Medicinal Plants as Therapeutic Alternatives to Combat Mycobacterium tuberculosis: A Comprehensive Review
Abstract
:1. Introduction
2. Mycobacterium tuberculosis Overview
2.1. Etiology
- (1)
- The pulmonary immune system rapidly eliminates the pathogen;
- (2)
- Infection proceeds to active TB;
- (3)
- The pathogen enters a dormant/latent phase;
- (4)
- The latent MTB can become active following endogenous reactivation, a new exogenous infection, or both;
- (5)
- At this stage, there is MTB spread and transmission.
2.2. Epidemiology
3. Current Antibiotic Treatments in Action
3.1. Different Antibiotics Used for TB Treatment
3.2. Multi-Drug Resistance in Tuberculosis
4. Drug Delivery Incorporating Nanoparticles for the Treatment of TB
5. Drug Delivery Explored in TB Treatment
6. Phytoproducts: An Emerging Alternative
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barberis, I.; Bragazzi, N.L.; Galluzzo, L.; Martini, M. The history of tuberculosis: From the first historical records to the isolation of Koch’s bacillus. J. Prev. Med. Hyg. 2017, 58, E9–E12. [Google Scholar] [PubMed]
- Bañuls, A.L.; Sanou, A.; Van Anh, N.T.; Godreuil, S. Mycobacterium tuberculosis: Ecology and evolution of a human bacterium. J. Med. Microbiol. 2015, 64, 1261–1269. [Google Scholar] [CrossRef]
- Montes, M.; Phillips, C. Nonreactive tuberculosis. Am. Rev. Tuberc. 1959, 79, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Singh, A.; Sharma, U.; Singh, D.; Dobhal, M.P.; Singh, S. Anti-mycobacterial activity of plumericin and isoplumericin against MDR Mycobacterium tuberculosis. Pulm. Pharmacol. Ther. 2013, 26, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Muñiz-Salazar, R.; Le, T.; Cuevas-Mota, J.; González-Fagoaga, J.E.; Zapata-Garibay, R.; Ruiz-Tamayo, P.S.; Robles-Flores, J.; Garfein, R.S. Impact of COVID-19 on tuberculosis detection and treatment in Baja California, México. Front. Public Health 2022, 10, 921596. [Google Scholar] [CrossRef]
- WHO. Global Tuberculosis Report; WHO: Geneva, Switzerland, 2022; p. 68. [Google Scholar]
- Qureshi, K.A.; Imtiaz, M.; Parvez, A.; Rai, P.K.; Jaremko, M.; Emwas, A.-H.; Bholay, A.D.; Fatmi, M.Q. In Vitro and In Silico Approaches for the Evaluation of Antimicrobial Activity, Time-Kill Kinetics, and Anti-Biofilm Potential of Thymoquinone (2-Methyl-5-propan-2-ylcyclohexa-2,5-diene-1,4-dione) against Selected Human Pathogens. Antibiotics 2022, 11, 79. [Google Scholar] [CrossRef]
- Rawat, B.; Rawat, J.M.; Purohit, S.; Singh, G.; Sharma, P.K.; Chandra, A.; Shabaaz Begum, J.P.; Venugopal, D.; Jaremko, M.; Qureshi, K.A. A comprehensive review of Quercus semecarpifolia Sm.: An ecologically and commercially important Himalayan tree. Front. Ecol. Evol. 2022, 10. [Google Scholar] [CrossRef]
- Singh, V.K.; Mishra, A.; Jagannath, C.; Khan, A. 21—Emerging natural product based alternative therapeutics for tuberculosis. In Herbal Medicines; Sarwat, M., Siddique, H., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 453–471. [Google Scholar] [CrossRef]
- Getachew, S.; Medhin, G.; Asres, A.; Abebe, G.; Ameni, G. Traditional medicinal plants used in the treatment of tuberculosis in Ethiopia: A systematic review. Heliyon 2022, 8, e09478. [Google Scholar] [CrossRef]
- Fatima, S.; Kumari, A.; Dwivedi, V.P. Advances in adjunct therapy against tuberculosis: Deciphering the emerging role of phytochemicals. MedComm 2021, 2, 494–513. [Google Scholar] [CrossRef]
- Scarim, C.B.; Lira de Farias, R.; Vieira de Godoy Netto, A.; Chin, C.M.; Leandro Dos Santos, J.; Pavan, F.R. Recent advances in drug discovery against Mycobacterium tuberculosis: Metal-based complexes. Eur. J. Med. Chem. 2021, 214, 113166. [Google Scholar] [CrossRef]
- Godreuil, S.; Renaud, F.; Van de Perre, P.; Carriere, C.; Torrea, G.; Banũls, A.L. Genetic diversity and population structure of Mycobacterium tuberculosis in HIV-1-infected compared with uninfected individuals in Burkina Faso. AIDS 2007, 21, 248–250. [Google Scholar] [CrossRef] [Green Version]
- WHO. Global Tuberculosis Report; WHO: Geneva, Switzerland, 2019; p. 284. [Google Scholar]
- Maus, C.E.; Plikaytis, B.B.; Shinnick, T.M. Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2005, 49, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Muniyan, R.; Jayaraman, G. Antimycobacterial activity of potential plant metabolites with emphasis on management of drug resistant Mycobacterium tuberculosis strains. Res. J. Biotechnol. 2017, 12, 75–86. [Google Scholar]
- Prasad, K.T.; Muthu, V.; Sehgal, I.S.; Dhooria, S.; Sharma, A.; Gupta, N.; Agarwal, R. Utility of endobronchial ultrasound-guided transbronchial needle aspiration in HIV-infected patients with undiagnosed intrathoracic lymphadenopathy. Lung India 2018, 35, 379–383. [Google Scholar] [CrossRef]
- Varshney, K.; Anaele, B.; Molaei, M.; Frasso, R.; Maio, V. Risk Factors for Poor Outcomes Among Patients with Extensively Drug-Resistant Tuberculosis (XDR-TB): A Scoping Review. Infect. Drug Resist. 2021, 14, 5429–5448. [Google Scholar] [CrossRef]
- Zaman, K. Tuberculosis: A global health problem. J. Health Popul. Nutr. 2010, 28, 111–113. [Google Scholar] [CrossRef] [Green Version]
- Allué-Guardia, A.; García, J.I.; Torrelles, J.B. Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Front. Microbiol. 2021, 12, 612675. [Google Scholar] [CrossRef]
- Aspatwar, A.; Tolvanen, M.E.E.; Barker, H.; Syrjänen, L.; Valanne, S.; Purmonen, S.; Waheed, A.; Sly, W.S.; Parkkila, S. Carbonic anhydrases in metazoan model organisms: Molecules, mechanisms, and physiology. Physiol. Rev. 2022, 102, 1327–1383. [Google Scholar] [CrossRef]
- Supuran, C.T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 2008, 7, 168–181. [Google Scholar] [CrossRef]
- Aspatwar, A.; Winum, J.Y.; Carta, F.; Supuran, C.T.; Hammaren, M.; Parikka, M.; Parkkila, S. Carbonic Anhydrase Inhibitors as Novel Drugs against Mycobacterial beta-Carbonic Anhydrases: An Update on In Vitro and In Vivo Studies. Molecules 2018, 23, 2911. [Google Scholar] [CrossRef] [Green Version]
- Aspatwar, A.; Kairys, V.; Rala, S.; Parikka, M.; Bozdag, M.; Carta, F.; Supuran, C.T.; Parkkila, S. Mycobacterium tuberculosis beta-Carbonic Anhydrases: Novel Targets for Developing Antituberculosis Drugs. Int. J. Mol. Sci. 2019, 20, 5153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aspatwar, A.; Hammaren, M.; Parikka, M.; Parkkila, S.; Carta, F.; Bozdag, M.; Vullo, D.; Supuran, C.T. In vitro inhibition of Mycobacterium tuberculosis beta-carbonic anhydrase 3 with Mono- and dithiocarbamates and evaluation of their toxicity using zebrafish developing embryos. J. Enzym. Inhib. Med. Chem. 2020, 35, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aspatwar, A.; Hammaren, M.; Koskinen, S.; Luukinen, B.; Barker, H.; Carta, F.; Supuran, C.T.; Parikka, M.; Parkkila, S. beta-CA-specific inhibitor dithiocarbamate Fc14-584B: A novel antimycobacterial agent with potential to treat drug-resistant tuberculosis. J. Enzym. Inhib. Med. Chem. 2017, 32, 832–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannuzzi, S.; Hewitt, C.S.; Nocentini, A.; Capasso, C.; Flaherty, D.P.; Supuran, C.T. Coumarins effectively inhibit bacterial α-carbonic anhydrases. J. Enzym. Inhib. Med. Chem. 2022, 37, 333–338. [Google Scholar] [CrossRef]
- Basile, A.; Sorbo, S.; Spadaro, V.; Bruno, M.; Maggio, A.; Faraone, N.; Rosselli, S. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules 2009, 14, 939–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reen, F.J.; Gutiérrez-Barranquero, J.A.; Parages, M.L.; O´gara, F. Coumarin: A novel player in microbial quorum sensing and biofilm formation inhibition. Appl. Microbiol. Biotechnol. 2018, 102, 2063–2073. [Google Scholar] [CrossRef] [Green Version]
- Ranjita, S. Nanosuspensions: A new approach for organ and cellular targeting in infectious diseases. J. Pharm. Investig. 2013, 43, 1–26. [Google Scholar] [CrossRef]
- Qureshi, K.A.; Mohammed, S.A.A.; Khan, O.; Ali, H.M.; El-Readi, M.Z.; Mohammed, H.A. Cinnamaldehyde-Based Self-Nanoemulsion (CA-SNEDDS) Accelerates Wound Healing and Exerts Antimicrobial, Antioxidant, and Anti-Inflammatory Effects in Rats’ Skin Burn Model. Molecules 2022, 27, 5225. [Google Scholar] [CrossRef]
- Qureshi, K.A.; Imtiaz, M.; Al Nasr, I.; Koko, W.S.; Khan, T.A.; Jaremko, M.; Mahmood, S.; Fatmi, M.Q. Antiprotozoal Activity of Thymoquinone (2-Isopropyl-5-methyl-1,4-benzoquinone) for the Treatment of Leishmania major-Induced Leishmaniasis: In Silico and In Vitro Studies. Antibiotics 2022, 11, 1206. [Google Scholar] [CrossRef]
- Mathuria, J. Nanoparticles in tuberculosis diagnosis, treatment and prevention: A hope for future. Dig. J. Nanomater. Biostructures 2009, 4, 2. [Google Scholar]
- Nasiruddin, M.; Neyaz, M.K.; Das, S. Nanotechnology-Based Approach in Tuberculosis Treatment. Tuberc. Res. Treat. 2017, 2017, 4920209. [Google Scholar] [CrossRef] [Green Version]
- Saqib, S.; Faryad, S.; Afridi, M.I.; Arshad, B.; Younas, M.; Naeem, M.; Zaman, W.; Ullah, F.; Nisar, M.; Ali, S.; et al. Bimetallic Assembled Silver Nanoparticles Impregnated in Aspergillus fumigatus Extract Damage the Bacterial Membrane Surface and Release Cellular Contents. Coatings 2022, 12, 1505. [Google Scholar] [CrossRef]
- El-Ridy, M.S.; Mostafa, D.M.; Shehab, A.; Nasr, E.A.; Abd El-Alim, S. Biological evaluation of pyrazinamide liposomes for treatment of Mycobacterium tuberculosis. Int. J. Pharm. 2007, 330, 82–88. [Google Scholar] [CrossRef]
- Gaspar, M.M.; Cruz, A.; Penha, A.F.; Reymão, J.; Sousa, A.C.; Eleutério, C.V.; Domingues, S.A.; Fraga, A.G.; Filho, A.L.; Cruz, M.E.; et al. Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis. Int. J. Antimicrob. Agents 2008, 31, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Sarciaux, J.M.; Acar, L.; Sado, P.A. Using microemulsion formulations for oral drug delivery of therapeutic peptides. Int. J. Pharm. 1995, 120, 127–136. [Google Scholar] [CrossRef]
- Tanwar, M.; Meena, L.S. Nanoparticles: Scope in drug delivery. In Advanced Biomaterials and Biodevices; Wiley: New York, NY, USA, 2014. [Google Scholar]
- Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 2001, 70, 1–20. [Google Scholar] [CrossRef]
- Satyanarayana, K.; Srivastava, S. Poverty, health & intellectual property rights with special reference to India. Indian J. Med. Res. 2007, 126, 390–406. [Google Scholar]
- Kaur, M.; Malik, B.; Garg, T.; Rath, G.; Goyal, A.K. Development and characterization of guar gum nanoparticles for oral immunization against tuberculosis. Drug Deliv. 2015, 22, 328–334. [Google Scholar] [CrossRef]
- Taranath, T.C.; Patil, B.N. Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: A potent tool against Mycobacterium tuberculosis. Int. J. Mycobact. 2016, 5, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Murali, M.; Mahendra, C.; Nagabhushan; Rajashekar, N.; Sudarshana, M.S.; Raveesha, K.A.; Amruthesh, K.N. Antibacterial and antioxidant properties of biosynthesized zinc oxide nanoparticles from Ceropegia candelabrum L.—An endemic species. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2017, 179, 104–109. [Google Scholar] [CrossRef]
- Gupta, A.; Pandey, S.; Yadav, J.S. A Review on Recent Trends in Green Synthesis of Gold Nanoparticles for Tuberculosis. Adv. Pharm. Bull. 2021, 11, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Tahir, K.; Nazir, S.; Li, B.; Khan, A.U.; Khan, Z.U.H.; Gong, P.Y.; Khan, S.U.; Ahmad, A. Nerium oleander leaves extract mediated synthesis of gold nanoparticles and its antioxidant activity. Mater. Lett. 2015, 156, 198–201. [Google Scholar] [CrossRef]
- Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 53, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Raju, D.; Vishwakarma, R.K.; Khan, B.M.; Mehta, U.J.; Ahmad, A. Biological synthesis of cationic gold nanoparticles and binding of plasmid DNA. Mater. Lett. 2014, 129, 159–161. [Google Scholar] [CrossRef]
- Bindhu, M.R.; Vijaya Rekha, P.; Umamaheswari, T.; Umadevi, M. Antibacterial activities of Hibiscus cannabinus stem-assisted silver and gold nanoparticles. Mater. Lett. 2014, 131, 194–197. [Google Scholar] [CrossRef]
- Das, J.; Paul Das, M.; Velusamy, P. Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 104, 265–270. [Google Scholar] [CrossRef]
- Islam, N.U.; Jalil, K.; Shahid, M.; Rauf, A.; Muhammad, N.; Khan, A.; Shah, M.R.; Khan, M.A. Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab. J. Chem. 2019, 12, 2914–2925. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Li, W.; Yang, F.; Liu, H. Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 142, 73–79. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Enazi, N.M.; Ibraheem, I.B.M. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab. J. Chem. 2017, 10, S3029–S3039. [Google Scholar] [CrossRef] [Green Version]
- Philip, D.; Unni, C. Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Phys. E Low-Dimens. Syst. Nanostructures 2011, 43, 1318–1322. [Google Scholar] [CrossRef]
- Kalpana, D.; Pichiah, P.B.T.; Sankarganesh, A.; Park, W.S.; Lee, S.M.; Wahab, R.; Cha, Y.S.; Lee, Y.S. Biogenesis of Gold Nanoparticles Using Plant Powders and Assessment of In Vitro Cytotoxicity in 3T3-L1 Cell Line. J. Pharm. Innov. 2013, 8, 265–275. [Google Scholar] [CrossRef]
- Khalil, M.M.H.; Ismail, E.H.; El-Magdoub, F. Biosynthesis of Au nanoparticles using olive leaf extract: 1st Nano Updates. Arab. J. Chem. 2012, 5, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Jha, A.K.; Prasad, K. Rose (Rosa sp.) Petals Assisted Green Synthesis of Gold Nanoparticles. J. Bionanoscience 2013, 7, 245–250. [Google Scholar] [CrossRef]
- Islam, N.U.; Jalil, K.; Shahid, M.; Muhammad, N.; Rauf, A. Pistacia integerrima gall extract mediated green synthesis of gold nanoparticles and their biological activities. Arab. J. Chem. 2015, 12, 2310–2319. [Google Scholar] [CrossRef]
- Kumar, K.M.; Mandal, B.K.; Sinha, M.; Krishnakumar, V. Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 86, 490–494. [Google Scholar] [CrossRef]
- Annamalai, A.; Christina, V.L.; Sudha, D.; Kalpana, M.; Lakshmi, P.T. Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surfaces. B Biointerfaces 2013, 108, 60–65. [Google Scholar] [CrossRef]
- Suman, T.Y.; Rajasree, S.R.; Ramkumar, R.; Rajthilak, C.; Perumal, P. The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 118, 11–16. [Google Scholar] [CrossRef]
- Sadeghi, B. Zizyphus mauritiana extract-mediated green and rapid synthesis of gold nanoparticles and its antibacterial activity. J. Nanostructure Chem. 2015, 5, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Dakh, K.S.; Patekar, R.R.; Choudhary, H.B.; Momin, A.Z.; Undale, V.R.; Mahadik, P.; Desai, S.; Asalkar, M.; Shaikh, H. Herbal approach for tuberculosis management: A systematic review. World J. Adv. Res. Rev. 2022, 14, 637–647. [Google Scholar] [CrossRef]
- Semenya, S.S.; Maroyi, A. Medicinal plants used for the treatment of tuberculosis by Bapedi traditional healers in three districts of the Limpopo Province, South Africa. AJTCAM 2013, 10, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Liang, B.; Kong, C.; Sun, Z. Traditional Medicinal Plants as a Source of Antituberculosis Drugs: A System Review. BioMed Res. Int. 2021, 2021, 9910365. [Google Scholar] [CrossRef] [PubMed]
- Bergonzi, M.C.; Heard, C.M.; Garcia-Pardo, J. Bioactive Molecules from Plants: Discovery and Pharmaceutical Applications. Pharmaceutics 2022, 14, 2116. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, G. Plants: Diet and Health: The Report of a British Nutrition Foundation Task Force; Blackwell Publishing Ltd.: London, UK, 2003; p. 347. [Google Scholar]
- Bereda, G. First Line Anti-Tuberculosis Medication: Current and Ongoing Clinical Management. J. Mol. Biol. Drug Des. 2022, 1, 1–10. [Google Scholar]
- Friedman, N.D.; McDonald, A.H.; Robson, M.E.; O'Brien, D.P. Corticosteroid use for paradoxical reactions during antibiotic treatment for Mycobacterium ulcerans. PLoS Negl. Trop. Dis. 2012, 6, e1767. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Sobia, P.; Dwivedi, V.P.; Bhawsar, A.; Singh, D.K.; Sharma, P.; Moodley, P.; Van Kaer, L.; Bishai, W.R.; Das, G. Mycobacterium tuberculosis TlyA Protein Negatively Regulates T Helper (Th) 1 and Th17 Differentiation and Promotes Tuberculosis Pathogenesis. J. Biol. Chem. 2015, 290, 14407–14417. [Google Scholar] [CrossRef] [Green Version]
- Pakadang, S.R.; Wahjuni, C.U.; Notobroto, H.B.; Winarni, D.; Dwiyanti, R.; Yadi; Sabir, M.M.; Hatta, M. Immunomodulator Potential of Miana Leaves(Coleus scutellarioides (L) Benth) in Prevention of Tuberculosis Infection. Am. J. Microbiol. Res. 2015, 3, 129–134. [Google Scholar]
- Esmaeil, N.; Anaraki, S.B.; Gharagozloo, M.; Moayedi, B. Silymarin impacts on immune system as an immunomodulator: One key for many locks. Int. Immunopharmacol. 2017, 50, 194–201. [Google Scholar] [CrossRef]
- Gupta, P.K.; Chakraborty, P.; Kumar, S.; Singh, P.K.; Rajan, M.G.; Sainis, K.B.; Kulkarni, S. G1-4A, a Polysaccharide from Tinospora cordifolia Inhibits the Survival of Mycobacterium tuberculosis by Modulating Host Immune Responses in TLR4 Dependent Manner. PLoS ONE 2016, 11, e0154725. [Google Scholar] [CrossRef]
- Yan, D.B.; Zhang, D.P.; Li, M.; Liu, W.Y.; Feng, F.; Di, B.; Guo, Q.L.; Xie, N. Synthesis and cytotoxic activity of 3, 4, 11-trihydroxyl modified derivatives of bergenin. Chin. J. Nat. Med. 2014, 12, 929–936. [Google Scholar] [CrossRef]
- Dwivedi, V.P.; Bhattacharya, D.; Yadav, V.; Singh, D.K.; Kumar, S.; Singh, M.; Ojha, D.; Ranganathan, A.; Van Kaer, L.; Chattopadhyay, D.; et al. The Phytochemical Bergenin Enhances T Helper 1 Responses and Anti-Mycobacterial Immunity by Activating the MAP Kinase Pathway in Macrophages. Front. Cell. Infect. Microbiol. 2017, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Sharma, C.; Kaushik, S.R.; Kulshreshtha, A.; Chaturvedi, S.; Nanda, R.K.; Bhaskar, A.; Chattopadhyay, D.; Das, G.; Dwivedi, V.P. The phytochemical bergenin as an adjunct immunotherapy for tuberculosis in mice. J. Biol. Chem. 2019, 294, 8555–8563. [Google Scholar] [CrossRef]
- Eminzade, S.; Uraz, F.; Izzettin, F.V. Silymarin protects liver against toxic effects of anti-tuberculosis drugs in experimental animals. Nutr. Metab. 2008, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Awofeso, N. Anti-tuberculosis medication side-effects constitute major factor for poor adherence to tuberculosis treatment. Bull. World Health Organ. 2008, 86, B–D. [Google Scholar] [CrossRef]
- Mariita, R.M.; Orodho, J.A.; Okemo, P.O.; Mbugua, P.K. Antifungal, antibacterial and antimycobacterial activity of Entada abysinnica Steudel ex A. Rich (Fabaceae) methanol extract. Pharmacogn. Res. 2010, 2, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Betti, J. An Ethnobotanical and Floristical Study of Medicinal Plants Among the Baka Pygmies in the Periphery of the Ipassa- Biosphere Reserve, Gabon. Eur. J. Med. Plants 2013, 3, 174–205. [Google Scholar] [CrossRef]
- Van Wyk, B.E.; Gericke, N. People's Plants: A Guide to Useful Plants of Southern Africa; Briza Publications: Pretoria, South Africa, 2000. [Google Scholar]
- Hutchings, A. Zulu Medicinal Plants: An Inventory; University of Natal Press: Durban, South Africa, 1996. [Google Scholar]
- Green, E.; Samie, A.; Obi, C.L.; Bessong, P.O.; Ndip, R.N. Inhibitory properties of selected South African medicinal plants against Mycobacterium tuberculosis. J. Ethnopharmacol. 2010, 130, 151–157. [Google Scholar] [CrossRef]
- Breyer-Brandwijk, M.G.; Watt, J.M. The Medicinal and Poisonous Plants of Southern and Eastern Africa being an Account of Their Medicinal and Other Uses, Chemical Composition, Pharmacological Effects and Toxicology in Man and Animal; Scientific Research Publishing, E. and S. Livingstone Ltd.: Edinburgh, Scotland, 1962; Volume 2. [Google Scholar]
- Maroyi, A. An ethnobotanical survey of medicinal plants used by the people in Nhema communal area, Zimbabwe. J. Ethnopharmacol. 2011, 136, 347–354. [Google Scholar] [CrossRef]
- Abubakar, E.-M.M. Antibacterial potential of crude leaf extracts of Eucalyptus camaldulensis against some pathogenic bacteria. Afr. J. Plant Sci. 2010, 4, 202–209. [Google Scholar]
- Moeng, T.E. An Investigation into the Trade of Medicinal Plants by Muthi Shops and Street Vendors in the Limpopo Province, South Africa. Ph.D. Thesis, University of Limpopo, Turfloop Campus, South Africa, 2010. [Google Scholar]
- Grierson, D.S.; Afolayan, A.J. An ethnobotanical study of plants used for the treatment of wounds in the Eastern Cape, South Africa. J. Ethnopharmacol. 1999, 67, 327–332. [Google Scholar] [CrossRef]
- Eldeen, I.M.S.; Van Staden, J. Antimycobacterial activity of some trees used in South African traditional medicine. S. Afr. J. Bot. 2007, 73, 248–251. [Google Scholar] [CrossRef] [Green Version]
- Bryant, A.Y. Zulu Medicine and Medicine Men; Struik: Cape Town, South Africa, 1966. [Google Scholar]
- Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malebo, H.M.; Wenzler, T.; Cal, M.; Swaleh, S.M.; Omolo, M.O.; Hassanali, A.; Séquin, U.; Häussinger, D.; Dalsgaard, P.; Hamburger, M.; et al. Anti-protozoal activity of aporphine and protoberberine alkaloids from Annickia kummeriae (Engl. & Diels) Setten & Maas (Annonaceae). BMC Complement. Altern. Med. 2013, 13, 48. [Google Scholar] [CrossRef] [Green Version]
- León-Díaz, R.; Meckes-Fischer, M.; Valdovinos-Martínez, L.; Campos, M.G.; Hernández-Pando, R.; Jiménez-Arellanes, M.A. Antitubercular activity and the subacute toxicity of (-)-Licarin A in BALB/c mice: A neolignan isolated from Aristolochia taliscana. Arch. Med. Res. 2013, 44, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Samal, J. Ayurvedic management of pulmonary tuberculosis: A systematic review. J. Intercult. Ethnopharmacol. 2016, 5, 86–91. [Google Scholar] [CrossRef]
- Gupta, R.; Thakur, B.; Singh, P.; Singh, H.B.; Sharma, V.D.; Katoch, V.M.; Chauhan, S.V. Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian J. Med. Res. 2010, 131, 809–813. [Google Scholar]
- Balážová, Ľ.; Kurhajec, S.; Kello, M.; Bedlovičová, Z.; Zigová, M.; Petrovová, E.; Beňová, K.; Mojžiš, J.; Eftimová, J. Antiproliferative Effect of Phellodendron amurense Rupr. Based on Angiogenesis. Life 2022, 12, 767. [Google Scholar] [CrossRef]
- Changtam, C.; Hongmanee, P.; Suksamrarn, A. Isoxazole analogs of curcuminoids with highly potent multidrug-resistant antimycobacterial activity. Eur. J. Med. Chem. 2010, 45, 4446–4457. [Google Scholar] [CrossRef]
- Torres-Romero, D.; Jiménez, I.A.; Rojas, R.; Gilman, R.H.; López, M.; Bazzocchi, I.L. Dihydro-β-agarofuran sesquiterpenes isolated from Celastrus vulcanicola as potential anti-Mycobacterium tuberculosis multidrug-resistant agents. Bioorganic Med. Chem. 2011, 19, 2182–2189. [Google Scholar] [CrossRef]
- Uc-Cachón, A.H.; Borges-Argáez, R.; Said-Fernández, S.; Vargas-Villarreal, J.; González-Salazar, F.; Méndez-González, M.; Cáceres-Farfán, M.; Molina-Salinas, G.M. Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulm. Pharmacol. Ther. 2014, 27, 114–120. [Google Scholar] [CrossRef]
- Esquivel-Ferriño, P.C.; Favela-Hernández, J.M.; Garza-González, E.; Waksman, N.; Ríos, M.Y.; del Rayo Camacho-Corona, M. Antimycobacterial activity of constituents from Foeniculum vulgare var. dulce grown in Mexico. Molecules 2012, 17, 8471–8482. [Google Scholar] [CrossRef]
- Ogodo, A.C.; Ebuara, F.U.; Ogodo, C.F. Bacteriocidal Effects of Phytochemicals on Mycobacterium ulcerans, the Causative Agents of Buruli Ulcer. Negl. Trop. Dis. Phytochem. Drug Discov. 2021, 339–357. [Google Scholar] [CrossRef]
- Molina-Salinas, G.M.; Peña-Rodríguez, L.M.; Mata-Cárdenas, B.D.; Escalante-Erosa, F.; González-Hernández, S.; Torres de la Cruz, V.M.; Martínez-Rodríguez, H.G.; Said-Fernández, S. Flourensia cernua: Hexane Extracts a Very Active Mycobactericidal Fraction from an Inactive Leaf Decoction against Pansensitive and Panresistant Mycobacterium tuberculosis. Evid. Based Complement. Altern. Med. Ecam 2011, 2011, 782503. [Google Scholar] [CrossRef] [Green Version]
- Kapche, G.D.W.F.; Laatsch, H.; Fotso, S.; Kouam, S.F.; Wafo, P.; Ngadjui, B.T.; Abegaz, B.M. Lanneanol: A new cytotoxic dihydroalkylcyclohexenol and phenolic compounds from Lannea nigritana (Sc. Ell.) Keay. Biochem. Syst. Ecol. 2007, 35, 539–543. [Google Scholar] [CrossRef]
- Shingate, P.; Dongre, P.P.; Kannur, D.M. New Method Development for Extraction and Isolation of Piperine from Black Pepper. Int. J. Pharm. Sci. Res. 2013, 4, 3165. [Google Scholar] [CrossRef]
- Tandon, N.; Yadav, S.S. Contributions of Indian Council of Medical Research (ICMR) in the area of Medicinal plants/Traditional medicine. J. Ethnopharmacol. 2017, 197, 39–45. [Google Scholar] [CrossRef]
- Jayapal, V.; Vidya Raj, C.K.; Muthaiah, M.; Chadha, V.K.; Brammacharry, U.; Selvaraj, S.; Easow, J.M. In-vitro anti-Mycobacterium tuberculosis effect of essential oil of Ocimum sanctum L. (Tulsi/Basil) leaves. Indian J. Tuberc. 2021, 68, 470–473. [Google Scholar] [CrossRef]
- Udegbunam, S.O.; Udegbunam, R.I.; Muogbo, C.C.; Anyanwu, M.U.; Nwaehujor, C.O. Wound healing and antibacterial properties of methanolic extract of Pupalia lappacea Juss in rats. BMC Complement. Altern. Med. 2014, 14, 157. [Google Scholar] [CrossRef] [Green Version]
- Rijo, P.; Simões, M.F.; Francisco, A.P.; Rojas, R.; Gilman, R.H.; Vaisberg, A.J.; Rodríguez, B.; Moiteiro, C. Antimycobacterial metabolites from Plectranthus: Royleanone derivatives against Mycobacterium tuberculosis strains. Chem. Biodivers. 2010, 7, 922–932. [Google Scholar] [CrossRef]
- Sarkar, A.; Ghosh, S.; Shaw, R.; Patra, M.M.; Calcuttawala, F.; Mukherjee, N.; Das Gupta, S.K. Mycobacterium tuberculosis thymidylate synthase (ThyX) is a target for plumbagin, a natural product with antimycobacterial activity. PLoS ONE 2020, 15, e0228657. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Shi, M.; Qiu, Q.; Huang, M.; Zeng, S.; Zou, Y.; Zhan, Z.; Liang, L.; Yang, X.; Xu, H. Piperlongumine Suppresses Dendritic Cell Maturation by Reducing Production of Reactive Oxygen Species and Has Therapeutic Potential for Rheumatoid Arthritis. J. Immunol. 2016, 196, 4925–4934. [Google Scholar] [CrossRef] [Green Version]
- Starke, J.R. Modern approach to the diagnosis and treatment of tuberculosis in children. Pediatr. Clin. N. Am. 1988, 35, 441–464. [Google Scholar] [CrossRef] [PubMed]
- Ndongo, J.T.; Mbing, J.N.; Bikobo, D.N.; Atchadé, A.T.; Shaaban, M.; Pegnyemb, D.E.; Laatsch, H. A new C-glucosylflavone from Sorindeia juglandifolia. Z. Fur Naturforschung. C J. Biosci. 2013, 68, 169–174. [Google Scholar] [CrossRef]
- Sureram, S.; Senadeera, S.P.; Hongmanee, P.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Antimycobacterial activity of bisbenzylisoquinoline alkaloids from Tiliacora triandra against multidrug-resistant isolates of Mycobacterium tuberculosis. Bioorganic Med. Chem. Lett. 2012, 22, 2902–2905. [Google Scholar] [CrossRef]
- Mueller-Wieland, K. Tuberculosis and nutrition. Dtsch. Med. J. 1961, 12, 145–149. [Google Scholar] [PubMed]
- Xu, Z.-Q.; Barrow, W.W.; Suling, W.J.; Westbrook, L.; Barrow, E.; Lin, Y.-M.; Flavin, M.T. Anti-HIV natural product (+)-calanolide A is active against both drug-susceptible and drug-resistant strains of Mycobacterium tuberculosis. Bioorganic Med. Chem. 2004, 12, 1199–1207. [Google Scholar] [CrossRef]
Drugs | Mode of Action | References |
---|---|---|
Streptomycin | Reduction in the production of ribosomal proteins | [14] |
Isoniazid | Cellular, lipid, carbohydrate, and NAD metabolism inhibition | [14] |
Pyrazinamide | Membrane transport disruption and energy exhaustion | [14] |
Rifampicin | Inhibiting the synthesis of RNA | [14] |
Cycloserine | Reduction in the production of mycolic acid | [14] |
Kanamycin | Decrease in protein synthesis | [14] |
Ethambutol | Inhibiting the synthesis of RNA | [14] |
Quinolones | Inhibition of transcription replication and DNA replication | [14] |
CA inhibitors | Inhibit the activity of carbonic anhydrases needed for pH regulation | [21,23,24,25,26] |
Coumarins | Inhibit protein synthesis and activity of carbonic anhydrases | [27,28] |
Scientific Names | Plant Part Used | NP Used | Size and Shape | Ref. |
---|---|---|---|---|
Nerium oleander | Leaf extract | Gold NP | 2–10 nm, spherical | [46] |
Butea monosperma | Bark | Gold and silver NP | 10–100 nm, spherical or triangular | [47] |
Pea nut | Skin and seed | Gold NP | 110–130 variable | [48] |
Hibiscus cannabinus | Stem extract | Gold and silver NP | 10–13 nm, spherical | [49] |
Sesbania grandiflora | Leaf extract | Silver NP | 7–34 nm, spherical | [50] |
Salix alba | Leaf extract | Gold NP | 50–80 nm, non-spherical | [51] |
Eucommia ulmoides | Bark | Gold NP | Not known | [52] |
Galaxaura elongata | Powder or extract | Gold NP | 3.85–77.13 nm, spherical, triangular, and hexagonal | [53] |
Ocimum sanctum | Leaf extract | Gold and silver NP | 30 nm, hexagonal | [54] |
Torreya nucifera | Leaves and bark | Gold NP | 10–125 nm, spherical | [55] |
Olea europaea | Leaf extracts | Gold NP | 50–100 nm, triangular and hexagonal | [56] |
Rosa indica | Rose petals | Gold NP | 3–15 nm, spherical | [57] |
Pistacia integerrima | Galls extract | Gold NP | 20–200 nm | [58] |
Terminalia arjuna | Fruit | Gold NP | 60 nm, spherical | [59] |
Euphorbia hirta | Leaf extract | Gold NP | 6–71 nm, spherical | [60] |
Morinda citrifolia | Root extract | Gold NP | 12.17–38.20, spherical | [61] |
Zizyphus mauritiana | Extract | Gold NP | 20–40 nm, spherical | [62] |
Plant | Part Utilized | References |
---|---|---|
Aframomum melegueta | Roots | [80] |
Artemisia sativa L. | Leaves | [81] |
Cannabis sativa L. | Leaves | [82] |
Carica papaya | Leaves | [83] |
Chironia baccipfera | Roots | [81] |
Combretum hereroense Schinz | Bark | [84] |
Citrus lemon | Leaves | [85] |
Eucalyptus camaldulensis | Leaves and root | [86] |
Eucomis pallidiflora Baker. ssp. pole-evansii | Bulb | [87] |
Hypoxis hemerocallidea | Tuber | [88] |
Lippia javanica | Leaves | [84] |
Merwilla plumbea | Bulb | [82] |
Myrothamnus flabellifolius | Whole plant | [84] |
Salix mucronata | Seeds | [89] |
Zanthoxylum capense | Roots | [90] |
Plant | Section | Bioactive Compounds | Chemical Structure | Ref. |
---|---|---|---|---|
Allium sativum L. | Bulb | Peptides, ajoenes, vinyldithiins, alliin, allicin, 𝛾-glutamylcysteine, sulfides | 𝛾-glutamylcysteine, peptides, alliin, ajoenes | [91] |
Annickia chlorantha (Oliv.) Setten and Maas | Stem bark | Berberine and protoberberine alkaloids: columbamine, palmatine, jatrorrhizine | Not known | [92] |
Aframomum melegueta | Roots | Tannins | Not known | [80] |
Aristolochia taliscana | Roots | Licarin A | Licarin A | [93] |
Aloe barbadensis | Sap leaves | Anthraquinone glycosides: emodin, barbaloin; enzymes, sugars, lignin, saponins, minerals, salicylic acids, galacturonic acid, vitamins | Emodin and barbaloin | [94] |
Bacopa monnieri | Stem and leaves | Brahmine, herpestine, nicotine, D-mannitol, monnierin, bacosides a, hersaponin, saponins B, saponins C, bacosides B, saponins A, betulinic acid, stigmasterol | Nicotine | [95] |
Phellodendron amurense Rupr. | Bark | Isoquinoline alkaloid | Isoquinoline | [96] |
Curcuma longa L. | Whole plant | Mono-O-methylcurcuminisoxazole (chemically modified curcuminoid analog) | Not known | [97] |
Celastrus vulcanicola | Leaves | 1α-acetoxy-6β,9β dibenzoyloxydihydro-β-agarofuran | Not known | [98] |
Diospyros anisandra | Stem bark | Maritinone and 3,3′- biplumbagin (dimers of plumbagin) | Maritinone and biplumbagin | [99] |
Foeniculum vulgarevar | Stem and leaves | 2,4-undecadienal | 2,4-undecadienal | [100] |
Greenwayodendron suaveolens | Stem | Polysin, indolosesquiterpenes, greenwayodendrin-3-one, 3-O-acetyl greenwayodendrin, N-acetylpolyveoline, polyveoline, aporphines | Not known | [101] |
Justicia vasica | Leaves, roots stem, bark | Adhatodine, vasicinone, anisotine, vasicine, vasicoline, sicinolone, vasicolinone | Adhatodine, vasicine, vasicinone, and vasicolinone | [95] |
Leucophyllum frutescens | Root | Leubethanol | Leubethanol | [102] |
Lippia javanica | Leaves | Flavonoids | Quercetin | [84] |
Lannea nigritana (Sc. Elliot) Keay | Root | Tannins and phenolic compounds (Lanneanol) | [103] | |
Morinda citrifolia | Whole plant | Anthraquinones: morindone, glycosides: flavanol and iridoid, triterpenoids β-sitosterol, ursolic acid, asperuloside, carminic acid, damnacanthol | Morindone and damnacanthol | [104] |
Mentha piperita | Leaves | Essential oils, menthol, menthone and menthofuran | Menthol, menthone, and menthofuran | [105] |
Ocimum tenuiflorum | Leaves | Essential oil consists mostly of: eugenol (~70%) germacrene, isothymusine, β-bisabolene (13–20%), β-elemene, caryophyllene, methyl chavicol (2–12%), 1,8-cineole (9–33%) | Eugenol, germacrene, and caryophyllene | [106] |
Pupalia lappacea Juss. | Leaves | Alkaloids, glycosides, saponins, tannins, starch, coumarins, terpenoids, and steroids such as 1-docosanol, amino acids, glycosides, flavonoids, stearic acid, stigmasterol, sitosterol, sitosterol-3-O-D-glucopyranoside, stigmasterol-3-O-D-glucopyranoside, N-benzoyl-L-phenylalaninol acetate, and 20-hydroxyl ecdysone | Setosterol-3-O-D-glucopyranoside, N-benzoyl-L-phenylalaninol acetate, sitosterol-3-O-D-glucopyranoside | [107] |
Plectranthus fruticosus L. | Whole plant | Abietane and its derivatives 6,12-dibenzoyl, 12-nitrobenzoyl esters, 12-chlorobenzoyl, 12-methoxy benzoyl | Abietane and 12-methoxy benzoyl | [108] |
Plumeria Bicolor | Bark | Plumericin and isoplumericin | Plumericin and Isoplumericin | [4] |
Plumbago indica L. | Root | Plumbagin | Plumbagin | [109] |
Piper longum | Fruit and root | Alkaloid | [110] | |
Pueraria tuberosa | Tuber | β–Sitosterol, D uidzein, puerarin, isoflavone, biochanin B, puerarin, daidzein, tuberosi, stigmasterol, genistein, quercetin, irisolidone, biochanin a, isoorientin, and mangiferin | Deoxymiroestrol Genistein | [94] |
Piper nigrum | Fruit | Aristolactams, isobutyl amide, lignin, piperine, dioxoaporphin, longamide, pluviatilol, chavicine, fargesin, asarinine | [64] | |
Phyllanthus emblica | Fruit | Chebulinic acid, gallic acid, chebulagic acid, ascorbic acid, ellagic acid, apeigenin, and quercetin | Ellagic acid and gallic acid | [111] |
Sorindeia juglandifolia (A. Rich.) | Fruit | C-glycosylflavone, 2,3,6-trihydroxybenzoic acid, robustaflavone, 3-O-galloyl catechin, tachioside, 3]-O-D-glucopyranosyl-]-stigmasterol, 2-O-acetyl-7-O-methyl vitexin methyl gallate, 2,3,6-trihydroxymethyl benzoate mearnsitrin, 2,6-di-O-acetyl-7-O-methyl vitexin | 3-O-galloyl catechin, stigmasterol, 2,3,6-trihydroxybenzoic acid | [112] |
Tiliacora triandra | Roots | Tiliacorinine, tiliacorine, 2′-nortiliacorinine | Tiliacorine, 2′-nortiliacorinine and tiliacorinine | [113] |
Tinospora cordifolia | Stem and roots | Berberine, tinosporoside, isocolumbin, palmarin, tinosporon, chasmanthin, tinosporic acid, and tinosporol | Not known | [95] |
Withania somnifera | Roots | Steroidal lactones, alkaloids, withaferin A, saponins, withanone | Not known | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gautam, S.; Qureshi, K.A.; Jameel Pasha, S.B.; Dhanasekaran, S.; Aspatwar, A.; Parkkila, S.; Alanazi, S.; Atiya, A.; Khan, M.M.U.; Venugopal, D. Medicinal Plants as Therapeutic Alternatives to Combat Mycobacterium tuberculosis: A Comprehensive Review. Antibiotics 2023, 12, 541. https://doi.org/10.3390/antibiotics12030541
Gautam S, Qureshi KA, Jameel Pasha SB, Dhanasekaran S, Aspatwar A, Parkkila S, Alanazi S, Atiya A, Khan MMU, Venugopal D. Medicinal Plants as Therapeutic Alternatives to Combat Mycobacterium tuberculosis: A Comprehensive Review. Antibiotics. 2023; 12(3):541. https://doi.org/10.3390/antibiotics12030541
Chicago/Turabian StyleGautam, Silvi, Kamal A. Qureshi, Shabaaz Begum Jameel Pasha, Sugapriya Dhanasekaran, Ashok Aspatwar, Seppo Parkkila, Samyah Alanazi, Akhtar Atiya, Mohd Masih Uzzaman Khan, and Divya Venugopal. 2023. "Medicinal Plants as Therapeutic Alternatives to Combat Mycobacterium tuberculosis: A Comprehensive Review" Antibiotics 12, no. 3: 541. https://doi.org/10.3390/antibiotics12030541
APA StyleGautam, S., Qureshi, K. A., Jameel Pasha, S. B., Dhanasekaran, S., Aspatwar, A., Parkkila, S., Alanazi, S., Atiya, A., Khan, M. M. U., & Venugopal, D. (2023). Medicinal Plants as Therapeutic Alternatives to Combat Mycobacterium tuberculosis: A Comprehensive Review. Antibiotics, 12(3), 541. https://doi.org/10.3390/antibiotics12030541