Analysis of Antimicrobial Resistance Genes (ARGs) in Enterobacterales and A. baumannii Clinical Strains Colonizing a Single Italian Patient
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Susceptibility
2.2. Multi-Locus Sequence Typing (MLST) and Plasmid Multi-Locus Sequence Typing (pMLST)
2.3. ARGs and Mobile Genetic Elements
2.4. Conjugation Experiments and PCR Assays
3. Discussion
4. Materials and Methods
4.1. Clinical Case Description
4.2. Strains Identification and Antibiotic Susceptibility Testing
4.3. Resistome Analysis
4.4. Conjugation Assays
4.5. PCR Experiments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar]
- World Health Organization (WHO). 2020 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis. Available online: https://www.who.int/publications/i/item/9789240021303 (accessed on 16 January 2022).
- Ahmed, M.O.; Baptiste, K.E. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb. Drug Resist. 2018, 24, 590–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Logan, L.K.; Weinstein, R.A. The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef] [Green Version]
- van Duin, D.; Doi, Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017, 8, 460–469. [Google Scholar] [CrossRef]
- Kieffer, N.; Ahmed, M.O.; Elramalli, A.K.; Daw, M.A.; Poirel, L.; Álvarez, R.; Nordmann, P. Colistin-resistant carbapenemase-producing isolates among Klebsiella spp. and Acinetobacter baumannii in Tripoli, Libya. J. Glob. Antimicrob. Resist. 2018, 13, 37–39. [Google Scholar] [CrossRef]
- ECDC-WHO Antimicrobial Resistance Surveillance in Europe. 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/ECDC-WHO-AMR-report (accessed on 16 January 2022).
- Bush, K. Past and present perspectives on β-lactamases. Antimicrob. Agents Chemother. 2018, 62, e01076-18. [Google Scholar] [CrossRef] [Green Version]
- Queenan, A.M.; Bush, K. Carbapenemases: The versatile β-lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.R.; Lee, J.H.; Park, K.S.; Kim, Y.B.; Jeong, B.C.; Lee, S.H. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: Epidemiology, genetic context, treatment options, and detection methods. Front. Microbiol. 2016, 7, 895. [Google Scholar] [CrossRef] [Green Version]
- Di Pilato, V.; Errico, G.; Monaco, M.; Giani, T.; Del Grosso, M.; Antonelli, A.; David, S.; Lindh, E.; Camilli, R.; Aanensen, D.M.; et al. The changing epidemiology of carbapenemase-producing Klebsiella pneumoniae in Italy: Toward polyclonal evolution with emergence of high-risk lineages. J. Antimicrob. Chemother. 2021, 76, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef] [PubMed]
- Piccirilli, A.; Perilli, M.; Piccirilli, V.; Segatore, B.; Amicosante, G.; Maccacaro, L.; Bazaj, A.; Naso, L.; Cascio, G.L.; Cornaglia, G. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae ST14 and ST512 causing bloodstream infections in ICU and surgery wards of a tertiary university hospital of Verona (northern Italy): Co-production of KPC-3, OXA-48, and CTX-M-15 β-lactamases. Diagn. Microbiol. Infect. Dis. 2020, 96, 114968. [Google Scholar] [PubMed]
- Cherubini, S.; Perilli, M.; Azzini, A.M.; Tacconelli, E.; Maccacaro, L.; Bazaj, A.; Naso, L.; Amicosante, G.; Ltcf-Veneto Working Group; Lo Cascio, G.; et al. Resistome and virulome of multi-drug resistant E. coli ST131 isolated from residents of long-term care facilities in the northern Italian region. Diagnostics 2022, 12, 213. [Google Scholar] [CrossRef] [PubMed]
- Piccirilli, A.; Cherubini, S.; Azzini, A.M.; Tacconelli, E.; Lo Cascio, G.; Maccacaro, L.; Bazaj, A.; Naso, L.; Amicosante, G.; Ltcf-Veneto Working Group; et al. Whole-genome sequencing (WGS) of carbapenem-resistant K. pneumoniae isolated in long-term care facilities in the northern italian region. Microorganisms 2021, 9, 1985. [Google Scholar] [CrossRef] [PubMed]
- Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 1121–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Vázquez, M.; Sola Campoy, P.J.; Ortega, A.; Bautista, V.; Monzón, S.; Ruiz-Carrascoso, G.; Mingorance, J.; González-Barberá, E.M.; Gimeno, C.; Aracil, B.; et al. Emergence of NDM-producing Klebsiella pneumoniae and Escherichia coli in Spain: Phylogeny, resistome, virulence and plasmids encoding blaNDM-like genes as determined by WGS. J. Antimicrob. Chemother. 2019, 74, 3489–3496. [Google Scholar] [CrossRef]
- Dong, H.; Li, Y.; Cheng, J.; Xia, Z.; Liu, W.; Yan, T.; Chen, F.; Wang, Z.; Li, R.; Shi, J.; et al. Genomic Epidemiology Insights on NDM-Producing Pathogens Revealed the Pivotal Role of Plasmids on blaNDM Transmission. Microbiol. Spectr. 2022, 10, e0215621. [Google Scholar] [CrossRef]
- Girlich, D.; Dortet, L.; Poirel, L.; Nordmann, P. Integration of the blaNDM-1 carbapenemase gene into Proteus genomic island 1 (PGI1-PmPEL) in a Proteus mirabilis clinical isolate. J. Antimicrob. Chemother. 2015, 70, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Aires-de-Sousa, M.; Ortiz de la Rosa, J.M.; Goncalves, M.L.; Costa, A.; Nordmann, P.; Poirel, L. Occurrence of NDM-1-producing Morganella morganii and Proteus mirabilis in a single patient in Portugal: Probable in vivo transfer by conjugation. J. Antimicrob. Chemother. 2020, 75, 903–906. [Google Scholar] [CrossRef]
- Arana, D.M.; Saez, D.; Garcia-Hierro, P.; Bautista, V.; Fernandez-Romero, S.; Angel de la Cal, M.; Alos, J.I.; Oteo, J. Concurrent interspecies and clonal dissemination of OXA-48 carbapenemase. Clin. Microbiol. Infect. 2015, 21, 148.e1–148.e4. [Google Scholar] [CrossRef] [Green Version]
- Bosch, T.; Lutgens, S.P.M.; Hermans, M.H.A.; Wever, P.C.; Schneeberger, P.M.; Renders, N.H.M.; Leenders, A.; Kluytmans, J.; Schoffelen, A.; Notermans, D.; et al. Outbreak of NDM-1-producing Klebsiella pneumoniae in a Dutch Hospital, with interspecies transfer of the resistance plasmid and unexpected occurrence in unrelated Health Care Centers. J. Clin. Microbiol. 2017, 55, 2380–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gona, F.; Barbera, F.; Pasquariello, A.C.; Grossi, P.; Gridelli, B.; Mezzatesta, M.L.; Caio, C.; Stefani, S.; Conaldi, P.G. In Vivo multiclonal transfer of bla(KPC-3) from Klebsiella pneumoniae to Escherichia coli in surgery patients. Clin. Microbiol. Infect. 2014, 20, O633–O635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrose, S.J.; Harmer, C.J.; Hall, R.M. Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. Plasmid 2018, 99, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Snyder, B.M.; Montague, B.T.; Anandan, S.; Madabhushi, A.G.; Pragasam, A.K.; Verghese, V.P.; Balaji, V.; Simões, E.A.F. Risk factors and epidemiologic predictors of blood stream infections with New Delhi Metallo-β-lactamase (NDM-1) producing Enterobacteriaceae. Epidemiol. Infect. 2019, 147, e137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcone, M.; Tiseo, G.; Antonelli, A.; Giordano, C.; Di Pilato, V.; Bertolucci, P.; Parisio, E.M.; Leonildi, A.; Aiezza, N.; Baccani, I.; et al. Clinical features and outcomes of bloodstream infections caused by New Delhi metallo-β-lactamase-producing Enterobacterales during a regional outbreak. Open Forum Infect. Dis. 2020, 7, ofaa011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, M.; Rashid, F.A.; Shukor, S.; Hashim, R.; Ahmad, N. Detection of antimicrobial resistance genes associated with carbapenem resistance from the whole-genome sequence of Acinetobacter baumannii isolates from Malaysia. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, 5021064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherubini, S.; Perilli, M.; Segatore, B.; Fazii, P.; Parruti, G.; Frattari, A.; Amicosante, G.; Piccirilli, A. Whole-genome sequencing of ST2 A. baumannii causing bloodstream infections in COVID-19 patients. Antibiotics 2022, 11, 955. [Google Scholar] [CrossRef]
- June, C.M.; Muckenthaler, T.J.; Schroder, E.C.; Klamer, Z.L.; Wawrzak, Z.; Powers, R.A.; Szarecka, A.; Leonard, D.A. The structure of a doripenem-bound OXA-51 class D β-lactamase variant with enhanced carbapenemase activity. Protein Sci. 2016, 25, 2152–2163. [Google Scholar] [CrossRef] [Green Version]
- Kumburu, H.H.; Sonda, T.; van Zwetselaar, M.; Leekitcharoenphon, P.; Lukjancenko, O.; Mmbaga, B.T.; Alifrangis, M.; Lund, O.; Aarestrup, F.M.; Kibiki, G.S. Using WGS to identify antibiotic resistance genes and predict antimicrobial resistance phenotypes in MDR Acinetobacter baumannii in Tanzania. J. Antimicrob. Chemother. 2019, 74, 1484–1493. [Google Scholar] [CrossRef] [Green Version]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, M.S.; Bonomo, R.A.; Tolmasky, M.E. Carbapenemases: Transforming Acinetobacter baumannii into a yet more dangerous menace. Biomolecules 2020, 10, 720. [Google Scholar] [CrossRef] [PubMed]
- Zerbino, D.R. Using the Velvet de novo assembler for short-read sequencing technologies. Curr. Protoc. Bioinformatics 2010, 31, 11.5.1–11.5.12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In Silico detection and typing of plasmids using Plasmid Finder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Johansson, M.H.K.; Bortolaia, V.; Tansirichaiya, S.; Aarestrup, F.M.; Roberts, A.P.; Petersen, T.N. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: Mobile Element Finder. J. Antimicrob. Chemother. 2021, 76, 101–109. [Google Scholar] [CrossRef]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [Green Version]
- Piccirilli, A.; Brisdelli, F.; Aschi, M.; Celenza, G.; Amicosante, G.; Perilli, M. Kinetic profile and molecular dynamic studies show that Y229W substitution in an NDM-1/L209F variant restores the hydrolytic activity of the enzyme toward penicillins, cephalosporins, and carbapenems. Antimicrob. Agents Chemother. 2019, 63, e02270-18. [Google Scholar] [CrossRef] [Green Version]
- Principe, L.; Mauri, C.; Conte, V.; Pini, B.; Giani, T.; Rossolini, G.M.; Luzzaro, F. First report of NDM-1-producing Klebsiella pneumoniae imported from Africa to Italy: Evidence of the need for continuous surveillance. J. Glob. Antimicrob. Resist. 2017, 8, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Regional Outbreak of New Delhi Metallo-Beta-Lactamase-Producing Carbapenem-Resistant Enterobacteriaceae, Italy, 2018–2019. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/04-Jun-2019-RRA-Carbapenems%2C%20Enterobacteriaceae-Italy.pdf (accessed on 18 February 2022).
E. cloacae SW E. cloacae RS | P. mirabilis SW P. mirabilis RS | A. baumannii | K. pneumoniae RS | |||||
---|---|---|---|---|---|---|---|---|
Antimicrobial Agent | MIC (mg/L) | Interpretation | MIC (mg/L) | Interpretation | MIC (mg/L) | Interpretation | MIC (mg/L) | Interpretation |
Amoxicillin/clavulanic acid | >16 | R | >16 | R | >16 | R | >16 | R |
Piperacillin/tazobactam | >64 | R | >32 | R | >64 | R | >64 | R |
Cefepime | >16 | R | 4 | I | 16 | R | 8 | R |
Cefotaxime | >32 | R | 16 | R | >32 | R | 16 | R |
Ceftazidime | >32 | R | >32 | R | >32 | R | >32 | R |
Ceftazidime/avibactam | >16 | R | >16 | R | >16 | R | >16 | R |
Ceftolozane/tazobactam | >32 | R | >32 | R | >32 | R | >32 | R |
Ciprofloxacin | >2 | R | 0.5 | I | >2 | R | >2 | R |
Ertapenem | >4 | R | >4 | R | >4 | R | >4 | R |
Imipenem | >8 | R | >8 | R | >8 | R | >8 | R |
Meropenem | >8 | R | >8 | R | >8 | R | >8 | R |
Amikacin | ≤1 | S | 4 | S | >32 | R | ≤1 | S |
Gentamycin | ≤1 | S | ≤1 | S | >8 | R | ≤1 | S |
Colistin | 0.5 | S | <4 | R | ≤0.5 | S | ≤0.5 | S |
Strains | Genome Size (bp) | MLST (Pasteur) | Plasmid Replicons/pMLST | Mobile Genetic Elements | Β-lactams Resistant Genes | Other ARGs |
---|---|---|---|---|---|---|
Proteus mirabilis RS | 4.342.694 | none | IncN, IncQ1/ IncN: ST7 | ISKpn19, IS6100, ISVsa5 (IS10R), IS26 | blaNDM-1, blaTEM-1B | aadA1, strB, strA, sul2, dfrA1, dfrA14, qnrS1, tet(J), catA1 |
Proteus mirabilis SW | 3.796.792 | none | IncN, IncQ1/ IncN: ST7 | ISKpn19, IS26, IS6100 | blaNDM-1, blaTEM-1B | aadA1, strB, strA, sul2, dfrA1, dfrA14, qnrS1, tet(J), catA1 |
Enterobacter cloacae RS | 4.617.198 | ST45 | IncN, IncFIB(pECLA), IncFII(pECLA), ColRNAI/ IncN: ST7 | Tn2, ISKpn19, IS26, IS6100, ISSen4 (IS3, Group IS407), ISSen3(Family IS21), ISKpn8 (Family IS3) | blaNDM-1, blaTEM-1B, blaACT-15 | strB, strA, sul2, dfrA14, qnrS1, catA2 |
Enterobacter cloacae SW | 4.781.639 | ST45 | IncN, IncFIB(pECLA), IncFII(pECLA)/ IncN: ST7 | Tn2 ISSen3 (Family IS21) ISKpn8 (Family IS3) IS6100 | blaNDM-1, blaTEM-1B, blaACT-15 | strB, strA, sul2, dfrA14, qnrS1, catA2 |
Klebsiella pneumoniae RS | 5.757.187 | ST4587 | IncN, IncR, Col(MGD2), IncFIB(K), ColRNAI/IncN: ST7-like | ISKpn19, ISKpn21, IS6100, IS5075 (Family IS110) | blaNDM-1, blaLEN-22 | qnrS1, oqxB, dfrA14, fosA |
Acinetobacter baumannii SW | 3.737.728 | ST2 | none | ISAba24 (Family IS66) ISAba26 (Family IS256) IS26 | blaOXA-23, blaADC-25, blaOXA-66 | armA, strA, strB, mph(E), msr(E), sul2, tetB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccirilli, A.; Meroni, E.; Mauri, C.; Perilli, M.; Cherubini, S.; Pompilio, A.; Luzzaro, F.; Principe, L. Analysis of Antimicrobial Resistance Genes (ARGs) in Enterobacterales and A. baumannii Clinical Strains Colonizing a Single Italian Patient. Antibiotics 2023, 12, 439. https://doi.org/10.3390/antibiotics12030439
Piccirilli A, Meroni E, Mauri C, Perilli M, Cherubini S, Pompilio A, Luzzaro F, Principe L. Analysis of Antimicrobial Resistance Genes (ARGs) in Enterobacterales and A. baumannii Clinical Strains Colonizing a Single Italian Patient. Antibiotics. 2023; 12(3):439. https://doi.org/10.3390/antibiotics12030439
Chicago/Turabian StylePiccirilli, Alessandra, Elisa Meroni, Carola Mauri, Mariagrazia Perilli, Sabrina Cherubini, Arianna Pompilio, Francesco Luzzaro, and Luigi Principe. 2023. "Analysis of Antimicrobial Resistance Genes (ARGs) in Enterobacterales and A. baumannii Clinical Strains Colonizing a Single Italian Patient" Antibiotics 12, no. 3: 439. https://doi.org/10.3390/antibiotics12030439
APA StylePiccirilli, A., Meroni, E., Mauri, C., Perilli, M., Cherubini, S., Pompilio, A., Luzzaro, F., & Principe, L. (2023). Analysis of Antimicrobial Resistance Genes (ARGs) in Enterobacterales and A. baumannii Clinical Strains Colonizing a Single Italian Patient. Antibiotics, 12(3), 439. https://doi.org/10.3390/antibiotics12030439