Antimicrobial, Antibiofilm, and Antioxidant Potentials of Four Halophytic Plants, Euphorbia chamaesyce, Bassia arabica, Fagonia mollis, and Haloxylon salicornicum, Growing in Qassim Region of Saudi Arabia: Phytochemical Profile and In Vitro and In Silico Bioactivity Investigations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Content (TPC), Total Flavonoid Content (TFC), and Total Antioxidant Activity (TAA) of the Plant extracts
2.2. Antimicrobial Profiles of F. mollis, B. arabica, H. salicornicum, and E. chamaesyce Plant Extracts
2.2.1. Preliminary Antimicrobial Activity
2.2.2. MIC (Minimum Inhibitory Concentration), MBC (Minimum Biocidal Concentration), MBIC (Minimum Biofilm Inhibitory Concentration), and MBEC (Minimum Biofilm Eradication Concentration)
2.2.3. Statistical Analysis
2.3. LC-MS Analysis of E. chamaesyce Extract
2.4. In Silico Molecular Docking
2.4.1. Binding Energies
2.4.2. Analysis of Receptor–Ligands Interactions
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Collection, Identification, and Extraction Process
3.3. TPC and TFC
3.4. Total Antioxidant Activity (TAA) Profiles of Plant Extracts
3.4.1. TAA
3.4.2. DPPH Scavenging Activities
3.4.3. FRAP Assays
3.4.4. MCA Assay
3.5. Antimicrobial and Antibiofilm Assay
3.5.1. Test Organisms
3.5.2. Preliminary Antimicrobial Activity
3.5.3. MIC and MBC
3.5.4. MBIC and MBEC
3.6. Liquid Chromatography Mass Spectroscopy (LC-MS) Analysis
3.7. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A. Soil Salinity: A Global Threat to Sustainable Development. Soil Use Manag. 2022, 38, 39–67. [Google Scholar] [CrossRef]
- D’Odorico, P.; Bhattachan, A.; Davis, K.F.; Ravi, S.; Runyan, C.W. Global Desertification: Drivers and Feedbacks. Adv. Water Resour. 2013, 51, 326–344. [Google Scholar] [CrossRef]
- Okur, B.; Örçen, N. Soil Salinization and Climate Change. In Climate Change and Soil Interactions; Elsevier: Amsterdam, The Netherlands, 2020; pp. 331–350. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Plant Salt Tolerance: Adaptations in Halophytes. Ann. Bot. 2015, 115, 327–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’leary, J.W.; Glenn, E.P. Global Distribution and Potential for Halophytes. In Halophytes as a Resource for Livestock and for Rehabilitation of Degraded Lands; Springer: Berlin/Heidelberg, Germany, 1994; pp. 7–17. [Google Scholar] [CrossRef]
- Mohammed, H.A. The Valuable Impacts of Halophytic Genus Suaeda; Nutritional, Chemical, and Biological Values. Med. Chem. (Los. Angeles) 2020, 16, 1044–1057. [Google Scholar] [CrossRef]
- Ksouri, R.; Ksouri, W.M.; Jallali, I.; Debez, A.; Magné, C.; Hiroko, I.; Abdelly, C. Medicinal Halophytes: Potent Source of Health Promoting Biomolecules with Medical, Nutraceutical and Food Applications. Crit. Rev. Biotechnol. 2012, 32, 289–326. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.A.A.; Al-Omar, M.S.; Khan, R.A.; Mohammed, S.A.A.; Qureshi, K.A.; Abbas, M.M.; Al Rugaie, O.; Abd-Elmoniem, E.; Ahmad, A.M.; Kandil, Y.I. Chemical Profile, Antioxidant, Antimicrobial, and Anticancer Activities of the Water-Ethanol Extract of Pulicaria Undulata Growing in the Oasis of Central Saudi Arabian Desert. Plants 2021, 10, 1811. [Google Scholar] [CrossRef]
- Mohammed, S.A.A.; Khan, R.A.; El-readi, M.Z.; Emwas, A.H.; Sioud, S.; Poulson, B.G.; Jaremko, M.; Eldeeb, H.M.; Al-omar, M.S.; Mohammed, H.A. Suaeda Vermiculata Aqueous-ethanolic Extract-based Mitigation of Ccl4-induced Hepatotoxicity in Rats, and Hepg-2 and Hepg-2/Adr Cell-lines-based Cytotoxicity Evaluations. Plants 2020, 9, 1291. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Ali, H.M.; Qureshi, K.A.; Alsharidah, M.; Kandil, Y.I.; Said, R.; Mohammed, S.A.A.; Al-omar, M.S.; Rugaie, O.A.; Abdellatif, A.A.H.; et al. Comparative Phytochemical Profile and Biological Activity of Four Major Medicinal Halophytes from Qassim Flora. Plants 2021, 10, 2208. [Google Scholar] [CrossRef]
- Al-Jaloud, A.A.; Hussain, G. Sabkha Ecosystem and Halophyte Plant Communities in Saudi Arabia. In Sabkha Ecosystems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–7. [Google Scholar] [CrossRef]
- Ali, M.; Alhazmi, H.A.; Ansari, S.H.; Hussain, A.; Ahmad, S.; Alam, M.S.; Ali, M.S.; El-Sharkawy, K.A.; Hakeem, K.R. Tamarix aphylla (L.) Karst. Phytochemical and Bioactive Profile Compilations of Less Discussed but Effective Naturally Growing Saudi Plant. In Plant and Human Health: Pharmacology and Therapeutic Uses; Springer: Berlin/Heidelberg, Germany, 2019; Volume 3, pp. 343–352. ISBN 9783030044084. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Al-Omar, M.S.; Mohammed, S.A.A.; Alhowail, A.H.; Eldeeb, H.M.; Sajid, M.S.M.; Abd-Elmoniem, E.M.; Alghulayqeh, O.A.; Kandil, Y.I.; Khan, R.A. Phytochemical Analysis, Pharmacological and Safety Evaluations of Halophytic Plant, Salsola Cyclophylla. Molecules 2021, 26, 2384. [Google Scholar] [CrossRef]
- Amin, E.; Abdel-Bakky, M.S.; Mohammed, H.A.; Chigrupati, S.; Qureshi, K.A.; Hassan, M.H.A. Phytochemical Analysis and Evaluation of the Antioxidant and Antimicrobial Activities of Five Halophytes from Qassim Flora. Polish J. Environ. Stud. 2022, 31, 3005–3012. [Google Scholar] [CrossRef]
- Alnuqaydan, A.M.; Rah, B. Comparative Assessment of Biological Activities of Different Parts of Halophytic Plant Tamarix Articulata (T. articulata) Growing in Saudi Arabia. Saudi J. Biol. Sci. 2020, 27, 2586–2592. [Google Scholar] [CrossRef]
- Wagenlehner, F.M.E.; Dittmar, F. Re: Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Eur. Urol. 2022, 82, 658. [Google Scholar] [CrossRef]
- Ikuta, K.S.; Swetschinski, L.R.; Aguilar, G.R.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Weaver, N.D.; Wool, E.E.; Han, C.; Hayoon, A.G. Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Shariq, A.; Alsalloom, A.A.; Babikir, I.H.; Alhomoud, B.N. Uropathogens and Their Antimicrobial Resistance Patterns: Relationship with Urinary Tract Infections. Int. J. Health Sci. (Qassim) 2019, 13, 48–55. [Google Scholar]
- Alhomaidan, H.; Shariq, A.; Almoziraei, A.; Alkharraz, O.; Alromaih, E.; Albezei, A.; Alyahya, M.; Alghsham, R.; Alsaeed, T.; Abdulmonem, W. Use of Antibiotics among General Population of Buraidah, the Capital of Qassim Region of Saudi Arabia: A Cross-Sectional Study. Int. J. Med. Dev. Ctries 2021, 5, 663–668. [Google Scholar] [CrossRef]
- Giaouris, E.; Simoes, M.; Dubois-Brissonnet, F. The Role of Biofilms in the Development and Dissemination of Microbial Resistance within the Food Industry. Foods 2020, 9, 816. [Google Scholar] [CrossRef] [PubMed]
- Efferth, T.; Koch, E. Complex Interactions between Phytochemicals. The Multi-Target Therapeutic Concept of Phytotherapy. Curr. Drug Targets 2010, 12, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Abreu, A.C.; McBain, A.J.; Simões, M. Plants as Sources of New Antimicrobials and Resistance-Modifying Agents. Nat. Prod. Rep. 2012, 29, 1007–1021. [Google Scholar] [CrossRef]
- Abdallah, E.; Musa, K.; Qureshi, K.; Sadeek, A. Antimicrobial Activity and Antioxidant Potential of the Methanolic Leaf Extracts of Three Cultivars of Date Palm Trees (Phoenix dactylifera) from Saudi Arabia. Med. Sci. Int. Med. J. 2017, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- ALrajhi, M.; AL-Rasheedi, M.; Eltom, S.E.M.; Alhazmi, Y.; Mustafa, M.M.; Ali, A.M. Antibacterial Activity of Date Palm Cake Extracts (Phoenix dactylifera). Cogent Food Agric. 2019, 5, 1625479. [Google Scholar] [CrossRef]
- Reezal, I.; Somchit, M.N.; Nur, I.E.; Hasmawie, R.; Chong, P.P.; Mutalib, A.R.; Ahmad, Z. In Vitro Antimicrobial Activity of Aqueous and Ethanol Extracts of Euphorbia hirta. Orient. Pharm. Exp. Med. 2003, 3, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.F.; Bani, S.; Sultan, P.; Ali, S.A.; Bakheet, S.A.; Attia, S.M.; Abd-Allah, A.R.A. TNF-α Inhibitory Effect of Euphorbia Hirta in Rats. Pharm. Biol. 2013, 51, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Basma, A.A.; Zakaria, Z.; Latha, L.Y.; Sasidharan, S. Antioxidant Activity and Phytochemical Screening of the Methanol Extracts of Euphorbia hirta L. Asian Pac. J. Trop. Med. 2011, 4, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Akbar, S. Euphorbia hirta L.; Chamaesyce hirta (L.) Mills. (Euphorbiaceae). In Handbook of 200 Medicinal Plants; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 889–898. [Google Scholar] [CrossRef]
- Akbar, S. Handbook of 200 Medicinal Plants: A Comprehensive Review of Their Traditional Medical Uses and Scientific Justifications; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; ISBN 9783030168070. [Google Scholar] [CrossRef]
- Odeh, W.F.H. Characterization of Polyphenol-Containing Polar Extracts from Bassia Arabica and Nepeta Curviflora Boiss and Evaluation of Their Bioactivity. 2021. Available online: https://repository.najah.edu/items/6a827224-d5bd-46a6-9ba2-fe92335ddddd (accessed on 12 February 2023).
- Abass, N.; Araby, M.; Said, H.; Elsherbeny, E. On the Metabolic Activities of Echinops Spinosus and Fagonia Mollis in Wadi Hagul, Egypt. Egypt. J. Exp. Biol. 2019, 15, 1. [Google Scholar] [CrossRef]
- Alghanem, S.M. Antimicrobial and Antioxidant Evaluation of Different Solvent Extracts of Medicinal Plant: Fagonia Mollis Delile. J. Med. Herbs Ethnomedicine 1970, 4, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Hamida, R.S.; Ali, M.A.; Alfassam, H.E.; Momenah, M.A.; Alkhateeb, M.A.; Bin-Meferij, M.M. One-Step Phytofabrication Method of Silver and Gold Nanoparticles Using Haloxylon Salicornicum for Anticancer, Antimicrobial, and Antioxidant Activities. Pharmaceutics 2023, 15, 529. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, S.A.; Kamel, E.M.; Ewais, M.A.; Khowailed, A.A.; Hassanein, E.H.M.; Mahmoud, A.M. Flavonoids of Haloxylon Salicornicum (Rimth) Prevent Cisplatin-Induced Acute Kidney Injury by Modulating Oxidative Stress, Inflammation, Nrf2, and SIRT1. Environ. Sci. Pollut. Res. 2023. [Google Scholar] [CrossRef]
- Maham, M.; Sajadi, S.M.; Kharimkhani, M.M.; Nasrollahzadeh, M. Biosynthesis of the CuO Nanoparticles Using Euphorbia Chamaesyce Leaf Extract and Investigation of Their Catalytic Activity for the Reduction of 4-Nitrophenol. IET Nanobiotechnology 2017, 11, 766–772. [Google Scholar] [CrossRef]
- Noori, M.; Chehreghani, A.; Kaveh, M. Flavonoids of 17 Species of Euphorbia (Euphorbiaceae) in Iran. Toxicol. Environ. Chem. 2009, 91, 631–641. [Google Scholar] [CrossRef]
- Abiodoun Olounlade, P.; B Azando, E.V.; Tchetan, E.; Abiodoun Pascal, O.; Erick Virgyle Bertrand, A.; Yatchégnon Eloi, A.; Olounladé Abiodoun Pascal, C.; Esaïe, T.; Mawulé Sylvie, H.-A. A Review of the Ethnomedical Uses, Phytochemistry and Pharmacology of the Euphorbia Genus. Pharma Innov. J. 2017, 6, 34–39. [Google Scholar]
- Feyza, O.-A.; Altun, M.; Demirtaş, İ.; Behçet, L. A Comparative Study on Fatty Acid Compositions, Total Phenolic Contents, and Antioxidant Potentials of Various Extracts from Different Parts of Euphorbia Chamaesyce L. Gazi Univ. J. Sci. 2018, 31, 677–685. [Google Scholar]
- Kirbag, S.; Erecevit, P.; Zengin, F.; Guvenc, A.N. Antimicrobial Activities of Some Euphorbia Species. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 305–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athar, F.; Ansari, S.; Beg, M.A. Molecular Docking Studies of Calotropis Gigantea Phytoconstituents against Staphylococcus Aureus Tyrosyl-TRNA Synthetase Protein. J. Bacteriol. Mycol. Open Access 2020, 8, 78–91. [Google Scholar] [CrossRef]
- Savic, I.M.; Jocic, E.; Nikolic, V.D.; Popsavin, M.M.; Rakic, S.J.; Savic-Gajic, I.M. The Effect of Complexation with Cyclodextrins on the Antioxidant and Antimicrobial Activity of Ellagic Acid. Pharm. Dev. Technol. 2019, 24, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.V.T.; Duong, N.T.; Nguyen, K.N.H.; Bui, N.T.; Pham, T.L.T.; Nguyen, K.T.; Le, P.H.; Kim, K.H. Effect of Extraction Solvent on Total Phenol, Flavonoid Content, and Antioxidant Activity of Avicennia Officinalis. Biointerface Res. Appl. Chem. 2022, 12, 2678–2690. [Google Scholar] [CrossRef]
- Aroua, L.M.; Almuhaylan, H.R.; Alminderej, F.M.; Messaoudi, S.; Chigurupati, S.; Al-mahmoud, S.; Hamdoon, M.H. A Facile Approach Synthesis of Benzoylaryl Benzimidazole as Potential α-Amylase and α-Glucosidase Inhibitor with Antioxidant Activity. Bioorg. Chem. 2021, 114, 105073. [Google Scholar] [CrossRef]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Zengin, G.; Nithiyanantham, S.; Locatelli, M.; Ceylan, R.; Uysal, S.; Aktumsek, A.; Selvi, P.K.; Maskovic, P. Screening of in Vitro Antioxidant and Enzyme Inhibitory Activities of Different Extracts from Two Uninvestigated Wild Plants: Centranthus Longiflorus Subsp. Longiflorus and Cerinthe Minor Subsp. Auriculata. Eur. J. Integr. Med. 2016, 8, 286–292. [Google Scholar] [CrossRef]
- Qureshi, K.A.; Imtiaz, M.; Parvez, A.; Rai, P.K.; Jaremko, M.; Emwas, A.H.; Bholay, A.D.; Fatmi, M.Q. In Vitro and In Silico Approaches for the Evaluation of Antimicrobial Activity, Time-Kill Kinetics, and Anti-Biofilm Potential of Thymoquinone (2-Methyl-5-Propan-2-Ylcyclohexa-2, 5-Diene-1,4-Dione) against Selected Human Pathogens. Antibiotics 2022, 11, 79. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Qureshi, K.A.; Ali, H.M.; Al-omar, M.S.; Khan, O.; Mohammed, S.A.A. Bio-Evaluation of the Wound Healing Activity of Artemisia judaica L. as Part of the Plant’s Use in Traditional Medicine; Phytochemical, Antioxidant, Anti-Inflammatory, and Antibiofilm Properties of the Plant’s Essential Oils. Antioxidants 2022, 11, 332. [Google Scholar] [CrossRef]
- Qureshi, K.A.; Bholay, A.D.; Rai, P.K.; Mohammed, H.A.; Khan, R.A.; Azam, F.; Jaremko, M.; Emwas, A.H.; Stefanowicz, P.; Waliczek, M.; et al. Isolation, Characterization, Anti-MRSA Evaluation, and in-Silico Multi-Target Anti-Microbial Validations of Actinomycin X2 and Actinomycin D Produced by Novel Streptomyces Smyrnaeus UKAQ_23. Sci. Rep. 2021, 11, 14539. [Google Scholar] [CrossRef]
- Qureshi, K.A.; Mohammed, S.A.A.A.; Khan, O.; Ali, H.M.; El-Readi, M.Z.; Mohammed, H.A. Cinnamaldehyde-Based Self-Nanoemulsion (CA-SNEDDS) Accelerates Wound Healing and Exerts Antimicrobial, Antioxidant, and Anti-Inflammatory Effects in Rats’ Skin Burn Model. Molecules 2022, 27, 5225. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Pellegrino, J.; Lee, D.J.; Tran, A.A.; Chaires, H.A.; Wang, R.; Park, J.E.; Ji, K.; Chow, D.; Zhang, N.; et al. Synthetic Group A Streptogramin Antibiotics That Overcome Vat Resistance. Nature 2020, 586, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Elshikh, M.; Ahmed, S.; Funston, S.; Dunlop, P.; McGaw, M.; Marchant, R.; Banat, I.M. Resazurin-Based 96-Well Plate Microdilution Method for the Determination of Minimum Inhibitory Concentration of Biosurfactants. Biotechnol. Lett. 2016, 38, 1015–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alanazi, A.S.; Qureshi, K.A.; Elhassan, G.O.; El-Agamy, E.I. Isolation, Purification and Characterization of Antimicrobial Agent Antagonistic to Escherichia Coli ATCC 10536 Produced by Bacillus Pumilus SAFR-032 Isolated from the Soil of Unaizah, Al Qassim Province of Saudi Arabia. Pakistan J. Biol. Sci. 2016, 19, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Arun, P.K.; Rajesh, S.S.; Sundaram, S.M.; Sivaraman, T.; Brindha, P. Structural Characterizations of Lead Anticancer Compounds from the Methanolic Extract of Jatropha Tanjorensis. Bangladesh J. Pharmacol. 2014, 9, 452–465. [Google Scholar] [CrossRef] [Green Version]
- Karanga, Y. Characterization of Flavonoids in the Ethyl Acetate Extract from Euphorbia Hirta L. by Liquid Chromatography and Tandem Mass Spectrometry. Sci. Struct. Matière 2022, 6. [Google Scholar]
- Morris, G.M.; Huey, R.; Olson, A.J. UNIT Using AutoDock for Ligand-Receptor Docking. Curr. Protoc. Bioinforma. 2008, 24, 8–14. [Google Scholar] [CrossRef]
- Pedretti, A.; Villa, L.; Vistoli, G. VEGA—An Open Platform to Develop Chemo-Bio-Informatics Applications, Using Plug-in Architecture and Script Programming. J. Comput. Aided. Mol. Des. 2004, 18, 167–173. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biovia, D.S. Discovery Studio Visualizer, V16. 1.0. 15350; Dassault Systèmes: San Diego, CA, USA, 2015. [Google Scholar]
Plants | TPC | TFC | TAA | DPPH-SA | FRAP | MCA |
---|---|---|---|---|---|---|
E. chamaesyce | 68.00 ± 0.07 | 39.23 ± 0.03 | 203.12 ± 0.07 | 74.15 ± 0.05 | 270.90 ± 0.56 | 16.28 ± 0.01 |
B. arabica | 45.32 ± 0.01 | 17.90 ± 0.04 | 86.26 ± 0.09 | 18.46 ± 0.03 | 98.31 ± 0.02 | 16.58 ± 0.01 |
F. mollis | 47.30 ± 0.03 | 24.79 ± 0.03 | 83.31 ± 0.04 | 23.34 ± 0.14 | 112.22 ± 0.01 | 16.34 ± 0.08 |
H. salicornicum | 49.19 ± 0.03 | 19.33 ± 0.05 | 82.44 ± 0.04 | 25.17 ± 0.06 | 96.87 ± 0.02 | 15.80 ± 0.07 |
Microorganisms | Plant Extracts vs. ZID (mm ± SD) | ||||
---|---|---|---|---|---|
E. chamaesyce | B. arabica | F. mollis | H. salicornicum | DMSO | |
Gram-positive bacteria | |||||
S. aureus ATCC 29213 | 8.5 ± 0.3 | 8.0 ± 0.2 | 0.0 ± 0.0 | 7.5 ± 0.2 | 0.0 ± 0.0 |
MRSA | 8.1 ± 0.2 | 0.0 ± 0.0 | 0.0 ± 0.0 | 6.9 ± 0.2 | 0.0 ± 0.0 |
S. saprophyticus ATCC 43867 | 13.7 ± 0.3 | 0.0 ± 0.0 | 0.0 ± 0.0 | 12.2 ± 0.3 | 0.0 ± 0.0 |
S. pyogenes-(A) ATCC 19615 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
B. cereus ATCC 10876 | 16.3 ± 0.3 | 9.9 ± 0.2 | 0.0 ± 0.0 | 13.4 ± 0.2 | 0.0 ± 0.0 |
Gram-negative bacteria | |||||
E. coli ATCC 25922 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
K. pneumoniae ATCC 27736 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
P. aerugenosa ATCC 9027 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 8.2 ± 0.3 | 0.0 ± 0.0 |
S. typhimurium ATCC 13311 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
S. flexneri ATCC 12022 | 18.1 ± 0.2 | 0.0 ± 0.0 | 0.0 ± 0.0 | 13.3 ± 0.3 | 0.0 ± 0.0 |
Fungal strains | |||||
C. albicans ATCC 10231 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
A. niger ATCC 6275 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Microorganisms | E. chamaesyce (mg/mL) | |||
---|---|---|---|---|
MIC | MBC | MBIC | MBEC | |
S. aureus ATCC 29213 | 12.50 | 25.00 | 25.00 | 50.00 |
MRSA | 12.50 | 25.00 | 25.00 | 50.00 |
S. saprophyticus ATCC 43867 | 25.00 | 50.00 | 50.00 | 100.00 |
B. cereus ATCC 10876 | 12.50 | 25.00 | 25.00 | 50.00 |
S. flexneri ATCC 12022 | 12.50 | 25.00 | 25.00 | 50.00 |
Microorganisms | B. arabica (mg/mL) | |||
---|---|---|---|---|
MIC | MBC | MBIC | MBEC | |
S. aureus ATCC 29213 | 25.0 | 50.0 | 50.0 | 100.0 |
B. cereus ATCC 10876 | 12.5 | 25.0 | 25.0 | 50.0 |
Microorganisms | H. salicornicum (mg/mL) | |||
---|---|---|---|---|
MIC | MBC | MBIC | MBEC | |
S. aureus ATCC 29213 | 1.56 | 3.13 | 3.13 | 6.25 |
MRSA | 3.13 | 6.25 | 6.25 | 12.50 |
S. saprophyticus ATCC 43867 | 3.13 | 6.25 | 6.25 | 12.50 |
B. cereus ATCC 10876 | 0.78 | 1.56 | 1.56 | 3.13 |
P. aerugenosa ATCC 9027 | 12.50 | 25.00 | 25.00 | 50.00 |
S. flexneri ATCC 12022 | 12.50 | 25.00 | 25.00 | 50.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rugaie, O.A.; Mohammed, H.A.; Alsamani, S.; Messaoudi, S.; Aroua, L.M.; Khan, R.A.; Almahmoud, S.A.; Altaleb, A.D.; Alsharidah, M.; Aldubaib, M.; et al. Antimicrobial, Antibiofilm, and Antioxidant Potentials of Four Halophytic Plants, Euphorbia chamaesyce, Bassia arabica, Fagonia mollis, and Haloxylon salicornicum, Growing in Qassim Region of Saudi Arabia: Phytochemical Profile and In Vitro and In Silico Bioactivity Investigations. Antibiotics 2023, 12, 501. https://doi.org/10.3390/antibiotics12030501
Rugaie OA, Mohammed HA, Alsamani S, Messaoudi S, Aroua LM, Khan RA, Almahmoud SA, Altaleb AD, Alsharidah M, Aldubaib M, et al. Antimicrobial, Antibiofilm, and Antioxidant Potentials of Four Halophytic Plants, Euphorbia chamaesyce, Bassia arabica, Fagonia mollis, and Haloxylon salicornicum, Growing in Qassim Region of Saudi Arabia: Phytochemical Profile and In Vitro and In Silico Bioactivity Investigations. Antibiotics. 2023; 12(3):501. https://doi.org/10.3390/antibiotics12030501
Chicago/Turabian StyleRugaie, Osamah Al, Hamdoon A. Mohammed, Salman Alsamani, Sabri Messaoudi, Lotfi M. Aroua, Riaz A. Khan, Suliman A. Almahmoud, Abdulrahman D. Altaleb, Mansour Alsharidah, Musaad Aldubaib, and et al. 2023. "Antimicrobial, Antibiofilm, and Antioxidant Potentials of Four Halophytic Plants, Euphorbia chamaesyce, Bassia arabica, Fagonia mollis, and Haloxylon salicornicum, Growing in Qassim Region of Saudi Arabia: Phytochemical Profile and In Vitro and In Silico Bioactivity Investigations" Antibiotics 12, no. 3: 501. https://doi.org/10.3390/antibiotics12030501
APA StyleRugaie, O. A., Mohammed, H. A., Alsamani, S., Messaoudi, S., Aroua, L. M., Khan, R. A., Almahmoud, S. A., Altaleb, A. D., Alsharidah, M., Aldubaib, M., Al-Regaiey, K. A., & Qureshi, K. A. (2023). Antimicrobial, Antibiofilm, and Antioxidant Potentials of Four Halophytic Plants, Euphorbia chamaesyce, Bassia arabica, Fagonia mollis, and Haloxylon salicornicum, Growing in Qassim Region of Saudi Arabia: Phytochemical Profile and In Vitro and In Silico Bioactivity Investigations. Antibiotics, 12(3), 501. https://doi.org/10.3390/antibiotics12030501