Untargeted Metabolomics for Unraveling the Metabolic Changes in Planktonic and Sessile Cells of Salmonella Enteritidis ATCC 13076 after Treatment with Lippia origanoides Essential Oil
Abstract
:1. Introduction
2. Results
2.1. Plant Material and Chemical Analysis of Essential Oils
2.2. Antibiofilm Activity of EOs
2.3. Cell Viability on Sessile Cells (Biofilm)
2.4. Scanning Electron Microscopy (SEM) Analysis
2.5. Integrity of Cell Membrane Analysis on Planktonic Cells
2.6. Metabolomics Data Analysis in Planktonic Cells
2.7. Metabolomics Data Analysis of Biofilm Cells
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions
4.2. Plant Material and Characterization of Essential Oils
4.3. Evaluation of the Antibiofilm Activity of EOs
4.4. Metabolic Activity Assay on Biofilm Cells
4.5. Scanning Electron Microscopy (SEM)
4.6. Integrity of the Cell Membrane on Planktonic Cells
4.7. Sample Preparation and Metabolomics Analysis
4.7.1. Extraction of Metabolites from Planktonic and Biofilm Culture Cells
4.7.2. Analysis of Metabolic Extracts by UHPLC-ESI-Orbitrap/HRMS
4.7.3. Data Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gast, R.; Porter, R. Salmonella Infections. Dis. Poult. 2020, 717–753. [Google Scholar]
- Jajere, S.M. A Review of Salmonella Enterica with Particular Focus on the Pathogenicity and Virulence Factors, Host Specificity and Antimicrobial Resistance Including Multidrug Resistance. Vet. World 2019, 12, 504–521. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, P.M.; Rincón, S.M.; Suárez, M.C. Evaluación de La Susceptibilidad Antimicrobiana de Cepas de Salmonella spp. Aisladas Del Beneficio Porcino En Colombia. Rev. Fac. Nac. Salud Pública 2014, 32, 88–94. [Google Scholar]
- Aya Castañeda, M.d.R.; Sarnacki, S.H.; Noto Llana, M.; López Guerra, A.G.; Giacomodonato, M.N.; Cerquetti, M.C. Dam Methylation Is Required for Efficient Biofilm Production in Salmonella enterica Serovar Enteritidis. Int. J. Food Microbiol. 2015, 193, 15–22. [Google Scholar] [CrossRef]
- Davies, D. Understanding Biofilm Resistance to Antibacterial Agents. Nat. Rev. Drug Discov. 2003, 2, 114–122. [Google Scholar] [CrossRef]
- Shatila, F.; Yaşa, İ.; Yalçın, H.T. Biofilm Formation by Salmonella enterica Strains. Curr. Microbiol. 2021, 78, 1150–1158. [Google Scholar] [CrossRef]
- Latasa, C.; Roux, A.; Toledo-Arana, A.; Ghigo, J.M.; Gamazo, C.; Penadés, J.R.; Lasa, I. BapA, a Large Secreted Protein Required for Biofilm Formation and Host Colonization of Salmonella enterica Serovar Enteritidis. Mol. Microbiol. 2005, 58, 1322–1339. [Google Scholar] [CrossRef]
- Čabarkapa, I.; Škrinjar, M.; Lević, J.; Kokić, B.; Blagojev, N.; Milanov, D.; Suvajdžić, L. Biofilm Forming Ability of Salmonella Enteritidis in Vitro. Acta Vet. Brno 2015, 65, 371–389. [Google Scholar] [CrossRef]
- Koo, H.; Allan, R.; Howlin, R.; Stoodley, P.; Hall-Stoodley, L. Targeting Microbial Biofilms: Current and Prospective Therapeutic Strategies. Nat. Rev. Microbiol. 2017, 15, 740–755. [Google Scholar] [CrossRef]
- Olsen, I. Biofilm-Specific Antibiotic Tolerance and Resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 877–886. [Google Scholar] [CrossRef]
- Singh, S.; Singh, S.K.; Chowdhury, I.; Singh, R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol. J. 2017, 11, 53–62. [Google Scholar] [CrossRef]
- Mohamed, S.; Mohamed, M.; Khalil, M.; Azmy, M.; Mabrouk, M. Combination of Essential Oil and Ciprofloxacin to Inhibit/Eradicate Biofilms in Multidrug-Resistant Klebsiella pneumoniae. J. Appl. Microbiol. 2018, 125, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kong, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Essential Oil Components Inhibit Biofilm Formation in Erwinia carotovora and Pseudomonas fluorescens via Anti-Quorum Sensing Activity. LWT Food Sci. Technol. 2018, 92, 133–139. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Martino, L.D.; Coppola, R.; Feo, V. De Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Zhang; Gan, R.; Zhang, J.; Farha, A.; Li, H.; Zhu, F.; Wang, X.; Corke, H. Antivirulence Properties and Related Mechanisms of Spice Essential Oils: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1018–1055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhang, L.; Feng, L.; Yao, L. The Anxiolytic Effect of Essential Oil of Cananga odorata Exposure on Mice and Determination of Its Major Active Constituents. Phytomedicine 2016, 23, 1727–1734. [Google Scholar] [CrossRef]
- Picone, G.; Laghi, L.; Gardini, F.; Lanciotti, R.; Siroli, L.; Capozzi, F. Evaluation of the Effect of Carvacrol on the Escherichia coli 555 Metabolome by Using 1 H-NMR Spectroscopy. Food Chem. 2013, 141, 4367–4374. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Duran, J.; Torres, R.; Stashenko, E.E.; Ortiz, C. Antifungal and Antibiofilm Activity of Colombian Essential Oils against Different Candida Strains. Antibiotics 2023, 12, 668. [Google Scholar] [CrossRef]
- Fiehn, O.; Robertson, D.; Griffin, J.; vab der Werf, M.; Nikolau, B.; Morrison, N.; Sumner, L.W.; Goodacre, R.; Hardy, N.W.; Taylor, C.; et al. The Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 175–178. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed Minimum Reporting Standards for Chemical Analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Stashenko, E.E.; Martínez, J.R.; Ruíz, C.A.; Arias, G.; Durán, C.; Salgar, W.; Cala, M. Lippia origanoides Chemotype Differentiation Based on Essential Oil GC-MS and Principal Component Analysis. J. Sep. Sci. 2010, 33, 93–103. [Google Scholar] [CrossRef]
- Barra, A. Factors Affecting Chemical Variability of Essential Oils: A Review of Recent Developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Croteau, R.; Kutchan, T.M.; Lewis, N.G. Natural Products (Secondary Metabolites). Biochem. Mol. Biol. Plants 2000, 24, 1250–1319. [Google Scholar]
- Ait-Ouazzou, A.; Lorán, S.; Bakkali, M.; Laglaoui, A.; Rota, C.; Herrera, A.; Pagán, R.; Conchello, P. Chemical Composition and Antimicrobial Activity of Essential Oils of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. J. Sci. Food Agric. 2011, 91, 2643–2651. [Google Scholar] [CrossRef] [PubMed]
- Ait-Ouazzou, A.; Lorán, S.; Arakrak, A.; Laglaoui, A.; Rota, C.; Herrera, A.; Pagán, R.; Conchello, P. Evaluation of the Chemical Composition and Antimicrobial Activity of Mentha pulegium, Juniperus phoenicea, and Cyperus longus Essential Oils from Morocco. Food Res. Int. 2012, 45, 313–319. [Google Scholar] [CrossRef]
- Escobar, A.; Pérez, M.; Romanelli, G.; Blustein, G. Thymol Bioactivity: A Review Focusing on Practical Applications. Arab. J. Chem. 2020, 13, 9243–9269. [Google Scholar] [CrossRef]
- Kachur, K.; Suntres, Z. The Antibacterial Properties of Phenolic Isomers, Carvacrol and Thymol. Crit. Rev. Food Sci. Nutr. 2020, 60, 3042–3053. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.; Daglia, M.; Barbieri, R.; di Lorenzo, A.; Nabavi, S.; Gortzi, O.; Izadi, M.; Nabavi, S. Antibacterial and Antifungal Activities of Thymol: A Brief Review of the Literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Nostro, A.; Roccaro, A.S.; Bisignano, G.; Marino, A.; Cannatelli, M.A.; Pizzimenti, F.C.; Cioni, P.L.; Procopio, F.; Blanco, A.R. Effects of Oregano, Carvacrol and Thymol on Staphylococcus aureus and Staphylococcus epidermidis Biofilms. J. Med. Microbiol. 2007, 56, 519–523. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Sharma, A.; Baek, K.H. Antibacterial Mode of Action of Cudrania tricuspidata Fruit Essential Oil, Affecting Membrane Permeability and Surface Characteristics of Food-Borne Pathogens. Food Control 2013, 32, 582–590. [Google Scholar] [CrossRef]
- Bouyahya, A.; Abrini, J.; Dakka, N.; Bakri, Y. Essential Oils of Origanum Compactum Increase Membrane Permeability, Disturb Cell Membrane Integrity, and Suppress Quorum-Sensing Phenotype in Bacteria. J. Pharm. Anal. 2019, 9, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Nostro, A.; Papalia, T. Antimicrobial Activity of Carvacrol: Current Progress and Future Prospectives. Recent Pat. Antiinfect. Drug Discov. 2012, 7, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tang, C.; Zhang, R.; Ye, S.; Zhao, Z.; Huang, Y.; Xu, X.; Lan, W.; Yang, D. Metabolomics Analysis to Evaluate the Antibacterial Activity of the Essential Oil from the Leaves of Cinnamomum camphora (Linn.) Presl. J. Ethnopharmacol. 2020, 253. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Zhao, L.; Wang, Y.; Hao, F.; Sun, P.; He, P.; Liu, Y.; Huang, J.; Liu, X.; Liu, X.; et al. Microbial Metabolomics and Network Analysis Reveal Fungistatic Effect of Basil (Ocimum basilicum) Oil on Candida albicans. J. Ethnopharmacol. 2020, 260. [Google Scholar] [CrossRef]
- Martínez-Reyes, I.; Chandel, N.S. Mitochondrial TCA Cycle Metabolites Control Physiology and Disease. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef]
- Ahmed, F.; Yan, B.; Zhao, J.; Zhang, H.; Chen, W. LWT—Food Science and Technology Untargeted Metabolomics Reveals Metabolic State of Bififobacterium bifidum in the Biofilm and Planktonic States. LWT Food Sci. Technol. 2020, 118, 108772. [Google Scholar] [CrossRef]
- Xu, J.; Shao, X.; Li, Y.; Wei, Y.; Xu, F.; Wang, H. Metabolomic Analysis and Mode of Action of Metabolites of Tea Tree Oil Involved in the Suppression of Botrytis cinerea. Front. Microbiol. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Goswami, G.; Hazarika, D.J.; Chowdhury, N.; Bora, S.S.; Sarmah, U.; Naorem, R.S.; Boro, R.C.; Barooah, M. Proline Confers Acid Stress Tolerance to Bacillus Megaterium G18. Sci. Rep. 2022, 12, 8875. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Wang, G.; Fan, X.; Sun, X.; Qin, H.; Xu, N.; Zhong, M.; Qiao, Z.; Tang, Y.; et al. Proline Responding1 Plays a Critical Role in Regulating General Protein Synthesis and the Cell Cycle in Maize. Plant Cell 2014, 26, 2582–2600. [Google Scholar] [CrossRef]
- Park, J.Y.; Jo, S.K.; Park, K.M.; Yu, H.; Bai, J.; Ryu, S.; Chang, P.S. Transcriptomic Analysis of Staphylococcus aureus under the Stress Condition of Antibacterial Erythorbyl Laurate by RNA Sequencing. Food Control 2019, 96, 1–8. [Google Scholar] [CrossRef]
- Chua, S.M.H.; Fraser, J.A. Surveying Purine Biosynthesis across the Domains of Life Unveils Promising Drug Targets in Pathogens. Immunol. Cell Biol. 2020, 98, 819–831. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Chen, W.; Chen, H.; Zhong, Q.; Zhang, H.; Zhang, M.; Chen, W. Antibacterial Mechanism of Linalool against L. monocytogenes, a Metabolomic Study. Food Control 2022, 132. [Google Scholar] [CrossRef]
- Somrani, M.; Debbabi, H.; Palop, A. Antibacterial and Antibiofilm Activity of Essential Oil of Clove against Listeria monocytogenes and Salmonella Enteritidis. Food Sci. Technol. Int. 2022, 28, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yan, Y.; Dong, P.; Ni, L.; Luo, X.; Zhang, Y.; Zhu, L. Inhibitory Effects of Clove and Oregano Essential Oils on Biofilm Formation of Salmonella Derby Isolated from Beef Processing Plant. LWT 2022, 162, 113486. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, F.; Wang, J.; Zhong, N. Biofilm Formation and Control Strategies of Foodborne Pathogens: Food Safety Perspectives. RSC Adv. 2017, 7, 36670–36683. [Google Scholar] [CrossRef]
- Lahiri, D.; Dash, S.; Dutta, R.; Nag, M. Elucidating the Effect of Anti-Biofilm Activity of Bioactive Compounds Extracted from Plants. J. Biosci. 2019, 44, 52. [Google Scholar] [CrossRef]
- Ouhayoun, J.P. Penetrating the Plaque Biofilm: Impact of Essential Oil Mouthwash. J. Clin. Periodontol. 2003, 30, 10–12. [Google Scholar] [CrossRef]
- Rossi, C.; Chaves-López, C.; Serio, A.; Casaccia, M.; Maggio, F.; Paparella, A. Effectiveness and Mechanisms of Essential Oils for Biofilm Control on Food-Contact Surfaces: An Updated Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2172–2191. [Google Scholar] [CrossRef]
- Rinaldo; Giardina, G.; Mantoni, F.; Paone, A. Beyond Nitrogen Metabolism: Nitric Oxide, Cyclic-Di-GMP and Bacterial Biofilms. FEMS Microbiol. Lett. 2018, 365, fny029. [Google Scholar] [CrossRef]
- Guo, Y.S.; Tao, J.Z. Metabolomics and Pathway Analyses to Characterize Metabolic Alterations in Pregnant Dairy Cows on D 17 and D 45 after AI. Sci. Rep. 2018, 8, 5973. [Google Scholar] [CrossRef]
- Garavaglia, M.; Rossi, E.; Landini, P. The Pyrimidine Nucleotide Biosynthetic Pathway Modulates Production of Biofilm Determinants in Escherichia coli. PLoS ONE 2012, 7, e31252. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, S.; Sharma, P.; Chandola, D.; Dang, S.; Gupta, S.; Gabrani, R. Escherichia Coli Biofilm: Development and Therapeutic Strategies. J. Appl. Microbiol. 2016, 121, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Spari, D.; Beldi, G. Extracellular ATP as an Inter-Kingdom Signaling Molecule: Release Mechanisms by Bacteria and Its Implication on the Host. Int. J. Mol. Sci. 2020, 21, 5590. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, G.A. Microtiter Dish Biofilm Formation Assay. J. Vis. Exp. 2011, 353913. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Misba, L.; Kulshrestha, S.; Khan, A. Antibiofilm Action of a Toluidine Blue O-Silver Nanoparticle Conjugate on Streptococcus mutans: A Mechanism of Type I Photodynamic Therapy. Biofouling 2016, 32, 313–328. [Google Scholar] [CrossRef]
- Fischer, E.R.; Hansen, B.T.; Nair, V.; Hoyt, F.H.; Dorward, D.W. Scanning Electron Microscopy. Curr. Protoc. Microbiol. 2012, 25, 47. [Google Scholar] [CrossRef]
- Diao, W.R.; Hu, Q.P.; Zhang, H.; Xu, J.G. Chemical Composition, Antibacterial Activity and Mechanism of Action of Essential Oil from Seeds of Fennel (Foeniculum Vulgare Mill.). Food Control 2014, 35, 109–116. [Google Scholar] [CrossRef]
- Zhou, J.; Muhammad, J.; Sun, B.; Yang, R.; Wadood, A.; Wang, J.; Jia, A. Metabolomic Analysis of Quorum Sensing Inhibitor Hordenine on Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2019, 103, 6271–6285. [Google Scholar] [CrossRef]
- Witting, M. Host-Pathogen Metabolomics of Pseudomonas aeruginosa Infection Models. Ph.D. Thesis, Technische Universität München, München, Germany, 2013. [Google Scholar]
- Tautenhahn, R.; Patti, G.J.; Rinehart, D.; Siuzdak, G. XCMS Online: A Web-Based Platform to Process Untargeted Metabolomic Data. Anal. Chem. 2012, 84, 5035–5039. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- Gil-De-La-Fuente, A.; Godzien, J.; Saugar, S.; Garcia-Carmona, R.; Badran, H.; Wishart, D.S.; Barbas, C.; Otero, A. CEU Mass Mediator 3.0: A Metabolite Annotation Tool. J. Proteome Res. 2019, 18, 797–802. [Google Scholar] [CrossRef] [PubMed]
Code | Plant Species | Biofilm Inhibition (%) | EO Concentration (mg/mL) |
---|---|---|---|
SA | Steiractinia aspera Cuatrec. | 57.69 ± 0.18 | 1.5 |
TD-I | Turnera diffusa Willd | 33.27 ± 0.37 | 1.5 |
LOP | Lippia origanoides H.B.K Phellandrene chemotype | 67.40 ± 0.11 | 1.5 |
CM-I | Calycolpus moritzianus Burret | 66.66 ± 0.10 | 1.5 |
PA | Piper aduncum Lam | - | >1.5 |
EQ | Elaphandra quinquenervis H.Rob | - | >1.5 |
HD | Hyptis dilatate Benth | 54.06 ± 0.07 | 1.5 |
LOC | L. origanoides H.B.K Carvacrol chemotype | 58.47 ± 0.08 | 0.18 |
LOCpT | L. origanoides H.B.K β-Caryophyllene-thymol chemotype | 44.00 ± 0.19 | 0.75 |
LOT-I | L. origanoides H.B.K Thymol chemotype | 52.19 ± 0.28 | 0.18 |
TD-II | T. diffusa Willd | - | >1.5 |
SV | Satureja viminea (L.) Kuntze | - | >1.5 |
PS | Psidium sartorianum (O.Berg) Nied | - | >1.5 |
VC | Varronia curassavica Jacq. | - | >1.5 |
OB | Ocimum basilicum L. | 15.25 ± 0.37 | 1.5 |
CM-II | Calycolpus moritzianus Burret | 45.84 ± 0.07 | 1.5 |
TD-III | T. diffusa Willd | - | >1.5 |
LOTC | L. origanoides H.B.K Thymol-p-cymene chemotype | 61.14 ± 0.07 | 0.13 |
LOT-II | L. origanoides H.B.K Thymol chemotype | 63.24 ± 0.06 | 0.13 |
LM | L. micromera Schauer | 25.00 ± 0.01 | 0.75 |
Pathway Name | Hits | p-Value | Identified Metabolites |
---|---|---|---|
Arginine and proline metabolism | 5/29 | 4.73 × 10−3 | Creatinine; γ-glutamyl putrescine; N-acetyl putrescine; proline; γ-glutamyl-γ-aminobutyraldehyde |
Citrate cycle (TCA cycle) | 4/20 | 6.79 × 10−3 | Malate; citric acid; aconitate; 2-oxoglutarate |
Aminoacyl-tRNA biosynthesis | 6/45 | 7.30 × 10−3 | Phenylalanine; methionine; alanine; lysine; isoleucine; proline |
Purine metabolism | 7/73 | 2.23 × 10−2 | 5-Hydroxyisourate; 3′,5′-cyclic GMP; guanosine; inosine; adenine; deoxyadenosine; xanthine |
Lysine degradation | 3/17 | 2.75 × 10−2 | Lysine; 5-oxopentanoate; 2-oxoglutarate |
Pyrimidine metabolism | 5/51 | 4.85 × 10−2 | Cytosine; cytidine; deoxyuridine; thymidine; uridine |
Alanine, aspartate, and glutamate metabolism | 3/22 | 5.42 × 10−2 | Alanine; 2-oxoglutaramate; 2-oxoglutarate |
Glutathione metabolism | 3/22 | 5.42 × 10−2 | Glutathione; 5-oxoproline; glutathione disulfide |
Pathway Name | Hits | p-Value | Identified Metabolites |
---|---|---|---|
Arginine and proline metabolism | 9/29 | 2.52 × 10−4 | Arginine; putrescine; 4-aminobutanoate; N-acetyl putrescine; ornithine; N2-succinyl-ornithine; glutamate; oxo-arginine; 1-pyrroline-4-hydroxy-2-carboxylate |
Arginine biosynthesis | 5/16 | 5.84 × 10−4 | Arginine; ornithine; N-acetyl ornithine; glutamine; glutamate |
Pyrimidine metabolism | 7/51 | 1.96 × 10−3 | Cytosine; uridine 5′-diphosphate (UDP); uridine; uracil; thymidine; thymine; glutamine |
Glutathione metabolism | 4/22 | 1.75 × 10−2 | Glutamate; ornithine; putrescine; cadaverine |
Valine, leucine, and isoleucine biosynthesis | 3/22 | 1.75 × 10−2 | Threonine; valine; acetyl-2-hydroxy-butanoic acid |
Alanine, aspartate, and glutamate metabolism | 3/22 | 1.75 × 10−2 | 2-Oxoglutaramate; glutamate; glutamine |
Purine metabolism | 8/73 | 1.83 × 10−2 | Glutamine; guanosine; guanosine 2′,3′-cyclic phosphate; inosine; adenine; adenosine 5′-monophosphate; adenosine 2′,3′-cyclic phosphate; guanine |
β-Alanine metabolism | 3/13 | 2.06 × 10−2 | Uracil; pantothenate; 4-aminobutanoate |
Pantothenate and CoA biosynthesis | 4/24 | 2.37 × 10−2 | Uracil; valine; pantoate; pantothenate |
Glutamine and glutamate metabolism | 2/7 | 3.99 × 10−2 | Glutamine; glutamate |
Cyanoamino acid metabolism | 3/17 | 4.29 × 10−2 | 3-Cyanoalanine; 2-hydroxy-2-methylbutanenitrile; γ-glutamyl-2-aminobutyrate |
Aminoacyl-tRNA biosynthesis | 5/45 | 5.73 × 10−2 | Glutamine; valine; threonine; glutamate; arginine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillín, Y.; Cáceres, M.; Stashenko, E.E.; Hidalgo, W.; Ortiz, C. Untargeted Metabolomics for Unraveling the Metabolic Changes in Planktonic and Sessile Cells of Salmonella Enteritidis ATCC 13076 after Treatment with Lippia origanoides Essential Oil. Antibiotics 2023, 12, 899. https://doi.org/10.3390/antibiotics12050899
Guillín Y, Cáceres M, Stashenko EE, Hidalgo W, Ortiz C. Untargeted Metabolomics for Unraveling the Metabolic Changes in Planktonic and Sessile Cells of Salmonella Enteritidis ATCC 13076 after Treatment with Lippia origanoides Essential Oil. Antibiotics. 2023; 12(5):899. https://doi.org/10.3390/antibiotics12050899
Chicago/Turabian StyleGuillín, Yuliany, Marlon Cáceres, Elena E. Stashenko, William Hidalgo, and Claudia Ortiz. 2023. "Untargeted Metabolomics for Unraveling the Metabolic Changes in Planktonic and Sessile Cells of Salmonella Enteritidis ATCC 13076 after Treatment with Lippia origanoides Essential Oil" Antibiotics 12, no. 5: 899. https://doi.org/10.3390/antibiotics12050899
APA StyleGuillín, Y., Cáceres, M., Stashenko, E. E., Hidalgo, W., & Ortiz, C. (2023). Untargeted Metabolomics for Unraveling the Metabolic Changes in Planktonic and Sessile Cells of Salmonella Enteritidis ATCC 13076 after Treatment with Lippia origanoides Essential Oil. Antibiotics, 12(5), 899. https://doi.org/10.3390/antibiotics12050899