bras. Farmacogn. 2013, 23, 762–768. [Google Scholar] [CrossRef]
- Cardoso, J.; Soares, M.J. In vitro effects of citral on Trypanosoma cruzi metacyclogenesis. Mem. Inst. Oswaldo Cruz 2010, 105, 1026–1032. [Google Scholar] [CrossRef]
- Moreno, É.M.; Leal, S.M.; Stashenko, E.E.; García, L.T. Induction of programmed cell death in Trypanosoma cruzi by Lippia alba essential oils and their major and synergistic terpenes (citral, limonene and caryophyllene oxide). BMC Complement. Altern. Med. 2018, 18, 225. [Google Scholar] [CrossRef]
- Rojas Armas, J.; Palacios Agüero, O.; Ortiz Sánchez, J.M.; López de la Peña, L. Evaluación de la toxicidad del aceite esencial de Aloysia triphylla Britton (cedrón) y de la actividad anti-Trypanosoma cruzi del citral, in vivo. In Anales de la Facultad de Medicina; UNMSM, Facultad de Medicina: Lima District, Peru, 2015; pp. 129–134. [Google Scholar]
- Santin, M.R.; dos Santos, A.O.; Nakamura, C.V.; Dias Filho, B.P.; Ferreira, I.C.P.; Ueda-Nakamura, T. In vitro activity of the essential oil of Cymbopogon citratus and its major component (citral) on Leishmania amazonensis. Parasitol. Res. 2009, 105, 1489–1496. [Google Scholar] [CrossRef]
- Machado, M.; Pires, P.; Dinis, A.; Santos-Rosa, M.; Alves, V.; Salgueiro, L.; Cavaleiro, C.; Sousa, M. Monoterpenic aldehydes as potential anti-Leishmania agents: Activity of Cymbopogon citratus and citral on L. infantum, L. tropica and L. major. Exp. Parasitol. 2012, 130, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhao, X.; Liu, Z.; Meng, R.; Chen, X.; Guo, N. Antimicrobial, antioxidant, and antitumor activity of epsilon-poly-L-lysine and citral, alone or in combination. Food Nutr. Res. 2016, 60, 31891. [Google Scholar] [CrossRef]
- Wang, X.; Cui, Y.; Tian, S.; Zhao, R. Antioxidant activities of oregano oil, carvacrol, citral and cinnamaldehyde. Sci. Technol. Food Ind. 2013, 2013, 72. [Google Scholar]
- Xu, X.L.; Zhu, Q.; Lv, H.; Wu, W.H.; Lv, M.; Liu, K.H. Isolation and biological activities of citral from sweet orange oilAdv. Mater. Res. 2013, 750–752, 1621–1625. [Google Scholar]
- Bouzenna, H.; Hfaiedh, N.; Giroux-Metges, M.-A.; Elfeki, A.; Talarmin, H. Biological properties of citral and its potential protective effects against cytotoxicity caused by aspirin in the IEC-6 cells. Biomed. Pharmacother. 2017, 87, 653–660. [Google Scholar] [CrossRef]
- Guimarães, L.G.L.; dasGraças Cardoso, M.; Souza, P.E.; de Andrade, J.; Vieira, S.S. Antioxidant and fungitoxic activities of the lemongrass essential oil and citral. Rev. Cienc. Agron. 2011, 42, 464. [Google Scholar] [CrossRef]
- Wojtunik, K.A.; Ciesla, L.M.; Waksmundzka-Hajnos, M. Model studies on the antioxidant activity of common terpenoid constituents of essential oils by means of the 2, 2-diphenyl-1-picrylhydrazyl method. J. Agric. Food Chem. 2014, 62, 9088–9094. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- Paithankar, J.G.; Saini, S.; Dwivedi, S.; Sharma, A.; Chowdhuri, D.K. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere 2021, 262, 128350. [Google Scholar] [CrossRef]
- Mokarizadeh, M.; Kafil, H.S.; Ghanbarzadeh, S.; Alizadeh, A.; Hamishehkar, H. Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: A potential application in food stuffs as a natural preservative. Res. Pharm. Sci. 2017, 12, 409. [Google Scholar]
- Chen, P.; Ference, C.; Sun, X.; Lin, Y.; Tan, L.; Zhong, T. Antimicrobial efficacy of liposome-encapsulated citral and its effect on the shelf life of shatangju Mandarin. J. Food Prot. 2020, 83, 1315–1322. [Google Scholar] [CrossRef]
- Prakash, A.; Baskaran, R.; Vadivel, V. Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT 2020, 118, 108851. [Google Scholar] [CrossRef]
- Ferrario, M.; Fenoglio, D.; Chantada, A.; Guerrero, S. Hurdle processing of turbid fruit juices involving encapsulated citral and vanillin addition and UV-C treatment. Int. J. Food Microbiol. 2020, 332, 108811. [Google Scholar] [CrossRef] [PubMed]
- Shenglong, D.; Jihong, Z.; Shaoyang, C.; Shuang, M.; Li, Z. The combined effect of 1-methylcyclopropene and citral suppressed postharvest grey mould of tomato fruit by inhibiting the growth of Botrytis cinerea. J. Phytopathol. 2019, 167, 123–134. [Google Scholar] [CrossRef]
- Giteru, S.G.; Oey, I.; Ali, M.A.; Johnson, S.K.; Fang, Z. Effect of kafirin-based films incorporating citral and quercetin on storage of fresh chicken fillets. Food Control 2017, 80, 37–44. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.; Miguel, M.G.; Faleiro, M.L.; Antunes, M.D. The influence of edible coatings enriched with citral and eugenol on the raspberry storage ability, nutritional and sensory quality. Food Packag. Shelf Life 2016, 9, 20–28. [Google Scholar] [CrossRef]
- Siroli, L.; Patrignani, F.; Serrazanetti, D.I.; Tabanelli, G.; Montanari, C.; Tappi, S.; Rocculi, P.; Gardini, F.; Lanciotti, R. Potential of natural antimicrobials for the production of minimally processed fresh-cut apples. J. Food Process. 2015, 6, 1–9. [Google Scholar]
- Patrignani, F.; Tabanelli, G.; Siroli, L.; Gardini, F.; Lanciotti, R. Combined effects of high pressure homogenization treatment and citral on microbiological quality of apricot juice. Int. J. Food Microbiol. 2013, 160, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Muriel-Galet, V.; Cerisuelo, J.P.; López-Carballo, G.; Aucejo, S.; Gavara, R. Evaluation of EVOH-coated PP films with oregano essential oil and citral to improve the shelf-life of packaged salad. Food Control 2013, 30, 137–143. [Google Scholar] [CrossRef]
- Fisher, K.; Phillips, C.A. The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. J. Appl. Microbiol. 2006, 101, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Rajendran, S.; Srivastava, A.; Sharma, S.; Kundu, B. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. J. Biosci. Bioeng. 2017, 123, 308–313. [Google Scholar] [CrossRef] [PubMed]
Essential Oil | Plant Material | Citral Content | Collection Site | Extraction Method | Ref. |
---|---|---|---|---|---|
Cymbopogon citratus | Entire plant | 48.92% | India | Steam distillation | [28] |
Entire plant | 62% | Vietnam | Steam distillation under vacuum | [5] | |
Aerial part | 74% | - | Solvent-free microwave extraction | [29] | |
Dried leaves | 80.93% | Brazil | Hydrodistillation | [30] | |
Fresh leaves | 72.6 | South Africa | Hydrodistillation | [31] | |
Cymbopogon flexuosus | Entire plant | 43.1% | India | Hydrodistillation | [32] |
Entire plant | 74.98% | India | Steam distillation | [28] | |
Cymbopogon citrus | Dried leaves | 66.53% and 60.78% | Taiwan | Solar energy extraction and hydrodistillation | [33] |
Lippia alba | Dried leaves | 69% | Brazil | Hydrodistillation | [34] |
Pectis brevipedunculata | Aerial parts | >91% | Brazil | Hydrodistillation and solid phase microextraction | [35] |
Pectis elongata | Dried aerial parts | 90% | Brazil | Hydrodistillation | [36] |
Citrus limon var. pompia | Fresh leaves | 17.9% | Italy | Steam distillation | [37] |
Lippa citriodora Kunth | Dried leaves | 59.2% | Iran | Hydrodistillation | [38] |
Microorganism | Dose (MIC) | Effect | Ref. |
---|---|---|---|
Bacteria | |||
V. parahaemolyticus | 0.125 mg/mL | Inhibited bacterial growth, causing damage to bacterial membrane and cell wall. | [47] |
S. aureus DMST 4745 S. aureus S. agalactiae B. cereus E. coli | 0.62–1.25 μL/mL 0.62–1.25 μL/mL 0.31–0.62 μL/mL 0.15 μL/mL 1.25–2.5 μL/mL | Citral possessed bacteriostatic and bactericidal actions at different concentrations. | [48] |
E. coli MG1655 | 300 μL/L | It inactivated at least 2.5 log10 cycles of exponentially growing cells in 3 h under aerobic conditions. | [49] |
L. monocytogenes S. aureus E. coli | 200 µL/mL 500 µL/mL 500 µL/mL | Growth inhibition. | [50] |
L. monocytogenes L. innocua | 0.125 mL/mL 0.125 mL/mL | Microbial growth of both Listeria species was reduced by almost 2 log10 CFU/mL. | [51] |
L. innocua L. monocytogenes | 100 µL/mL | Citral in the culture medium of both bacteria provided a reduction of bacitracin from 32 µg/mL to 4 µg/mL, and the colistin changed from 96 and 128 µg/mL for L. monocytogenes and L. innocua, respectively, to 16 µg/mL, for both species. | [52] |
Salmonella Typhimurium | 3.1 mM | Citral at subinhibitory concentrations (1, 2, and 3 mM) could induce bacterial adaptation and acquire tolerance to inactivation processes. | [53] |
Fungi | |||
B. dothidea P. macrospore B. cinerea | 0.2 μL/mL 0.2 μL/mL 0.4 μL/mL | At 0.4 μL/mL, citral entirely inhibited the growth of all the tested fungi. When concentration reached 0.2 μL/mL, citral inhibited the growth of B. dothidea best, followed by P. macrospore and B. cinerea. | [54] |
C. sakazakii | 0.8 mg/mL | Growth inhibition and cell damage. | [55] |
3600 μM | Concentrations below 225 μM (1/16 MIC) exhibited no inhibition against C. sakazakii ATCC 29544. | ||
Penicillium roqueforti | 0.17 mg/mL | Citral combination with eugenol damaged the cell membrane, caused a collapse of mitochondria, and inhibited energy production. | [16] |
Penicillium digitatum | 2.0 or 4.0 μL/mL | Citral altered the mitochondrial morphology, led to the leakage of ATP, and showed an inhibition of the TCA pathway of P. digitatum cells. | [56] |
S. cerevisiae | 2.0 mM | MIC: Results showed that yeast cells treated with 2 mM citral reached a 95% reduction in CFU/mL. | [57] |
Zygosaccharomyces rouxii. | 0.188 μL/mL | The minimum fungicidal concentration was 0.375 μL/mL. | [58] |
Candida albicans | 64 µg/mL | The minimum fungicidal concentration was 256 µg/mL. The MIC and the MFC of citral required only 4 h of exposure to effectively inhibit 99.9% of the inoculum. | [59] |
Aspegillus niger | 0.23 mg/mL | The combination of citral and eugenol had a synergistic inhibitory effect on A. niger. | [16] |
Microorganism | Mechanism | Ref. |
---|---|---|
C. sakazakii | Citral affected the cell membrane of C. sakazakii, as demonstrated by the decrease in intracellular ATP concentration, the reduction in pH, and the hyperpolarization of the cell membrane. | [60] |
Salmonella enterica serovar Typhimurium | Studies on bacteria showed that citral alters the lipid content of Salmonella enteritidis cell membranes, increasing the proportion of saturated fatty acids. | [53] |
E. coli MG1655 | Cell death under aerobic conditions was mainly due to oxidative DNA damage and was independent of the tricarboxylic acid cycle, Fenton reaction, and iron availability. Other structures, such as phospholipids, could probably be an important target of citral. | [49] |
V. parahaemolyticus | Citral caused damage to the wall and membrane of bacterial cells, based on the observation of morphology by electron microscopy. Treatment with citral at sub-inhibitory concentrations caused a decrease in biofilm formation, motility, extracellular production of polysaccharides, and the levels of transcription of genes. | [47] |
Microorganism | Dose | Effect | Ref. |
---|---|---|---|
Staphylococcus aureus (MRSA) | 100 μg/mL | Citral inhibited the biofilm formation of human severe pathogen MRSA without affecting the growth. | [7] |
25 μg/mL | The percentage of biofilm inhibition by a synergistic combination of citral + thymol was 91%, while 22% and 28% of biofilm inhibition were observed for individual application, respectively. | [74] | |
S. aureus DMST 4745 S. aureus | 0.25 µL/mL | S. aureus DMST 4745 was more susceptible than S. aureus clinical isolate to citral, showing biofilm reductions of 74.6 and 46.5%, respectively. | [48] |
C. sakazakii | 0.8 mg/mL | 1/2 MIC for 48 h decreased biofilm formation by 59.62%. | [55] |
225 μM | The biofilm formation was inhibited by 67.1%, 69.5%, and 70.1% at the tested concentration after treatment at 25 °C for 24, 48, and 72 h, respectively. | [75] |
Microorganism | Mechanism | Ref. |
---|---|---|
Saccharomyces cerevisiae BY4741 | Loss of membrane and cell wall integrity results in a typical apoptotic/necrotic cell death. However, yeast cells that escape this first cell membrane disruption, particularly evident in sub-lethal concentration, die by metacaspase-mediated apoptosis induced by the accumulation of intracellular ROS. | [57] |
B. dothidea | Changes in the morphological characteristics of fungal hyphae, resulting in loss of cell content and distortion of the mycelium. Increase in membrane permeability, with increases in extracellular electrical conductivity and a decrease in soluble protein content. A decrease in the range of ergosterol levels showed that citral altered the physiology of the cell membrane. Reduction in the level of enzymes associated with respiration, resulting in the disruption of energy metabolism. | [54] |
Aspegillus ochraceus | Citral downregulated ochratoxin biosynthetic genes, including pks and nrps, but slightly upregulated global regulatory factors veA, velB, and laeA. | [54] |
Aspegillus niger | Direct damage to the cell membranes of A. niger may explain the antimicrobial activity of citral combined with eugenol. Among the two components, eugenol is mainly responsible for the permeability of damaged cell membranes, whereas citral mainly causes membrane lipid peroxidation, which leads to a burst in ROS. | [16] |
Penicillium roqueforti. | The combination of citral and eugenol destroyed the integrity of the cell membrane and internal structures and degraded the cell content. The combination induced membrane lipid peroxidation and promoted the ability to destroy the cell membrane. The combined agents eventually caused leakage of cell contents and, ultimately, cell death. | [16] |
Penicillium digitatum | Citral can affect the mitochondrial morphology and function of P. digitatum, inhibiting the respiratory metabolism, decreasing the activities of TCA-related enzymes, and changing the TCA metabolic abilities. | [56] |
Zigosachamomyces rouxii | The antifungal effect can be attributed to the alteration of the integrity and permeability of the cell membrane, which can cause irreversible damage to the cell wall and membrane. They can also destroy yeast proteins and inhibit their synthesis. | [58] |
Compound/ Extract | Doses | Effect | Ref. |
---|---|---|---|
Citral | 145.32 µg/mL 85.47 µg/mL 52.63 µg/mL | Inhibition of HCT116 cell proliferation (IC50: 24, 48, and 72 h) | [89] |
Citral | 181.21 µg/mL 143.61 µg/mL 91.5 µg/mL | Inhibition of HT29 cell proliferation (IC50: 24, 48, and 72 h) | [89] |
Citral | 3.125–200 µM | Inhibition of CCD841-CoN cell (IC50 not detected at 200 μM) | [89] |
Citral | 3.7 µg/mL | Inhibition of Caco-2 cell proliferation (IC50: 72 h) | [90] |
CIT-SNEDDS | 38.50 µg/mL 23.75 µg/mL 16.50 µg/mL | Inhibition of SW620 cell proliferation (IC50: 24, 48, and 72 h) | [88] |
CIT-SNEDDS | 44.10 µg/mL 36.60 µg/mL 34.10 µg/mL | Inhibition of HT29 cell proliferation (IC50: 24, 48, and 72 h) | [88] |
Citral | 31.25 µg/mL 23.30 µg/mL 22.50 µg/mL | Inhibition of SW620 cell proliferation (IC50: 24, 48, and 72 h) | [88] |
Citral | 28.33 µg/mL 22.00 µg/mL 21.77 µg/mL | Inhibition of HT29 cell proliferation (IC50: 24, 48, and 72 h) | [88] |
Citral | <25 µg/mL | Inhibition of AGS cell proliferation (IC50: 48 h) | [91] |
Citral | >75 µg/mL | Inhibition of MRC-5 cell proliferation (IC50: 48 h) | |
Citral | 1.04 µM | Inhibition of B16F10 cell proliferation (IC50: 24 h) | [92] |
Citral | 11.7 µM | Inhibition of SK-MEL-147 cell proliferation (IC50: 24 h) | |
Citral | 13.4 µM | Inhibition of UACC-257 cell proliferation (IC50: 24 h) | |
Citral | 50.3 µM | Inhibition of HaCaT cell proliferation (IC50: 24 h) | |
Citral | 2.5 µM | Inhibition of NIH-3T3 cell proliferation (IC50: 72 h) | |
Citral | 7 µg/mL | Inhibition of HepG2 cell proliferation (IC50: 72 h) | [90] |
Citral | 1.3 µg/mL | Inhibition of MCF-7 cell proliferation (IC50: 72 h) | |
Citral | 71.90 µM 57.11 µM 50.20 µM | Inhibition of KKU-M213 cell proliferation (IC50: 24, 48, and 72 h) | [93] |
Citral | 94.43 µM 75.06 µM 58.92 µM | Inhibition of HuCCA-1 cell proliferation (IC50: 24, 48, and 72 h) | [93] |
Citral | 87.53 72.17 69.22 | Inhibition of MMNK-1 cell proliferation (IC50: 24, 48, and 72 h) | [93] |
Citral | 10 µg/mL | Inhibition of PC-3 cell proliferation (IC50: 72 h) | [94] |
Citral | 12.5 µg/mL | Inhibition of PC-3M cell proliferation (IC50: 72 h) | [94] |
Citral | >75 µg/mL | Inhibition of MRC-5 cell proliferation (IC50: 72 h) | [94] |
Citral | 238 µM | Inhibition of PaCa-2 cell proliferation (IC50: 72 h) | [95] |
Citral | 300 µM | Inhibition of DeFew cell proliferation (IC50: 72 h) | [95] |
Citral | 5, 10, 20, 40 µg/mL | Inhibit colony formation and migration of AGS (96 h) | [91] |
Citral | 5, 10, 20, 30, 40 µg/mL | Inhibit colony formation and migration PC-3 (96 h) | [94] |
Citral | 17.5 and 35 µM | Increase the surviving fraction of KKU-M213 in 106.75 and 115.64% (168 h) | [93] |
Citral | 23.5 and 47 µM | Decrease the surviving fraction of HU-CCA-1 in 76.35 and 57.71% (168 h) | [93] |
Citral | 24 and 48 µM | Decrease the surviving fraction of MMNK-1 in 98.46 and 85.26% (168 h) | [93] |
Citral | 0.25, 0.375, 0.50 mM 0.25, 0.375, 0.50 mM | Decrease the clonogenicity of HaCaT in 0.3, 4, and 7% (3 h) Decrease the clonogenicity of HaCaT in 22, 28, and 30% (8 h) | [96] |
Citral | Decrease the clonogenicity of M624 in 20, 38, and 50% (3 h) | [96] | |
Citral | 50 µM 100 µM 200 µM | Early apoptosis (17.1%), late apoptosis (3.1%) in HCT116 (24 h) Early apoptosis (14.2%), late apoptosis (15.1%) in HCT116 (24 h) Early apoptosis (26.2%), late apoptosis (25.8%) in HCT116 (24 h) | [89] |
Citral | 50 µM 100 µM 200 µM | Early apoptosis (22.3%), late apoptosis (16.1%) in HCT116 (48 h) Early apoptosis (26.2%), late apoptosis (24.6%) in HCT116 (48 h) Early apoptosis (32.1%), late apoptosis (37.5%) in HCT116 (48 h) | [89] |
Citral | 50 µM 100 µM 200 µM | Early apoptosis (6.5%), late apoptosis (3.9%) in HT29 (24 h) Early apoptosis (8.5%), late apoptosis (14.2%) in HT29 (24 h) Early apoptosis (8.4%), late apoptosis (24.9%) in HT29 (24 h) | [89] |
Citral | 50 µM 100 µM 200 µM | Early apoptosis (14.5%), late apoptosis (7.1%) in HT29 (48 h) Early apoptosis (22.7%), late apoptosis (17.8%) in HT29 (48 h) Early apoptosis (30.5%), late apoptosis (23.5%) in HT29 (48 h) | [89] |
Citral | 10 and 20 µg/mL | Induce early and late apoptosis in AGS | [91] |
Citral | 1 µM | Apoptosis induction by annexin V-FITC/PI staining in B16F10 (24 h) | [92] |
Citral | 0.5, 1, and 2 µM | Apoptosis induction by TUNEL assay in B16F10 (24 h) | [92] |
Citral | 10 µg/mL 20 µg/mL | Early apoptosis (44.1%), late apoptosis (52.6%) in PC-3 (48 h) Early apoptosis (62.2%), late apoptosis (38.4%) in PC-3 (48 h) | [94] |
Citral | 50, 100, and 200 µM | Disruption of MMP (19.5, 38.8 and 60.9%) in HCT116 (24 h) | [89] |
Citral | 50, 100, and 200 µM | Disruption of MMP (34.9, 56.4 and 77.3%) in HCT116 (48 h) | [89] |
Citral | 50, 100, and 200 µM | Disruption of MMP (20.4, 28.2 and 41.9%) in HT29 (24 h) | [89] |
Citral | 50, 100, and 200 µM | Disruption of MMP (24.5, 43.9 and 59.9%) in HT29 (24 h) | [89] |
Citral | 50, 100, and 200 µM | Increase intracellular ROS level (1.26, 2.07, and 3.19 folds) in HCT116 (4 h) | [89] |
Citral | 50, 100, and 200 µM | Increase intracellular ROS level (1.21, 1.39, and 2.25 folds) in HC29 (4 h) | [89] |
Citral | 50, 100, and 200 µM | Decrease intracellular GSH level in HCT116 (4 h) | [89] |
Citral | 50, 100, and 200 µM | Decrease intracellular GSH level in HT29 (4 h) | [89] |
Citral | 1 µM | Autophagic vacuole induction formation in B16F10 (24 h) | [89] |
Citral | 0.5, 1, and 2 µM | DNA damage in B16F10 (24 h) | [92] |
Citral | 2.5 µM | Reduction of malondialdehyde level in B16F10 (24 h) | [92] |
Citral | 10 and 20 µg/mL | Inhibition of lipid droplet accumulation in PC-3 (48 h) | [94] |
Citral | 50, 100, and 200 µM | Down-expression of Bcl-2 and Bcl-xL proteins in HCT116 (24 h) High expression of Bax, p53, and caspase-3 proteins in HCT116 (24 h) | [89] |
Citral | 50, 100, and 200 µM | Down-expression of Bcl-2 and Bcl-xL proteins in HT29 (24 h) High expression of Bax, p53, and caspase-3 proteins in HT29 (24 h) | [89] |
Citral | 0.5 and 1 µM | Down-expression of ERK1/2, PI3K, AkT in HCT116 (24 h) High expression of p53 in HCT116 (24 h) | [92] |
Citral | 1 µM | Increase cytoplasmatic NF-κB in B16F10 (24 h) | [92] |
Citral | 1 µM | Decrease nuclear translocation of NF-κB in B16F10 (24 h) | [92] |
Citral | 0.25, 0.375, 0.5 mM | Caspase-3 activation in M624 (3 h) | [96] |
Citral | 0.25, 0.375, 0.5 mM | Caspase-3 activation in HaCaT (3 h) | [96] |
Citral | 20 µg/mL | Down-expression of HMGR, SREPB1, and ACC proteins in PC-3 (48 h) Up-expression of AMPαK in PC-3 (48 h) | [96] |
Citral | 5, 10, and 20 µg/mL | Down-expression of BCl-2 in PC-3 (48 h) and high expression of BAX proteins in PC-3 (48 h) | [96] |
Citral | Not reported | mRNA upregulate in AGS (48 h): MAPK, Nf-κB, PI3K-Akt, p53, and other signaling pathways. Spliceosoma, apoptosis, and prostate cancer, among others. | [91] |
Not reported | mRNA downregulate in AGS: NF-κB, PI3K-Akt, p53, PPAR, among other signaling pathways. Cell cycle, fatty acid metabolism, and proteoglycans in cancer, among others. | [91] | |
Citral | 5, 10, and 20 µg/mL | Down-expression of HMCR, ACC, FASN, and SREPB1 mRNAs in PC-3 (48 h) | [94] |
Citral/EO Citral Rich/Constituent | Concentration | Animal/Cell Line Tested | Results | Ref. |
---|---|---|---|---|
Citral | 5–100 μg/well | Peritoneal macrophage of male BALB/c mice | 50 and 100 μg of citral significantly inhibited IL-1β and IL-10 release and LPS activation. IL-6 production by macrophages significantly decreased at citral concentrations of 5, 10, 25, 50, and 100 μg/well). | [99] |
Citral | 0.36, 0.15, and 0.06 g/kg | MRSA-infected mice | Citral significantly reduced the levels of TNF-α, IL-6, IL-1β, malondialdehyde, and hydroxyl radicals. Increased superoxide dismutase and glutathione enzyme levels. Reduced the lung inflammatory infiltrates infected by MRSA. | [100] |
Citral | 300 mg/kg | Diabetes-induced rats | Gene expression of IL-6 and TNF-α in the liver were significantly downregulated. | [101] |
Citral | 50–300 mg/kg | Paw edema-induced mice | Reversed paw edema formation in mice induced by LPS and zymosan, inducers of TLR4 and TLR2 signaling. | [42] |
Citral | 300 mg/kg | Eutrophic and obese mice | Citral reduced TNF-α and serum leptin concentration after the LPS challenge. IL6 levels in the hypothalamus of obese mice were reduced. | [102] |
Citral | 125, 250, and 500 mg/kg | Male Swiss mice | Citral reduced NO production and inhibited neutrophil migration in liver. | [103] |
Citral | 10, 20, and 40 mg/kg 3, 6, and 12 µg/mL | Mice with LPS-induced acute lung injury Alveolar macrophages | On in vivo LPS-induced acute lung injury, citral reduced TNF-α, IL-6, and IL-1β production. In vitro, citral inhibited the production of TNF-α, IL-6, and IL-1β in alveolar macrophages. The mechanism was associated with PPAR-γ activation. | [104] |
Citral, neral, and geranial | 66 µM | Murine J774A.1 macrophages | Citral inhibited TNF-α and IL-6. Pure neral inhibited TNF-α secretion by 60–80%, whereas geranial 57–75%. Both neral and geranial reduced IL-6 secretion of LPS-stimulated macrophages and the expression of inflammatory mediators IL-1β, iNOS, COX-2, and NLRP-3. | [105] |
Citral-rich fractions of Citrus lemon EO | 0.005, 0.01, and 0.02% | Murine macrophage RAW264.7 cell line | Reduced the expression of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 in LPS-induced macrophages. | [106] |
Cymbopogon citratus EO | 0.1% | Pre-inflamed human dermal fibroblasts | Significantly inhibited the production of the inflammatory biomarkers: vascular cell adhesion molecule 1 (VCAM-1), interferon gamma-induced protein 10 (IP-10), interferon-inducible T-cell alpha chemoattractant (I-TAC), and monokine induced by gamma interferon (MIG). | [107] |
Myrcia ovata EO | 200 and 300 mg/kg | Male Swiss mice with induced acute inflammation | Reduced leukocyte extravasation and inhibited TNF-α production by 50% and 69% at both concentrations, as well as IL-1β production by 47%. | [108] |
Food System | Structural Matrix and Dose | Effect | Ref. |
---|---|---|---|
Kiwifruit | Citral, 600 µL/L | Extension of postharvest quality by enhancing antioxidant capacity. | [82] |
Bread | 230 mg/mL each, citral and eugenol | Antifungal activity on A. niger and shelf life extension. | [16] |
Fruit juices | Citral and vanillin, 100 and 1000 mg/L, respectively, and UV-C treatment | 5-log growth reduction of E. coli, L. plantarum, and S. cerevisiae. | [131] |
Fresh-cut pineapples | Alginate-based coating containing citral nanoemulsions at 0.1–0.5% | Reduced microbial growth and improved shelf life quality. | [130] |
Shatangju Mandarin | Liposome-nanoencapsulated citral at 125 g/L | Shelf life extension and antimicrobial effect on E. coli, B. subtilis, S. aureus, and P. italicum. | [129] |
Tomato fruit | 1-methylcyclopropene and citral, 1.0 µL/L and 5.8 µL, respectively | Suppression of spore germination and mycelia growth of Botrytis cinerea. | [132] |
Fresh chicken fillets | Kafirin-based films incorporating 1.25% citral and 1.0% quercetin | Antimicrobial activity against total viable count and improvement of quality. | [133] |
Ground beef | 1% citral and high-pressure homogenization treatment | Promoted inactivation of E. coli and improved the high-pressure homogenization treatment. | [15] |
Ground beef | 1%, 2%, and 3% of citral and temperature (55, 57.5, 60, and 62.5 °C) | The combination of citral and temperature significantly reduced the concentration of E. coli at all tested temperatures. | [17] |
Fresh-cut apple | Pectin-based coatings enriched with 0.15% citral. | Control of microbial spoilage and preservation of fruit quality. | [14] |
Raspberry | Pectin-based coatings enriched with 0.15% citral and 0.1% eugenol | Control of microbial spoilage and preservation of fruit quality. | [134] |
Strawberry | Pectin-based coatings enriched with 0.15% citral and alginate-based coatings enriched with 0.15% citral and 0.1% eugenol. | Better sensorial qualities. | [134] |
Fresh-cut apples | 125 mg/L each, citral and hexanal+2-(E)-hexenal | Inhibition of yeast spoilage and shelf life and quality extension. | [135] |
Apricot juice | 50 mg/L citral and high-pressure homogenization treatment | Inhibition of S. cerevisiae SPA. | [136] |
Packaged salad | 7.5% of citral in an antimicrobial active bag of EVOH | Reduced the number of lactic acid bacteria. | [137] |
Cabbage and chicken skin | 0.03 and 0.06% of citral | Antimicrobial activity against L. monocytogenes and S. aureus in cabbage. | [138] |
Fish cubes | 0.5–3.0% of citral | Antimicrobial effect against S. typhimurium. | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Pacheco, M.M.; Torres-Moreno, H.; Flores-Lopez, M.L.; Velázquez Guadarrama, N.; Ayala-Zavala, J.F.; Ortega-Ramírez, L.A.; López-Romero, J.C. Mechanisms and Applications of Citral’s Antimicrobial Properties in Food Preservation and Pharmaceuticals Formulations. Antibiotics 2023, 12, 1608. https://doi.org/10.3390/antibiotics12111608
Gutiérrez-Pacheco MM, Torres-Moreno H, Flores-Lopez ML, Velázquez Guadarrama N, Ayala-Zavala JF, Ortega-Ramírez LA, López-Romero JC. Mechanisms and Applications of Citral’s Antimicrobial Properties in Food Preservation and Pharmaceuticals Formulations. Antibiotics. 2023; 12(11):1608. https://doi.org/10.3390/antibiotics12111608
Chicago/Turabian StyleGutiérrez-Pacheco, María Melissa, Heriberto Torres-Moreno, María Liliana Flores-Lopez, Norma Velázquez Guadarrama, J. Fernando Ayala-Zavala, Luis Alberto Ortega-Ramírez, and Julio César López-Romero. 2023. "Mechanisms and Applications of Citral’s Antimicrobial Properties in Food Preservation and Pharmaceuticals Formulations" Antibiotics 12, no. 11: 1608. https://doi.org/10.3390/antibiotics12111608
APA StyleGutiérrez-Pacheco, M. M., Torres-Moreno, H., Flores-Lopez, M. L., Velázquez Guadarrama, N., Ayala-Zavala, J. F., Ortega-Ramírez, L. A., & López-Romero, J. C. (2023). Mechanisms and Applications of Citral’s Antimicrobial Properties in Food Preservation and Pharmaceuticals Formulations. Antibiotics, 12(11), 1608. https://doi.org/10.3390/antibiotics12111608