Antimicrobial Resistance, SCCmec, Virulence and Genotypes of MRSA in Southern China for 7 Years: Filling the Gap of Molecular Epidemiology
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Susceptibility Profile
2.2. Carriage of Virulence Genes
2.3. SCCmec Types
2.4. MLST
2.5. Spa Type
3. Discussion
4. Materials and Methods
4.1. Clinical Samples and Bacterial Strains
4.2. Bacterial Identification and Antimicrobial Susceptibility Testing (AST)
4.3. Detection of Virulence Genes
4.4. SCCmec Typing
4.5. DNA Fingerprinting Analysis by RAPD-PCR
4.6. MLST
4.7. Spa Typing
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed]
- Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.; De Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 2018, 4, 18033. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.; Strynadka, N.C. Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat. Struct. Biol. 2002, 9, 870–876. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, L.; Zhang, C.; Zhang, L.; Li, X.; Cao, Y.; Li, L.; Yamasaki, S. Nosocomial infection caused by class 1 integron-carrying Staphylococcus aureus in a hospital in South China. Clin. Microbiol. Infect. 2007, 13, 980–984. [Google Scholar] [CrossRef]
- Parsonnet, J.; Goering, R.V.; Hansmann, M.A.; Jones, M.B.; Ohtagaki, K.; Davis, C.C.; Totsuka, K. Prevalence of toxic shock syndrome toxin 1 (TSST-1)-producing strains of Staphylococcus aureus and antibody to TSST-1 among healthy Japanese women. J. Clin. Microbiol. 2008, 46, 2731–2738. [Google Scholar] [CrossRef]
- Peacock, S.J.; Paterson, G.K. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu. Rev. Biochem. 2015, 84, 577–601. [Google Scholar] [CrossRef]
- Stefani, S.; Goglio, A. Methicillin-resistant Staphylococcus aureus: Related infections and antibiotic resistance. Int. J. Infect. Dis. 2010, 14, S19–S22. [Google Scholar] [CrossRef]
- Vestergaard, M.; Frees, D.; Ingmer, H. Antibiotic resistance and the MRSA problem. Microbiol. Spectr. 2019, 7, 2. [Google Scholar] [CrossRef]
- Cheung, G.Y.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- David, M.Z.; Daum, R.S. Treatment of Staphylococcus aureus infections. In Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 325–383. [Google Scholar]
- Nataraj, B.H.; Mallappa, R.H. Antibiotic resistance crisis: An update on antagonistic interactions between probiotics and methicillin-resistant Staphylococcus aureus (MRSA). Curr. Microbiol. 2021, 78, 2194–2211. [Google Scholar] [CrossRef]
- Pérez, C.; Zúñiga, T.; Palavecino, C.E. Photodynamic therapy for treatment of Staphylococcus aureus infections. Photodiagnosis Photodyn. Ther. 2021, 34, 102285. [Google Scholar] [CrossRef]
- Zhou, K.; Li, C.; Chen, D.; Pan, Y.; Tao, Y.; Qu, W.; Liu, Z.; Wang, X.; Xie, S. A review on nanosystems as an effective approach against infections of Staphylococcus aureus. Int. J. Nanomed. 2018, 13, 7333. [Google Scholar] [CrossRef]
- Nada, T.; Ichiyama, S.; Osada, Y.; Ohta, M.; Shimokata, K.; Kato, N.; Nakashima, N. Comparison of DNA fingerprinting by PFGE and PCR-RFLP of the coagulase gene to distinguish MRSA isolates. J. Hosp. Infect. 1996, 32, 305–317. [Google Scholar] [CrossRef]
- Jorgensen, S.C.; Zasowski, E.J.; Trinh, T.D.; Lagnf, A.M.; Bhatia, S.; Sabagha, N.; Abdul-Mutakabbir, J.C.; Alosaimy, S.; Mynatt, R.P.; Davis, S.L. Daptomycin plus β-lactam combination therapy for methicillin-resistant Staphylococcus aureus bloodstream infections: A retrospective, comparative cohort study. Clin. Infect. Dis. 2020, 71, 1–10. [Google Scholar] [CrossRef]
- Lenhard, J.R.; Bulman, Z.P. Inoculum effect of β-lactam antibiotics. J. Antimicrob. Chemother. 2019, 74, 2825–2843. [Google Scholar] [CrossRef]
- Li, J.; Echevarria, K.L.; Traugott, K.A. β-Lactam Therapy for Methicillin-Susceptible Staphylococcus aureus Bacteremia: A Comparative Review of Cefazolin versus Antistaphylococcal Penicillins. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2017, 37, 346–360. [Google Scholar] [CrossRef]
- Xu, Z.; Li, L.; Chu, J.; Peters, B.M.; Harris, M.L.; Li, B.; Shi, L.; Shirtliff, M.E. Development and application of loop-mediated isothermal amplification assays on rapid detection of various types of staphylococci strains. Food Res. Int. 2012, 47, 166–173. [Google Scholar] [CrossRef]
- Enright, M.C.; Day, N.P.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [CrossRef]
- McGuinness, S.L.; Holt, D.C.; Harris, T.M.; Wright, C.; Baird, R.; Giffard, P.M.; Bowen, A.C.; Tong, S.Y. Clinical and molecular epidemiology of an emerging Panton-Valentine leukocidin-positive ST5 methicillin-resistant Staphylococcus aureus clone in Northern Australia. Msphere 2021, 6, e00651-20. [Google Scholar] [CrossRef]
- Van Leeuwen, W.; Sijmons, M.; Sluijs, J.; Verbrugh, H.; Van Belkum, A. On the nature and use of randomly amplified DNA from Staphylococcus aureus. J. Clin. Microbiol. 1996, 34, 2770–2777. [Google Scholar] [CrossRef] [PubMed]
- Aires de Sousa, M.; Crisostomo, M.; Santos Sanches, I.; Wu, J.; Fuzhong, J.; Tomasz, A.; De Lencastre, H. Frequent recovery of a single clonal type of multidrug-resistant Staphylococcus aureus from patients in two hospitals in Taiwan and China. J. Clin. Microbiol. 2003, 41, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Shi, L.; Alam, M.J.; Li, L.; Yamasaki, S. Integron-bearing methicillin-resistant coagulase-negative staphylococci in South China, 2001–2004. FEMS Microbiol. Lett. 2008, 278, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, L.; Alam, M.; Zhang, L.; Yamasaki, S.; Shi, L. First confirmation of integron-bearing methicillin-resistant Staphylococcus aureus. Curr. Microbiol. 2008, 57, 264–268. [Google Scholar] [CrossRef]
- Xu, Z.; Li, L.; Shirtliff, M.; Peters, B.; Li, B.; Peng, Y.; Alam, M.J.; Yamasaki, S.; Shi, L. Resistance Class 1 integron in clinical methicillin-resistant Staphylococcus aureus strains in southern China, 2001–2006. Clin. Microbiol. Infect. 2011, 17, 714–718. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, J.; Peters, B.M.; Chen, L.; Miao, J.; Li, B.; Li, L.; Chen, D.; Yu, G.; Xu, Z. Antimicrobial resistance investigation on Staphylococcus strains in a local hospital in Guangzhou, China, 2001–2010. Microb. Drug Resist. 2015, 21, 102–104. [Google Scholar] [CrossRef]
- Chongtrakool, P.; Ito, T.; Ma, X.X.; Kondo, Y.; Trakulsomboon, S.; Tiensasitorn, C.; Jamklang, M.; Chavalit, T.; Song, J.-H.; Hiramatsu, K. Staphylococcal cassette chromosome mec (SCC mec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: A proposal for a new nomenclature for SCC mec elements. Antimicrob. Agents Chemother. 2006, 50, 1001–1012. [Google Scholar] [CrossRef]
- Uehara, Y. Current Status of Staphylococcal Cassette Chromosome mec (SCCmec). Antibiotics 2022, 11, 86. [Google Scholar] [CrossRef]
- Khamash, D.F.; Voskertchian, A.; Tamma, P.D.; Akinboyo, I.C.; Carroll, K.C.; Milstone, A.M. Increasing clindamycin and trimethoprim-sulfamethoxazole resistance in pediatric Staphylococcus aureus infections. J. Pediatr. Infect. Dis. Soc. 2019, 8, 351–353. [Google Scholar] [CrossRef]
- Ham, D.C.; Fike, L.; Wolford, H.; Lastinger, L.; Soe, M.; Baggs, J.; Walters, M.S. Trimethoprim-sulfamethoxazole resistance patterns among Staphylococcus aureus in the United States, 2012–2018. Infect. Control Hosp. Epidemiol. 2022, 1–4. [Google Scholar] [CrossRef]
- Xu, Z.; Xie, J.; Peters, B.M.; Li, B.; Li, L.; Yu, G.; Shirtliff, M.E. Longitudinal surveillance on antibiogram of important Gram-positive pathogens in Southern China, 2001 to 2015. Microb. Pathog. 2017, 103, 80–86. [Google Scholar] [CrossRef]
- Qiao, M.; Ying, G.G.; Singer, A.C.; Zhu, Y.G. Review of antibiotic resistance in China and its environment. Environ. Int. 2018, 110, 160–172. [Google Scholar] [CrossRef]
- Ahmad-Mansour, N.; Loubet, P.; Pouget, C.; Dunyach-Remy, C.; Sotto, A.; Lavigne, J.-P.; Molle, V. Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins 2021, 13, 677. [Google Scholar] [CrossRef]
- Oliveira, D.; Borges, A.; Simões, M. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins 2018, 10, 252. [Google Scholar] [CrossRef]
- Ladhani, S.; Joannou, C.L.; Lochrie, D.P.; Evans, R.W.; Poston, S.M. Clinical, microbial, and biochemical aspects of the exfoliative toxins causing staphylococcal scalded-skin syndrome. Clin. Microbiol. Rev. 1999, 12, 224–242. [Google Scholar] [CrossRef]
- Vandenesch, F.; Naimi, T.; Enright, M.C.; Lina, G.; Nimmo, G.R.; Heffernan, H.; Liassine, N.; Bes, M.; Greenland, T.; Reverdy, M.-E. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: Worldwide emergence. Emerg. Infect. Dis. 2003, 9, 978. [Google Scholar] [CrossRef]
- Hitchins, A.D.; Feng, P.; Watkins, W.; Rippey, S.; Chandler, L. Bacteriological Analytical Manual; Food and Drug Administration: Washington, DC, USA, 1998. [Google Scholar]
- Weinstein, M.P. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olson-Liljequist, B.D.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2011, 18, 268–281. [Google Scholar] [CrossRef]
- Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000, 13, 16–34. [Google Scholar] [CrossRef]
- Fang, F.C.; McClelland, M.; Guiney, D.G.; Jackson, M.M.; Hartstein, A.I.; Morthland, V.H.; Davis, C.E.; McPherson, D.C.; Welsh, J. Value of molecular epidemiologic analysis in a nosocomial methicillin-resistant Staphylococcus aureus outbreak. JAMA 1993, 270, 1323–1328. [Google Scholar] [CrossRef]
- Kreiswirth, B.; Kornblum, J.; Arbeit, R.D.; Eisner, W.; Maslow, J.N.; McGeer, A.; Low, D.E.; Novick, R.P. Evidence for a clonal origin of methicillin resistance in Staphylococcus aureus. Science 1993, 259, 227–230. [Google Scholar] [CrossRef]
- Le Loir, Y.; Baron, F.; Gautier, M. Staphylococcus aureus and food poisoning. Genet. Mol. Res. 2003, 2, 63–76. [Google Scholar] [PubMed]
- Oliveira, D.C.; Lencastre, H.n.d. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 2155–2161. [Google Scholar] [CrossRef] [PubMed]
- Obayashi, Y.; Fujita, J.; Ichiyama, S.; Hojo, S.; Negayama, K.; Takashima, C.; Miyawaki, H.; Tanabe, T.; Yamaji, Y.; Kawanishi, K. Investigation of nosocomial infection caused by arbekacin-resistant, methicillin-resistant Staphylococcus aureus. Diagn. Microbiol. Infect. Dis. 1997, 28, 53–59. [Google Scholar] [CrossRef] [PubMed]
- van BELKUM, A.; Kluytmans, J.; van LEEUWEN, W.; Bax, R.; Quint, W.; Peters, E.; Fluit, A.; Vandenbroucke-Grauls, C.; Van den Brule, A.; Koeleman, H. Multicenter evaluation of arbitrarily primed PCR for typing of Staphylococcus aureus strains. J. Clin. Microbiol. 1995, 33, 1537–1547. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Chen, L.; Wang, J.; Wang, W.; Chen, D.; Li, L.; Li, B.; Deng, Y.; Xu, Z. Evaluation and application of molecular genotyping on nosocomial pathogen-methicillin-resistant Staphylococcus aureus isolates in Guangzhou representative of Southern China. Microb. Pathog. 2017, 107, 397–403. [Google Scholar] [CrossRef]
- Boye, K.; Bartels, M.; Andersen, I.; Møller, J.; Westh, H. A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I–V. Clin. Microbiol. Infect. 2007, 13, 725–727. [Google Scholar] [CrossRef]
- Deplano, A.; De Mendonça, R.; De Ryck, R.; Struelens, M. External quality assessment of molecular typing of Staphylococcus aureus isolates by a network of laboratories. J. Clin. Microbiol. 2006, 44, 3236–3244. [Google Scholar] [CrossRef]
- Shopsin, B.; Gomez, M.; Montgomery, S.; Smith, D.; Waddington, M.; Dodge, D.; Bost, D.; Riehman, M.; Naidich, S.; Kreiswirth, B. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J. Clin. Microbiol. 1999, 37, 3556–3563. [Google Scholar] [CrossRef]
- Hallin, M.; Deplano, A.; Denis, O.; De Mendonça, R.; De Ryck, R.; Struelens, M. Validation of pulsed-field gel electrophoresis and spa typing for long-term, nationwide epidemiological surveillance studies of Staphylococcus aureus infections. J. Clin. Microbiol. 2007, 45, 127–133. [Google Scholar] [CrossRef] [Green Version]
Isolation Source | Strain Amount | Percentage * | |
---|---|---|---|
Department | Internal medicine | 158 | 30.15% |
ICU | 42 | 8.02% | |
Orthopedic | 52 | 9.92% | |
urology | 47 | 8.97% | |
Neurology | 37 | 7.06% | |
Surgery | 32 | 6.11% | |
Pediatrics | 16 | 3.05% | |
Obstetrics and Gynecology | 4 | 0.76% | |
Other | 136 | 25.95% | |
Infection site | Sputum | 269 | 51.34% |
Pus | 39 | 7.44% | |
Urinary tract | 37 | 7.06% | |
Bloodstream | 29 | 5.53% | |
Wound | 27 | 5.15% | |
Respiratory tract | 10 | 1.91% | |
Other | 113 | 21.56% | |
Age | The old | 272 | 51.91% |
The young and the middle-aged | 217 | 41.41% | |
Infant | 35 | 6.68% |
2009 (n = 25) | 2010 (n = 23) | 2011 (n = 104) | 2012 (n = 115) | 2013 (n = 81) | 2014 (n = 121) | 2015 (n = 51) | Total | ||
---|---|---|---|---|---|---|---|---|---|
SCCmec * | I | 0 | 0 | 0 | 1 | 3 | 1 | 7 | 12 |
IA | 0 | 0 | 0 | 1 | 3 | 1 | 2 | 7 | |
II | 1 a | 2 ab | 18 a | 24 a | 16 a | 21 a | 9 a | 91 | |
III | 18 d | 12 f | 54 a | 53 b | 16 e | 29 c | 8 f | 190 | |
IIIA | 1 b | 0 b | 9 a | 6 b | 7 ab | 15 a | 7 a | 45 | |
IV | 2 b | 4 b | 8 b | 12 b | 15 a | 20 a | 7 b | 68 | |
V | 0 b | 0 b | 1 b | 9 a | 4 ab | 3 ab | 1 ab | 18 | |
VI | 1 b | 0 b | 4 b | 1 b | 7 a | 12 a | 6 a | 31 | |
Others | 0 | 0 | 0 | 1 | 6 | 14 | 3 | 24 | |
Toxins * | sea | 21 b | 22 b | 73 a | 71 a | 56 a | 79 a | 30 a | 352 |
seb | 9 d | 3 e | 28 c | 32 c | 37 b | 39 a | 23 d | 171 | |
sec | 2 b | 5 b | 22 b | 52 a | 47 a | 62 a | 32 a | 222 | |
sed | 0 b | 0 b | 2 b | 8 a | 0 b | 0 b | 0 b | 10 | |
see | 14 d | 17 b | 53 a | 49 a | 2 e | 16 c | 11 e | 186 | |
eta | 0 c | 1 c | 8 c | 9 c | 15 b | 31 a | 15 b | 79 | |
etb | 3 c | 9 b | 16 a | 13 a | 1 c | 6 c | 1 c | 49 | |
pvl | 2 d | 13 b | 25 a | 21 a | 3 d | 2 d | 10 c | 76 | |
tsst | 0 e | 7 d | 8 d | 17 d | 43 a | 41 b | 30 c | 146 | |
Antibiotic resistance # | oxacillin | 10 b | 19 b | 96 a | 103 a | 68 b | 93 b | 45 b | 434 |
trimethoprim/ sulfamethoxazole | 3 c | 11 c | 8 c | 14 c | 34 b | 109 a | 48 b | 227 | |
erythromycin | 23 a | 23 a | 90 a | 90 a | 49 a | 87 a | 39 a | 401 | |
ciprofloxacin | 23 c | 21 c | 87 a | 91 a | 54 b | 78 b | 34 b | 388 | |
rifampin | 14 c | 9 d | 27 b | 30 b | 40 a | 33 b | 12 d | 165 | |
moxifloxacin | 23 b | 15 c | 71 a | 81 a | 53 a | 76 a | 34 a | 353 | |
penicillin | 20 c | 21 c | 78 a | 69 a | 46 b | 64 a | 30 b | 328 | |
tetracycline | 17 d | 12 d | 81 a | 37 b | 36 c | 68 b | 35 d | 286 | |
levofloxacin | 6 b | 12 b | 87 a | 91 a | 53 b | 78 b | 34 b | 361 | |
clindamycin | 17 e | 23 d | 86 a | 71 b | 43 c | 66 c | 29 c | 335 |
Genotypes | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | Total |
---|---|---|---|---|---|---|---|---|
ST239-t037 | 11 | 6 | 60 | 42 | 9 | 10 | 3 | 141 |
ST239-t030 | 5 | 3 | 16 | 13 | 15 | 26 | 15 | 93 |
ST239-t1081 | 4 | 2 | 4 | 11 | 2 | 2 | 0 | 25 |
ST59-t437 | 1 | 0 | 4 | 6 | 2 | 2 | 0 | 15 |
ST5-t002 | 0 | 0 | 5 | 2 | 0 | 2 | 0 | 9 |
ST546-t1081 | 0 | 4 | 3 | 3 | 0 | 0 | 0 | 10 |
ST45-t1081 | 1 | 0 | 5 | 2 | 0 | 0 | 0 | 8 |
ST1-t4084 | 0 | 0 | 0 | 0 | 1 | 7 | 0 | 8 |
ST5-t030 | 0 | 1 | 1 | 5 | 0 | 0 | 0 | 7 |
ST5-t1084 | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 6 |
ST45-t037 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 6 |
ST1357-t030 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 6 |
ST188-t6367 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 5 |
ST2139-t189 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 4 |
ST238-t030 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 4 |
ST366-t437 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 4 |
ST5-t037 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 3 |
ST585-t030 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 |
ST188-t189 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 2 |
ST1-t114 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 |
ST1057-t002 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 |
Others | 3 | 7 | 4 | 26 | 39 | 44 | 19 | 142 |
Virulence Associated Genes | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sea | Seb | Sec | Sed | See | eta | etb | tsst | pvl | |||||||||||
SCCmec | I/IA | 17 */19 # | 89.5% a | 17/19 | 89.5% a | 12/19 | 63.2% a | 12/19 | 63.2% a | 13/19 | 68.4% a | 12/19 | 63.2% a | 7/19 | 36.8% a | 0/19 | 0.0% b | 5/19 | 26.3% ab |
II | 54/91 | 59.3% c | 28/91 | 30.8% b | 58/91 | 63.7% a | 2/91 | 2.2% b | 21/91 | 23.1% c | 11/88 | 12.5% b | 11/88 | 12.5% b | 26/88 | 29.5% a | 28/88 | 31.8% a | |
III/IIIA | 181/237 | 76.4% b | 69/237 | 29.1% b | 77/237 | 32.5% b | 6/237 | 2.5% b | 121/237 | 51.1% b | 39/236 | 16.5% b | 21/236 | 8.9% b | 26/236 | 11.0% b | 49/236 | 20.8% b | |
IV | 45/68 | 66.2% bc | 27/68 | 39.7% b | 37/68 | 54.4% a | 2/68 | 2.9% b | 16/68 | 23.5% c | 12/68 | 17.6% b | 5/68 | 7.4% b | 14/68 | 20.6% a | 29/68 | 42.6% a | |
V | 11/18 | 61.1% bc | 4/18 | 22.2% b | 5/18 | 27.8% b | 0/18 | 0.0% b | 2/18 | 11.1% cd | 1/17 | 5.9% b | 3/17 | 17.6% b | 0/17 | 0.0% b | 4/17 | 23.5% ab | |
VI | 15/31 | 48.4% c | 7/31 | 22.6% b | 10/31 | 32.3% b | 0/31 | 0.0% b | 2/31 | 6.5% d | 3/31 | 9.7% b | 5/31 | 16.1% b | 3/31 | 9.7% b | 9/31 | 29.0% a | |
ST types | ST239 | 222/305 | 72.8% a | 86/305 | 28.2% b | 107/305 | 35.1% a | 4/305 | 1.3% b | 140/305 | 45.9% b | 40/301 | 13.3% b | 35/301 | 11.6% ab | 47/301 | 15.6% b | 69/301 | 22.9% b |
ST5 | 20/42 | 47.6% a | 14/42 | 33.3% ab | 20/42 | 47.6% a | 2/42 | 4.8% ab | 10/42 | 23.8% c | 6/40 | 15.0% ab | 1/40 | 2.5% b | 10/40 | 25.0% b | 6/40 | 15.0% b | |
ST45 | 27/35 | 77.1% a | 13/35 | 37.1% ab | 11/35 | 31.4% a | 1/35 | 2.9% ab | 9/35 | 25.7% c | 5/33 | 15.2% ab | 6/33 | 18.2% a | 3/33 | 9.1% b | 10/33 | 30.3% ab | |
ST59 | 11/25 | 44.0% a | 11/25 | 44.0% ab | 15/25 | 60.0% a | 3/25 | 12.0% a | 7/25 | 28.0% bc | 4/24 | 16.7% ab | 2/24 | 8.3% ab | 3/24 | 12.5% b | 10/24 | 41.7% a | |
ST546 | 8/10 | 80.0% a | 3/10 | 30.0% ab | 5/10 | 50.0% a | 0/10 | 0.0% b | 8/10 | 80.0% a | 0/10 | 0.0% b | 2/10 | 20.0% a | 6/10 | 60.0% a | 2/10 | 20.0% b | |
ST366 | 5/8 | 62.5% a | 0/8 | 0.0% b | 5/8 | 62.5% a | 0/8 | 0.0% b | 0/8 | 0.0% c | 2/8 | 25.0% ab | 0/8 | 0.0% b | 1/8 | 12.5% b | 5/8 | 62.5% a | |
ST1 | 6/10 | 60.0% a | 6/10 | 60.0% a | 3/10 | 30.0% a | 0/10 | 0.0% b | 1/10 | 10.0% c | 4/10 | 40.0% a | 0/10 | 0.0% b | 0/10 | 0.0% b | 4/10 | 40.0% ab | |
ST188 | 4/9 | 44.4% a | 6/9 | 66.7% a | 4/9 | 44.4% a | 0/9 | 0.0% b | 1/9 | 11.1% c | 0/9 | 0.0% b | 1/9 | 11.1% ab | 1/9 | 11.1% b | 4/9 | 44.4% a | |
spa types | t030 | 81/124 | 65.3% b | 33/124 | 26.6% a | 56/124 | 45.2% ab | 1/124 | 0.8% b | 36/124 | 29.0% b | 23/121 | 19.0% a | 5/121 | 4.1% b | 9/121 | 7.4% b | 29/121 | 24.0% ab |
t037 | 131/179 | 73.2% ab | 55/179 | 30.7% a | 55/179 | 30.7% b | 2/179 | 1.1% b | 96/179 | 53.6% a | 17/177 | 9.6% b | 24/177 | 13.6% a | 32/177 | 18.1% a | 38/177 | 21.5% b | |
t437 | 14/27 | 51.9% b | 8/27 | 29.6% a | 12/27 | 44.4% ab | 1/27 | 3.7% ab | 5/27 | 18.5% ab | 2/27 | 7.4% b | 1/27 | 3.7% b | 8/27 | 29.6% a | 4/27 | 14.8% b | |
t1081 | 55/68 | 80.9% a | 18/68 | 26.5% a | 23/68 | 33.8% b | 3/68 | 4.4% ab | 30/68 | 44.1% a | 8/65 | 12.3% ab | 14/65 | 21.5% a | 16/65 | 24.6% a | 17/65 | 26.2% ab | |
t002 | 13/27 | 48.1% b | 9/27 | 33.3% a | 16/27 | 59.3% a | 3/27 | 11.1% a | 6/27 | 22.2% b | 6/27 | 22.2% a | 2/27 | 7.4% ab | 4/27 | 14.8% ab | 11/27 | 40.7% a |
Primer Name | Sequence (5′-3′) | Target | Amplicon (bp) | Tm (°C) |
---|---|---|---|---|
C1 | GATGAGTGCTAAGTGTTAGG | 16S rRNA | 542 | 55 |
C2 | TCTACGATTACTAGCGATTC | |||
F1 | AAAGCTTGCTGAAGGTTATG | femA | 823 | |
F2 | TTCTTCTTGTAGACGTTTAC | |||
M1 | GGCATCGTTCCAAAGAATGT | mecA | 374 | |
M2 | CCATCTTCATGTTGGAGCTTT | |||
O1 | ACCACAATCMACAGTCAT | orf-X | 212 | 48 |
O2 | CCCGCATCATTTGATGTG | |||
ccrB | ATTGCCTTGATAATAGCCITCT | ccrAB1 | 700 | 48 |
ccrA1 | AACCTATATCATCAATCAGTACGT | |||
ccrB | ATTGCCTTGATAATAGCCITCT | ccrAB2 | 1000 | |
ccrA2 | TAAAGGCATCAATGCACAAACACT | |||
ccrB | ATTGCCTTGATAATAGCCITCT | ccrAB3 | 1600 | |
ccrA3 | AGCTCAAAAGCAAGCAATAGAAT | |||
ccrA4-F | ATGGGATAAGAGAAAAAGCC | ccrAB4 | 1400 | |
ccrB4-R | TAATTTACCTTCGTTGGCAT | |||
ccrC-F | ATGAATTCAAAGAGCATGGC | ccrC | 520 | |
ccrC-R | GATTTAGAATTGTCGTGATTGC | |||
mI4 | CAAGTGAATTGAAACCGCCT | mecI-mecR1 | 1800 | 50 |
mcR3 | GTCTCCACGTTAATTCCATT | |||
IS5 | AACGCCACTCATAACATATGGAA | IS1272-mecA | 2000 | 52 |
mA6 | TATACCAAACCCGACAAC | |||
mA2 | AACGTTGTAACCACCCCAAGA | IS431-mecI-mecA | 2000 | 53 |
IS2 | TGAGGTTATTCAGATATTTCGATGT | |||
IS431-P4 | CAGGTCTCTTCAGATCTACG | pUB110 | 381 | 55 |
pUB110 R1 | GAGCCATAAACACCAATAGCC | |||
IS431-P4 | CAGGTCTCTTCAGATCTACG | pT181 | 303 | 52 |
PT181 R1 | GAAGAATGGGGAAAGCTTCAC | |||
AP1 | GGTTGGGTGAGAATTGCACG | Random | 38 | |
AP7 | GTGGATGCGA | 45 | ||
ERIC2 | AAGTAAGTGACTGGGGTGAGCG | 45 | ||
arcC-Up | TTGATTCACCAGCGCGTATTGTC | arcC | 456 | 55 |
arcC-Dn | AGGTATCTGCTTCAATCAGCG | |||
aroE-Up | ATCGGAAATCCTATTTCACATTC | aroE | 456 | 55 |
aroE-Dn | GGTGTTGTATTAATAACGATATC | |||
glpF-Up | CTAGGAACTGCAATCTTAATCC | glpF | 465 | 55 |
glpF-Dn | TGGTAAAATCGCATGTCCAATTC | |||
gmk-Up | ATCGTTTTATCGGGACCATC | gmk | 417 | 55 |
gmk-Dn | TCATTAACTACAACGTAATCGTA | |||
pta-Up | GTTAAAATCGTATTACCTGAAGG | pta | 474 | 55 |
pta-Dn | GACCCTTTTGTTGAAAAGCTTAA | |||
tpi-Up | TCGTTCATTCTGAACGTCGTGAA | tpi | 402 | 55 |
tpi-Dn | TTTGCACCTTCTAACAATTGTAC | |||
yqiL-Up | CAGCATACAGGACACCTATTGGC | yqiL | 516 | 55 |
yqiL-Dn | CGTTGAGGAATCGATACTGGAAC | |||
spa-Up | GTAAAACGACGGCCAGTGCTAAAAAGCTAAACGATGC | spa | 260 | 60 |
spa-Dn | CAGGAAACAGCTATGACCCCACCAAATACAGTTGTACC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Huang, T.; Soteyome, T.; Miao, J.; Yu, G.; Chen, D.; Ye, C.; Yang, L.; Xu, Z. Antimicrobial Resistance, SCCmec, Virulence and Genotypes of MRSA in Southern China for 7 Years: Filling the Gap of Molecular Epidemiology. Antibiotics 2023, 12, 368. https://doi.org/10.3390/antibiotics12020368
Liu J, Huang T, Soteyome T, Miao J, Yu G, Chen D, Ye C, Yang L, Xu Z. Antimicrobial Resistance, SCCmec, Virulence and Genotypes of MRSA in Southern China for 7 Years: Filling the Gap of Molecular Epidemiology. Antibiotics. 2023; 12(2):368. https://doi.org/10.3390/antibiotics12020368
Chicago/Turabian StyleLiu, Junyan, Tengyi Huang, Thanapop Soteyome, Jian Miao, Guangchao Yu, Dingqiang Chen, Congxiu Ye, Ling Yang, and Zhenbo Xu. 2023. "Antimicrobial Resistance, SCCmec, Virulence and Genotypes of MRSA in Southern China for 7 Years: Filling the Gap of Molecular Epidemiology" Antibiotics 12, no. 2: 368. https://doi.org/10.3390/antibiotics12020368
APA StyleLiu, J., Huang, T., Soteyome, T., Miao, J., Yu, G., Chen, D., Ye, C., Yang, L., & Xu, Z. (2023). Antimicrobial Resistance, SCCmec, Virulence and Genotypes of MRSA in Southern China for 7 Years: Filling the Gap of Molecular Epidemiology. Antibiotics, 12(2), 368. https://doi.org/10.3390/antibiotics12020368