Antibiotic Resistance of Streptococcus pneumoniae in the Nasopharynx of Healthy Children Less than Five Years Old after the Generalization of Pneumococcal Vaccination in Marrakesh, Morocco
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Study Population
2.2. Antimicrobial Susceptibility Testing
2.3. Multidrug Resistance among S. pneumoniae Isolates
2.4. Resistance Profiles of Oxacillin-Positive Strains to Antibiotics
2.5. Serotype Distribution
3. Discussion
4. Methods
4.1. Study Design and Population
4.2. Ethical Permission
4.3. Identification of S. pneumoniae Isolates
4.4. Antimicrobial Susceptibility Testing
4.5. Capsular Typing
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marquart, M.E. Pathogenicity and Virulence of Streptococcus Pneumoniae: Cutting to the Chase on Proteases. Virulence 2021, 12, 766–787. [Google Scholar] [CrossRef]
- Weiser, J.N.; Ferreira, D.M.; Paton, J.C. Streptococcus Pneumoniae: Transmission, Colonization Andinvasion. Nat. Rev. Microbiol. 2018, 16, 355–367. [Google Scholar] [CrossRef]
- Brooks, L.R.K.; Mias, G.I. Streptococcus Pneumoniae’s Virulence and Host Immunity: Aging, Diagnostics, and Prevention. Front. Immunol. 2018, 9, 1366. [Google Scholar] [CrossRef] [Green Version]
- Simell, B.; Auranen, K.; Käyhty, H.; Goldblatt, D.; Dagan, R.; O’Brien, K.L. The Fundamental Link between Pneumococcal Carriage and Disease. Expert Rev. Vaccines 2012, 11, 841–855. [Google Scholar] [CrossRef] [Green Version]
- Navne, J.E.; Børresen, M.L.; Slotved, H.C.; Andersson, M.; Melbye, M.; Ladefoged, K.; Koch, A. Nasopharyngeal Bacterial Carriage in Young Children in Greenland: A Population at High Risk of Respiratory Infections. Epidemiol. Infect. 2016, 144, 3226–3236. [Google Scholar] [CrossRef] [Green Version]
- Hutchings, M.; Truman, A.; Wilkinson, B. Antibiotics: Past, Present and Future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Cools, F.; Delputte, P.; Cos, P. The Search for Novel Treatment Strategies for Streptococcus Pneumoniae Infections. FEMS Microbiol. Rev. 2021, 45, fuaa072. [Google Scholar] [CrossRef]
- Kanj, S.S.; Kanafani, Z.A. Current Concepts in Antimicrobial Therapy against Resistant Gram-Negative Organisms: Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae, Carbapenem-Resistant Enterobacteriaceae, and Multidrug-Resistant Pseudomonas Aeruginosa. Mayo Clin. Proc. 2011, 86, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Alhumaid, S.; Al Mutair, A.; Al Alawi, Z.; Alzahrani, A.J.; Tobaiqy, M.; Alresasi, A.M.; Bu-Shehab, I.; Al-Hadary, I.; Alhmeed, N.; Alismail, M.; et al. Antimicrobial Susceptibility of Gram-Positive and Gram-Negative Bacteria: A 5-Year Retrospective Analysis at a Multi-Hospital Healthcare System in Saudi Arabia. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 43. [Google Scholar] [CrossRef]
- Mills, R.O.; Abdullah, M.R.; Akwetey, S.A.; Sappor, D.C.; Gámez, G.; Hammerschmidt, S. Molecular Epidemiology of Multidrug-Resistant Pneumococci among Ghanaian Children under Five Years Post PCV13 Using MLST. Microorganisms 2022, 10, 469. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Zivich, P.N.; Grabenstein, J.D.; Becker-Dreps, S.I.; Weber, D.J. Streptococcus Pneumoniae Outbreaks and Implications for Transmission and Control: A Systematic Review. Pneumonia 2018, 10, 11. [Google Scholar] [CrossRef]
- Alqumaizi, K.I.; Anwer, R. An Emerging Multidrug-Resistant Pathogen: Streptococcus Pneumoniae. In Staphylococcus and Streptococcus; IntechOpen: Rijeka, Croatia, 2019; pp. 225–240. [Google Scholar]
- Dewé, T.C.M.; D’aeth, J.C.; Croucher, N.J. Genomic Epidemiology of Penicillin-Non-Susceptible Streptococcus Pneumoniae. Microb. Genom. 2019, 5, e000305. [Google Scholar] [CrossRef]
- Horna, G.; Molero, M.L.; Benites, L.; Roman, S.; Carbajal, L.; Mercado, E.; Castillo, M.E.; Zerpa, R.; Chaparro, E.; Hernandez, R.; et al. Oxacillin Disk Diffusion Testing for the Prediction of Penicillin Resistance in Streptococcus Pneumoniae. Rev. Panam. Salud Publica 2016, 40, 57–63. [Google Scholar]
- Salsabila, K.; Paramaiswari, W.T.; Amalia, H.; Ruyani, A.; Tafroji, W.; Winarti, Y.; Khoeri, M.M.; Safari, D. Nasopharyngeal Carriage Rate, Serotype Distribution, and Antimicrobial Susceptibility Profile of Streptococcus Pneumoniae Isolated from Children under Five Years Old in Kotabaru, South Kalimantan, Indonesia. J. Microbiol. Immunol. Infect. 2022, 55, 482–488. [Google Scholar] [CrossRef]
- Desmet, S.; Wouters, I.; VanHeirstraeten, L.; Beutels, P.; Van Damme, P.; Malhotra-Kumar, S.; Maes, P.; Verhaegen, J.; Peetermans, W.E.; Lagrou, K.; et al. In-Depth Analysis of Pneumococcal Serotypes in Belgian Children (2015–2018): Diversity, Invasive Disease Potential, and Antimicrobial Susceptibility in Carriage and Disease. Vaccine 2021, 39, 372–379. [Google Scholar] [CrossRef]
- Cassiolato, A.P.; Grassi Almeida, S.C.; Andrade, A.L.; Minamisava, R.; Cristina de CuntoBrandileone, M. Expansion of the Multidrug-Resistant Clonal Complex 320 among Invasive Streptococcus Pneumoniae Serotype 19A after the Introduction of a Ten-Valent Pneumococcal Conjugate Vaccine in Brazil. PLoS ONE 2018, 13, e0208211. [Google Scholar] [CrossRef] [Green Version]
- Plainvert, C.; Varon, E.; Viriot, D.; Kempf, M.; Plainvert, C.; Alauzet, C.; Auger, G.; Batah, J.; Brieu, N.; Cattoir, V.; et al. Invasive Pneumococcal Infections in France: Changes from 2009 to 2021 in Antibiotic Resistance and Serotype Distribution of Streptococcus Pneumoniae Based on Data from the French Regional Pneumococcal Observatories Network. Infect. Dis. Now 2023, 53, 104632. [Google Scholar] [CrossRef]
- Khademi, F.; Sahebkar, A. Is Penicillin-Nonsusceptible Streptococcus Pneumoniae a Significant Challenge to Healthcare System? A Systematic Review and Meta-Analysis. Scientifica 2021, 2021, 5573345. [Google Scholar] [CrossRef]
- Kittana, F.N.A.; Mustak, I.B.; Hascelik, G.; Saricam, S.; Gurler, N.; Diker, K.S. Erythromycin-Resistant Streptococcus Pneumoniae: Phenotypes, Genotypes, Transposons and Pneumococcal Vaccine Coverage Rates. J. Med. Microbiol. 2019, 68, 874–881. [Google Scholar] [CrossRef]
- Schroeder, M.R.; Stephens, D.S. Macrolide Resistance in Streptococcus Pneumoniae. Front. Cell Infect. Microbiol. 2016, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Fox, V.; Santoro, F.; Pozzi, G.; Iannelli, F. Predicted Transmembrane Proteins with Homology to Mef(A) Are Not Responsible for Complementing Mef(A) Deletion in the Mef(A)–Msr(D) Macrolide Efflux System in Streptococcus Pneumoniae. BMC Res. Notes 2021, 14, 432. [Google Scholar] [CrossRef]
- Hadjipanayis, A.; Efstathiou, E.; Alexandrou, M.; Panayiotou, L.; Zachariadou, C.; Petrou, P.; Papaevangelou, V. Nasopharyngeal Pneumococcal Carriage among Healthy Children in Cyprus Post Widespread Simultaneous Implementation of PCV10 and PCV13 Vaccines. PLoS ONE 2016, 11, e0163269. [Google Scholar] [CrossRef] [Green Version]
- El-Nawawy, A.A.; Hafez, S.F.; Meheissen, M.A.; Shahtout, N.M.A.; Mohammed, E.E. Nasopharyngeal Carriage, Capsular and Molecular Serotyping and Antimicrobial Susceptibility of Streptococcus Pneumoniae among Asymptomatic Healthy Children in Egypt. J. Trop. Pediatr. 2015, 61, 455–463. [Google Scholar] [CrossRef]
- Thummeepak, R.; Leerach, N.; Kunthalert, D.; Tangchaisuriya, U.; Thanwisai, A.; Sitthisak, S. High Prevalence of Multi-Drug Resistant Streptococcus Pneumoniae among Healthy Children in Thailand. J. Infect. Public Health 2015, 8, 274–281. [Google Scholar] [CrossRef]
- Hadinegoro, S.R.; Prayitno, A.; Khoeri, M.M.; Djelantik, I.G.G.; Dewi, N.E.; Indriyani, S.A.K.; Muttaqin, Z.; Mudaliana, S.; Safari, D. Nasopharyngeal Carriage of Streptococcus Pneumoniae in Healthy Children under Five Years Old in Central Lombok Regency, Indonesia. Southeast Asian J. Trop. Med. Public Health 2016, 47, 485–493. [Google Scholar]
- El Ashkar, S.; Osman, M.; Rafei, R.; Mallat, H.; Achkar, M.; Dabboussi, F.; Hamze, M. Molecular Detection of Genes Responsible for Macrolide Resistance among Streptococcus Pneumoniae Isolated in North Lebanon. J. Infect. Public Health 2017, 10, 745–748. [Google Scholar] [CrossRef]
- Azadegan, A.; Ahmadi, A.; Lari, A.R.; Talebi, M. Detection of the Efflux-Mediated Erythromycin Resistance Transposon in Streptococcus Pneumoniae. Ann. Lab. Med. 2015, 35, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Sallam, M.; Abbadi, J.; Natsheh, A.; Ababneh, N.A.; Mahafzah, A.; Şahin, G.Ö. Trends in Antimicrobial Drug Resistance of Streptococcus Pneumoniae Isolates at Jordan University Hospital (2000–2018). Antibiotics 2019, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Bhavnani, S.M.; Hammel, J.P.; Jones, R.N.; Ambrose, P.G. Relationship between Increased Levofloxacin Use and Decreased Susceptibility of Streptococcus Pneumoniae in the United States. Diagn. Microbiol. Infect. Dis. 2005, 51, 31–37. [Google Scholar] [CrossRef]
- Baek, J.Y.; Kang, C.I.; Kim, S.H.; Ko, K.S.; Chung, D.R.; Peck, K.R.; Lee, N.Y.; Song, J.H. Emergence of Multidrug-Resistant Clones in Levofloxacin-Nonsusceptible Streptococcus Pneumoniae Isolates in Korea. Diagn. Microbiol. Infect. Dis. 2018, 91, 287–290. [Google Scholar] [CrossRef]
- Sharew, B.; Moges, F.; Yismaw, G.; Abebe, W.; Fentaw, S.; Vestrheim, D.; Tessema, B. Antimicrobial Resistance Profile and Multidrug Resistance Patterns of Streptococcus Pneumoniae Isolates from Patients Suspected of Pneumococcal Infections in Ethiopia. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 26. [Google Scholar] [CrossRef]
- Wang, C.Y.; Chen, Y.H.; Fang, C.; Zhou, M.M.; Xu, H.M.; Jing, C.M.; Deng, H.L.; Cai, H.J.; Jia, K.; Han, S.Z.; et al. Antibiotic Resistance Profiles and Multidrug Resistance Patterns of Streptococcus Pneumoniae in Pediatrics: A Multicenter Retrospective Study in Mainland China. Medicine 2019, 98, e15942. [Google Scholar] [CrossRef]
- Larsson, M.; Nguyen, H.Q.; Olson, L.; Tran, T.K.; Nguyen, T.V.; Nguyen, C.T.K. Multi-Drug Resistance in Streptococcus Pneumoniae among Children in Rural Vietnam More than Doubled from 1999 to 2014. Acta Paediatr. Int. J. Paediatr. 2021, 110, 1916–1923. [Google Scholar] [CrossRef]
- Diawara, I.; Zerouali, K.; Katfy, K.; Zaki, B.; Belabbes, H.; Najib, J.; Elmdaghri, N. Invasive Pneumococcal Disease among Children Younger than 5 Years of Age before and after Introduction of Pneumococcal Conjugate Vaccine in Casablanca, Morocco. Int. J. Infect. Dis. 2015, 40, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Manenzhe, R.I.; Moodley, C.; Abdulgader, S.M.; Robberts, F.J.L.; Zar, H.J.; Nicol, M.P.; Dube, F.S. Nasopharyngeal Carriage of Antimicrobial-Resistant Pneumococci in an Intensively Sampled South African Birth Cohort. Front. Microbiol. 2019, 10, 610. [Google Scholar] [CrossRef]
- Dube, F.S.; Ramjith, J.; Gardner-Lubbe, S.; Nduru, P.; Robberts, F.J.L.; Wolter, N.; Zar, H.J.; Nicol, M.P. Longitudinal Characterization of Nasopharyngeal Colonization with Streptococcus Pneumoniae in a South African Birth Cohort Post 13-Valent Pneumococcal Conjugate Vaccine Implementation. Sci. Rep. 2018, 8, 12497. [Google Scholar] [CrossRef] [Green Version]
- Vissers, M.; Wijmenga-Monsuur, A.J.; Knol, M.J.; Badoux, P.; Van Houten, M.A.; van der Ende, A.; Sanders, E.A.M.; Rots, N.Y. Increased Carriage of Non-Vaccine Serotypes with Low Invasive Disease Potential Four Years after Switching to the 10-Valent Pneumococcal Conjugate Vaccine in The Netherlands. PLoS ONE 2018, 13, e0194823. [Google Scholar] [CrossRef] [Green Version]
- Apte, A.; Dayma, G.; Naziat, H.; Williams, L.; Sanghavi, S.; Uddin, J.; Kawade, A.; Islam, M.; Kar, S.; Li, Y.; et al. Nasopharyngeal Pneumococcal Carriage in South Asian Infants: Results of Observational Cohort Studies in Vaccinated and Unvaccinated Populations. J. Glob. Health 2021, 11, 04054. [Google Scholar] [CrossRef]
- Yahiaoui, R.Y.; Bootsma, H.J.; den Heijer, C.D.J.; Pluister, G.N.; John Paget, W.; Spreeuwenberg, P.; Trzcinski, K.; Stobberingh, E.E. Distribution of Serotypes and Patterns of Antimicrobial Resistance among Commensal Streptococcus Pneumoniae in Nine European Countries. BMC Infect. Dis. 2018, 18, 440. [Google Scholar] [CrossRef]
- Mayanskiy, N.; Alyabieva, N.; Ponomarenko, O.; Lazareva, A.; Katosova, L.; Ivanenko, A.; Kulichenko, T.; Namazova-Baranova, L.; Baranov, A. Serotypes and Antibiotic Resistance of Non-Invasive Streptococcus Pneumoniae Circulating in Pediatric Hospitals in Moscow, Russia. Int. J. Infect. Dis. 2014, 20, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Brandileone, M.C.C.; Almeida, S.C.G.; Bokermann, S.; Minamisava, R.; Berezin, E.N.; Harrison, L.H.; Andrade, A.L. Dynamics of Antimicrobial Resistance of Streptococcus Pneumoniae Following PCV10 Introduction in Brazil: Nationwide Surveillance from 2007 to 2019. Vaccine 2021, 39, 3207–3215. [Google Scholar] [CrossRef]
Characteristic of Children | Study Population | Children with Carriage of S. pneumoniae |
---|---|---|
Total, n (%) | 645 (100) | 239 (37.1) |
Gender | ||
Male, n (%) | 295 (45.7) | 132 (44.7) |
Female, n (%) | 350 (54.7) | 107 (30.6) |
Age in months, median (IQR) | 18 (21.5) | 18 (23) |
Antibiotic treatment ≤3 months, n (%) | 200 (31) | 57 (28.5) |
Fully vaccinated, n (%) | 321 (49.8) | 112 (34.9) |
Type of ATB | Disk Content | Breakpoints EUCAST | Total Number of the Isolates | S (N) | S (%) | R (N) | R (%) |
---|---|---|---|---|---|---|---|
OXA | 1 μg | ≤20–>20 mm | 201 | 86 | 42.8 | 115 | 57.2 |
AMX | - | MIC ≤ 1–2 mg/L | 115 | 90 | 78.6 | 24 | 21.4 |
CFR | - | MIC ≤ 0.5–2 mg/L | 115 | 99 | 85.7 | 16 | 14.3 |
NOR | 10 μg | ≤10–>10 mm | 201 | 201 | 100 | - | - |
GEN | 500 μg | ≤17–>17 mm | 201 | 201 | 100 | - | - |
VAN | 5 μg | ≤16–>16 mm | 201 | 201 | 100 | - | - |
ERY | 15 μg | ≤22–>19 mm | 201 | 165 | 82.1 | 36 | 17.9 |
CLN | 2 μg | ≤19–>19 mm | 201 | 171 | 85.1 | 30 | 14.9 |
PTN | 15 μg | ≤19–>19 mm | 201 | 179 | 89 | 22 | 11 |
TET | 30 μg | ≤25–>25 mm | 201 | 159 | 79.1 | 42 | 20.9 |
CHL | 30 μg | ≤21–>21 mm | 201 | 198 | 98.5 | 3 | 1.5 |
SXT | 1.25/23.75 μg | ≤13–>10 mm | 201 | 193 | 96 | 8 | 4 |
Erythromycin-Resistant Strains (N=34) | ||
---|---|---|
N | % | |
Clindamycin-resistant strains | 22 | 64.7 |
D-test positive | 9 | 26.4 |
D-test negative | 13 | 38.2 |
Clindamycin-susceptible strains | 12 | 35.9 |
Pristinamycin-resistant strains | 22 | 64.7 |
Pristinamycin-susceptible strains | 12 | 35.9 |
Profile of Resistance | S. pneumoniae Isolates | ||
---|---|---|---|
N | % | ||
Coresistance | ß-lactams, Macrolides | 3 | 1.5 |
ß-lactams, Lincosamides | 2 | 1 | |
ß-lactams, Tetracyclines | 6 | 3 | |
Macrolides, Tetracyclines | 2 | 1 | |
ß-lactams, Folate pathway inhibitor | 1 | 0.5 | |
Multiresistance | ß-lactams, Macrolides, Tetracyclines | 5 | 2.5 |
ß-lactams, Macrolides, Lincosamides | 1 | 0.5 | |
Macrolides, Lincosamides, Tetracyclines | 1 | 0.5 | |
ß-lactams, Tetracyclines, Folate pathway inhibitor | 2 | 1 | |
ß-lactams, Macrolides, Lincosamides, Tetracyclines | 3 | 1.5 | |
ß-lactams, Macrolides, Lincosamides, Streptogamines | 3 | 1.5 | |
ß-lactams, Macrolides, Lincosamides, Streptogamines, Tetracyclines | 17 | 8.5 | |
Macrolides, Lincosamides, Streptogamines, Phenicols | 1 | 0.5 | |
ß-lactams, Macrolides, Lincosamides, Streptogamines, Phenicols | 1 | 0.5 |
Oxacillin-Positive | Oxacillin-Negative | X2 | p-Value | |
---|---|---|---|---|
ERY | 31 (86.1%) | 5 (13.9%) | 15.213 | <0.001 |
CLN | 26 (86.7%) | 4 (13.3%) | 12.706 | <0.001 |
PTN | 19 (95.4%) | 3 (4.6%) | 8.723 | <0.05 |
TET | 32 (76.2%) | 10 (23.8%) | 8.022 | <0.05 |
CHL | 2 (66.6%) | 1 (33.4%) | 0.118 | 0.732 |
SXT | 57 (75%) | 19 (25%) | 1.109 | <0.05 |
Capsular Serotypes | Total (N) | Antimicrobials | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Erythromycin | Lincomycin | Tetracycline | Chloramphenicol | SXT | |||||||
PCV10 | |||||||||||
1 | 1 | 1 | 100% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
6B | 2 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
9V | 1 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
14 | 25 | 1 | 4% | 1 | 4% | 4 | 16% | 0 | 0% | 3 | 12% |
18 | 2 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
19F | 1 | 1 | 100% | 1 | 100% | 1 | 100% | 0 | 0% | 0 | 0% |
23F | 1 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
PCV13 | |||||||||||
3 | 7 | 3 | 43% | 1 | 14% | 3 | 43% | 0 | 0% | 0 | 0% |
6A | 4 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
19A | 1 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
Non-PCV | |||||||||||
6D | 2 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
8 | 2 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
9A | 6 | 1 | 17% | 0 | 0% | 1 | 17% | 0 | 0% | 0 | 0% |
10B/10C | 3 | 2 | 67% | 0 | 0% | 2 | 67% | 0 | 0% | 0 | 0% |
10F | 1 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
11A | 2 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
11F/11B/11C | 6 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
12 | 1 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
15A/15F | 7 | 1 | 14% | 0 | 0% | 1 | 14% | 0 | 0% | 0 | 0% |
15B/15C | 4 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
17A | 1 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
17F | 3 | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
19B/19C | 4 | 0 | 0% | 1 | 25% | 0 | 0% | 0 | 0% | 2 | 50% |
23B | 6 | 1 | 17% | 0 | 0% | 1 | 17% | 0 | 0% | 0 | 0% |
SNV | 38 | 4 | 11% | 2 | 5% | 7 | 18% | 0 | 0% | 0 | 0% |
NT | 18 | 5 | 28% | 6 | 33% | 2 | 11% | 2 | 11% | 2 | 11% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amari, S.; Warda, K.; Bouraddane, M.; Katfy, M.; Elkamouni, Y.; Arsalane, L.; Zerouali, K.; Zouhair, S.; Bouskraoui, M. Antibiotic Resistance of Streptococcus pneumoniae in the Nasopharynx of Healthy Children Less than Five Years Old after the Generalization of Pneumococcal Vaccination in Marrakesh, Morocco. Antibiotics 2023, 12, 442. https://doi.org/10.3390/antibiotics12030442
Amari S, Warda K, Bouraddane M, Katfy M, Elkamouni Y, Arsalane L, Zerouali K, Zouhair S, Bouskraoui M. Antibiotic Resistance of Streptococcus pneumoniae in the Nasopharynx of Healthy Children Less than Five Years Old after the Generalization of Pneumococcal Vaccination in Marrakesh, Morocco. Antibiotics. 2023; 12(3):442. https://doi.org/10.3390/antibiotics12030442
Chicago/Turabian StyleAmari, Sara, Karima Warda, Majda Bouraddane, Mostafa Katfy, Youssef Elkamouni, Lamiae Arsalane, Khalid Zerouali, Said Zouhair, and Mohamed Bouskraoui. 2023. "Antibiotic Resistance of Streptococcus pneumoniae in the Nasopharynx of Healthy Children Less than Five Years Old after the Generalization of Pneumococcal Vaccination in Marrakesh, Morocco" Antibiotics 12, no. 3: 442. https://doi.org/10.3390/antibiotics12030442
APA StyleAmari, S., Warda, K., Bouraddane, M., Katfy, M., Elkamouni, Y., Arsalane, L., Zerouali, K., Zouhair, S., & Bouskraoui, M. (2023). Antibiotic Resistance of Streptococcus pneumoniae in the Nasopharynx of Healthy Children Less than Five Years Old after the Generalization of Pneumococcal Vaccination in Marrakesh, Morocco. Antibiotics, 12(3), 442. https://doi.org/10.3390/antibiotics12030442