Clinical Aspects of Bacterial Distribution and Antibiotic Resistance in the Reproductive System of Equids
Abstract
:1. Introduction
2. Methodology
3. Bacteria in the Reproductive System of Equids
3.1. Bacteria in the Female Reproductive Tract
3.1.1. Vagina
3.1.2. Uterus
3.2. Bacteria in the Male Reproductive Tract
3.3. Bacteria in the Mammary Glands
4. Therapeutics
4.1. General Considerations
4.2. Antibiotic Use in Female Genital Infections
4.3. Antibiotic Use in Male Genital Infections
4.4. Antibiotic Use in Mammary Infections
5. Antibiotic Resistance as a Limiting Factor in Treatment
6. Approaches to Circumvent Antibiotic Resistance
6.1. Administration of Autologous Plasma
6.2. Administration of Ecbolic Agents
6.3. Administration of Immunomodulators
6.4. Use of Alternative Techniques in Semen Extenders
6.5. Use of Disinfectant Solutions
6.6. Use of Equine Mesenchymal Stem Cells and Antimicrobial Peptides
7. Concluding Remarks: Perspectives and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ledingham, K.; Hinchliffe, S.; Jackson, M.; Thomas, F.; Tomson, G. Antibiotic Resistance: Using a Cultural Context of Health Approach to Address A Global Health Challenge; World Health Organization: Copenhagen, Denmark, 2019. [Google Scholar]
- World Health Organization. Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline, Including Tuberculosis, 2017. Available online: https://apps.who.int/iris/handle/10665/258965 (accessed on 14 March 2023).
- Mohr, K.I. History of antibiotics research. Curr. Top. Microbiol. Immunol. 2016, 398, 237–272. [Google Scholar] [PubMed]
- World Health Organization. Ten Threats to Global Health in 2019. 2019. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 15 March 2023).
- Lawhon, S.D.; Taylor, A.; Fajt, V.R. Frequency of resistance in obligate anaerobic bacteria isolated from dogs, cats, and horses to antimicrobial agents. J. Clin. Microbiol. 2013, 51, 3804–3810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddox, T.W.; Clegg, P.D.; Williams, N.J.; Pinchbeck, G.L. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance. Equine Vet. J. 2015, 47, 756–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. J. Mol. Evol. 2020, 88, 26–40. [Google Scholar] [CrossRef]
- Silva, V.; Correia, S.; Rocha, J.; Manaia, C.M.; Silva, A.; García-Díez, J.; Pereira, J.E.; Semedo-Lemsaddek, T.; Igrejas, G.; Poeta, P. Antimicrobial resistance and clonal lineages of Staphylococcus aureus from cattle, their handlers, and their surroundings: A cross-sectional study from the One Health perspective. Microorganisms 2022, 10, 941. [Google Scholar] [CrossRef]
- Maddox, T.W.; Clegg, P.D.; Diggle, P.J.; Wedley, A.L.; Dawson, S.; Pinchbeck, G.L.; Williams, N.J. Cross-sectional study of antimicrobial-resistant bacteria in horses. Part 1: Prevalence of antimicrobial-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus. Equine Vet. J. 2012, 44, 289–296. [Google Scholar] [CrossRef]
- Adams, R.; Smith, J.; Locke, S.; Phillips, E.; Erol, E.; Carter, C. An epidemiologic study of antimicrobial resistance of Staphylococcus species isolated from equine samples submitted to a diagnostic laboratory. BMC Vet. Res. 2018, 14, 42. [Google Scholar] [CrossRef] [Green Version]
- Bourély, C.; Cazeau, G.; Jarrige, N.; Haenni, M.; Gay, E.; Leblond, A. Antimicrobial resistance in bacteria isolated from diseased horses in France. Equine Vet. J. 2020, 52, 112–119. [Google Scholar] [CrossRef]
- Steinman, A.; Navon-Venezia, S. Antimicrobial resistance in horses. Animals 2020, 10, 1161. [Google Scholar] [CrossRef]
- Mitchell, S.; Bull, M.; Muscatello, G.; Chapman, B.; Coleman, N.V. The equine hindgut as a reservoir of mobile genetic elements and antimicrobial resistance genes. Crit. Rev. Microbiol. 2021, 47, 543–561. [Google Scholar] [CrossRef]
- Hardefeldt, L.Y.; Bailey, K.E.; Slater, J. Overview of the use of antimicrobial drugs for the treatment of bacterial infections in horses. Equine Vet. Educ. 2021, 33, 602–611. [Google Scholar] [CrossRef]
- Isgren, C.M. Improving clinical outcomes via responsible antimicrobial use in horses. Equine Vet. Educ. 2022, 34, 482–492. [Google Scholar] [CrossRef]
- Durie, I.; van Galen, G.V. Can the use of antimicrobials in adult equine patients with acute colitis be justified in the era of antimicrobial stewardship? Equine Vet. Educ. 2023, 35, 103–112. [Google Scholar] [CrossRef]
- Canisso, I.F.; Morel, M.D.; McDonnell, S. Strategies for the management of donkey jacks in intensive breeding systems. Equine Vet. Educ. 2009, 21, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Hinrichs, K.; Cummings, M.R.; Sertich, P.L.; Kenney, R.M. Clinical significance of aerobic bacterial flora of the uterus, vagina, vestibule, and clitoral fossa of clinically normal mares. J. Am. Vet. Med. Assoc. 1988, 193, 72–75. [Google Scholar] [PubMed]
- Giles, R.C.; Donahue, J.M.; Hong, C.B.; Tuttle, P.A.; Petrites-Murphy, M.B.; Poonacha, K.B.; Roberts, A.W.; Tramontin, R.R.; Smith, B.; Swerczek, T.W. Causes of abortion, stillbirth, and perinatal death in horses: 3527 cases (1986–1991). J. Am. Vet. Med. Assoc. 1993, 203, 1170–1175. [Google Scholar]
- Albihn, A.; Båverud, V.; Magnusson, U. Uterine microbiology and antimicrobial susceptibility in isolated bacteria from mares with fertility problems. Acta Vet. Scand. 2003, 44, 121–129. [Google Scholar] [CrossRef]
- Barba, M.; Martínez-Boví, R.; Quereda, J.J.; Mocé, M.L.; Plaza-Dávila, M.; Jiménez-Trigos, E.; Gómez-Martín, Á.; González-Torres, P.; Carbonetto, B.; García-Roselló, E. Vaginal microbiota is stable throughout the estrous cycle in arabian mares. Animals 2020, 10, 2020. [Google Scholar] [CrossRef]
- Miller, E.A.; Beasley, D.E.; Dunn, R.R.; Archie, E.A. Lactobacilli dominance and vaginal pH: Why is the human vaginal microbiome unique? Front. Microbiol. 2016, 7, 1936. [Google Scholar] [CrossRef] [Green Version]
- Fraga, M.; Perelmuter, K.; Delucchi, L.; Cidade, E.; Zunino, P. Vaginal lactic acid bacteria in the mare: Evaluation of the probiotic potential of native Lactobacillus spp. and Enterococcus spp. strains. Anton. Leeuw. Int. 2008, 93, 71–78. [Google Scholar] [CrossRef]
- Malaluang, P.; Wilén, E.; Frosth, S.; Lindahl, J.; Hansson, I.; Morrell, J.M. Vaginal bacteria in mares and the occurrence of antimicrobial resistance. Microorganisms 2022, 10, 2204. [Google Scholar] [CrossRef]
- Hamond, C.; Pinna, A.; Martins, G.; Lilenbaum, W. The role of leptospirosis in reproductive disorders in horses. Trop. Anim. Health Prod. 2014, 46, 1–10. [Google Scholar] [CrossRef]
- Hamond, C.; Pestana, C.P.; Rocha-de-Souza, C.M.; Cunha, L.E.R.; Brandão, F.Z.; Medeiros, M.A.; Lilenbaum, W. Presence of leptospires on genital tract of mares with reproductive problems. Vet. Microbiol. 2015, 179, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Azevedo, M.I.N.; Lilenbaum, W. Equine genital leptospirosis: Evidence of an important silent chronic reproductive syndrome. Theriogenology 2022, 192, 81–88. [Google Scholar] [CrossRef]
- Zilch, T.J.; Lee, J.J.; Saleem, M.Z.; Zhang, H.; Cortese, V.; Voris, N.; McDonough, S.P.; Divers, T.J.; Chang, Y.F. Equine leptospirosis: Experimental challenge of Leptospira interrogans serovar Bratislava fails to establish infection in naive horses. Equine Vet. J. 2021, 53, 845–854. [Google Scholar] [CrossRef]
- Satué, K.; Gardon, J.C. Infection and infertility in mares. In Genital Infections and Infertility; Darwish, A., Ed.; IntechOpen: London, UK, 2016; Available online: https://www.intechopen.com/books/genital-infections-and-infertility/infection-and-infertility-in-mares (accessed on 15 March 2023).
- Malaluang, P.; Wilén, E.; Frosth, S.; Lindahl, J.F.; Hansson, I.; Morrell, J.M. Antimicrobial resistance in vaginal bacteria in inseminated mares. Pathogens 2023, 12, 375. [Google Scholar] [CrossRef]
- Maschio, C.; Bussalleu, E.; Miro, J. Preliminary study on the microbiota of the reproductive tract of Catalan jennies. Reprod. Domest. Anim. 2017, 52, 95. [Google Scholar]
- Canisso, I.F.; Panzani, D.; Miró, J.; Ellerbrock, R.E. Key aspects of donkey and mule reproduction. Vet. Clin. N. Am. Equine Pract. 2019, 35, 607–642. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhu, Y.; Liu, B.; Mi, J.; Li, N.; Zhao, W.; Wu, R.; Holyoak, G.R.; Li, J.; Liu, D.; et al. Antimicrobial susceptibility of bacterial isolates from donkey uterine infections, 2018–2021. Vet. Sci. 2022, 9, 67. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Y.; Mi, J.; Zhao, Y.; Holyoak, G.R.; Yi, Z.; Wu, R.; Wang, Z.; Zeng, S. Endometrial and vaginal microbiome in donkeys with and without clinical endometritis. Front. Microbiol. 2022, 13, 884574. [Google Scholar] [CrossRef]
- Jones, E. Characterization of the Equine Microbiome during Late Gestation and the Early Postpartum Period, and at Various Times during the Estrous Cycle in Mares Being Bred with Raw or Extended Semen. Master’s Dissertation, Kansas State University, Manhattan, KS, USA, 2019. [Google Scholar]
- Husso, A.; Jalanka, J.; Alipour, M.J.; Huhti, P.; Kareskoski, M.; Pessa-Morikawa, T.; Iivanainen, A.; Niku, M. The composition of the perinatal intestinal microbiota in horse. Sci. Rep. 2020, 10, 441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canisso, I.F.; Stewart, J.; da Silva, M.A.C. Endometritis: Managing persistent post-breeding endometritis. Vet. Clin. N. Am. Equine Pract. 2016, 32, 465–480. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, M.M.; Causey, R.C. Clinical and subclinical endometritis in the mare: Both threats to fertility. Reprod. Domest. Anim. 2009, 44, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, C.D.; Petersen, M.R.; Bojesen, A.M.; Pedersen, H.G.; Lehn-Jensen, H.; Christoffersen, M. Equine infectious endometritis—Clinical and subclinical cases. J. Equine Vet. Sci. 2015, 35, 95–104. [Google Scholar] [CrossRef]
- Díaz-Bertrana, M.L.; Deleuze, S.; Pitti Rios, L.; Yeste, M.; Morales Fariña, I.; Rivera del Alamo, M.M. Microbial prevalence and antimicrobial sensitivity in equine in field conditions. Animals 2021, 11, 1476. [Google Scholar] [CrossRef] [PubMed]
- Szeredi, L.; Tenk, M.; Schiller, I.; Révész, T. Study of the role of Chlamydia, Mycoplasma, Ureoplasma and other microaerophilic and aerobic bacteria in uterine infections of mares with reproductive disorders. Acta Vet. Scand. 2003, 51, 45–52. [Google Scholar]
- Frontoso, R.; De Carlo, E.; Pasolini, M.P.; van der Meulen, K.; Pagnini, U.; Iovane, G.; De Martino, L. Retrospective study of bacteria l isolates and their antimicrobial susceptibilities in equine uteri during fertility problems. Res. Vet. Sci. 2008, 84, 1–6. [Google Scholar] [CrossRef]
- Benko, T.; Boldizar, M.; Novotny, F.; Hura, V.; Valocky, I.; Dudrikova, K.; Karamanova, M.; Petrovic, V. Incidence of bacterial pathogens in equine uterine swabs, their antibiotic resistance patterns, and selected reproductive indices in English thoroughbred mares during the foal heat cycle. Vet. Med. 2015, 60, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Canisso, I.F.; Segabinazzi, L.G.; Fedorka, C.E. Persistent breeding-induced endometritis in mares—A multifaceted challenge: From clinical aspects to immunopathogenesis and pathobiology. Int. J. Mol. Sci. 2020, 21, 1432. [Google Scholar] [CrossRef] [Green Version]
- Riddle, W.T.; LeBlanc, M.M.; Stromberg, A.J. Relationships between uterine culture, cytology and pregnancy rates in a Thoroughbred practice. Theriogenology 2007, 68, 395–402. [Google Scholar] [CrossRef]
- Nervo, T.; Nebbia, P.; Bertero, A.; Robino, P.; Stella, M.C.; Rota, A.; Appino, S. Chronic endometritis in subfertile mares with presence of chlamydial DNA. J. Equine Vet. Sci. 2019, 73, 91–94. [Google Scholar] [CrossRef]
- Pycock, J.F.; Allen, W.E. Inflammatory components in uterine fluid from mares with experimentally induced bacterial endometritis. Equine Vet. J. 1990, 22, 422–425. [Google Scholar] [CrossRef] [PubMed]
- Morris, L.H.A.; McCue, P.M.; Aurich, C. Equine endometritis: A review of challenges and new approaches. Reproduction 2020, 160, R95–R110. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.E.D.; Rosenthal, R.O.; Brown, D.F.J.; Lapage, S.P.; Hill, L.R.; Legros, R.M. The causative organism of contagious equine metritis 1977: Proposal for a new species to be known as Haemophilus equigenitalis. Equine Vet. J. 1978, 10, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Timoney, P.J. Contagious equine metritis. Comp. Immunol. Microbiol. Infect. Dis. 1996, 19, 199–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Organization for Animal Health. Contagious Equine Metritis, 2023. Available online: https://www.woah.org/en/disease/contagious-equine-metritis/ (accessed on 13 March 2023).
- Eaglesome, M.D.; Garcia, M.M. Contagious equine metritis: A review. Can. Vet. J. 1979, 20, 201–206. [Google Scholar]
- Timoney, P.J.; Powell, D.G. Contagious equine metritis—Epidemiology and control. J. Equine Vet. Sci. 1988, 8, 42–46. [Google Scholar] [CrossRef]
- Breuil, M.F.; Duquesne, F.; Leperchois, E.; Laugier, C.; Ferry, B.; Collin, G.; Petry, S. Contagious equine metritis cases reported in France since 2006. Vet. Rec. 2015, 177, 340. [Google Scholar] [CrossRef]
- Luddy, S.; Kutzler, M.A. Contagious equine metritis within the United States: A review of the 2008 outbreak. J. Equine Vet. Sci. 2010, 30, 393–400. [Google Scholar] [CrossRef]
- Erdman, M.M.; Creekmore, L.H.; Fox, P.E.; Pelzel, A.M.; Porter-Spalding, B.A.; Aalsburg, A.M.; Cox, L.K.; Morningstar-Shaw, B.R.; Crom, R.L. Diagnostic and epidemiologic analysis of the 2008–2010 investigation of a multi-year outbreak of contagious equine metritis in the United States. Prev. Vet. Med. 2011, 101, 219–228. [Google Scholar] [CrossRef]
- Anzai, T.; Kamada, M.; Niwa, H.; Eguchi, M.; Nishi, H. Contagious equine metritis eradicated from Japan. J. Vet. Med. 2012, 74, 519–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petry, S.; Breuil, M.F.; Duquesne, F.; Laugier, C. Towards European harmonisation of contagious equine metritis diagnosis through interlaboratory trials. Vet. Rec. 2018, 183, 96. [Google Scholar] [CrossRef] [PubMed]
- World Organization for Animal Health. Events Management, 2023. Available online: https://wahis.woah.org/#/event-management (accessed on 13 March 2023).
- World Organisation for Animal Health (OIE). Chapter 3.5.2 Contagious Equine Metritis, 2018. Available online: https://www.woah.org/fileadmin/Home/fr/Health_standards/tahm/3.05.02_CEM.pdf (accessed on 25 January 2023).
- Katz, J.B.; Evans, L.E.; Hutto, D.L.; Schroeder-Tucker, L.C.; Carew, A.M.; Donahue, J.M.; Hirsh, D.C. Clinical, bacteriologic, serologic, and pathologic features of infections with atypical Taylorella equigenitalis in mares. J. Am. Vet. Med. Assoc. 2000, 216, 1945–1948. [Google Scholar] [CrossRef]
- Pasolini, M.P.; Prete, C.D.; Fabri, S.; Auletta, L. Endometritis and infertility in mares—The challenge in the equine breeding industry—A review. In Genital Infections and Infertility; Darwish, A., Ed.; Intecopen.com.: London, UK, 2016; pp. 285–328. [Google Scholar]
- Gao, N.; Du, Y.; Zheng, X.; Shu, S.; Suo, J.; Han, M.; Ma, X.; Huang, R.; Peng, W.; Fu, C.; et al. Endometritis in donkeys associated with Streptococcus equi subspecies zooepidemicus infection. Pak. Vet. J. 2020, 40, 537–539. [Google Scholar] [CrossRef]
- Al-Kass, Z.; Eriksson, E.; Bagge, E.; Wallgren, M.; Morrell, J.M. Bacteria detected in the genital tract, semen or pre-ejaculatory fluid of Swedish stallions from 2007 to 2017. Acta Vet. Scand. 2019, 61, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rota, A.; Calicchio, E.; Nardoni, S.; Fratini, F.; Ebani, V.V.; Sgorbini, M.; Panzani, D.; Camillo, F.; Mancianti, F. Presence and distribution of fungi and bacteria in the reproductive tract of healthy stallions. Theriogenology 2011, 76, 464–470. [Google Scholar] [CrossRef]
- Pasing, S.S.; Aurich, C.; von Lewinski, M.; Wulf, M.; Krüger, M.; Aurich, J.E. Development of the genital microflora in stallions used for artificial insemination throughout the breeding season. Anim. Reprod. Sci. 2013, 139, 53–61. [Google Scholar] [CrossRef]
- Cerny, K.L.; Little, T.V.; Scoggin, C.F.; Coleman, R.J.; Troedsson, M.H.; Squires, E.L. Presence of bacteria on the external genitalia of healthy stallions and its transmission to the mare at the time of breeding by live cover. J. Equine Vet. Sci. 2014, 34, 369–374. [Google Scholar] [CrossRef]
- Malaluang, P.; Wilén, E.; Lindahl, J.; Hansson, I.; Morrell, J.M. Antimicrobial resistance in equine reproduction. Animals 2021, 11, 3035. [Google Scholar] [CrossRef]
- González, M.; Tibary, A.; Sellon, D.C.; Daniels, J. Unilateral orchitis and epididymitis caused by Corynebacterium pseudotuberculosis in a stallion. Equine Vet. Educ. 2008, 20, 30–36. [Google Scholar] [CrossRef]
- Pinto, M.R.; Neild, D.M.; Benegas, D.; Vieyra, D.H.; Miragaya, M.H. Successful treatment of seminal vesiculitis with imipenem-cilastatin in a stallion. J. Equine Vet. Sci. 2014, 34, 544–548. [Google Scholar] [CrossRef]
- Hamond, C.; Martins, G.; Medeiros, M.A.; Lilenbaum, W. Presence of leptospiral DNA in semen suggests venereal transmission in horses. J. Equine Vet. Sci. 2013, 33, 1157–1159. [Google Scholar] [CrossRef] [Green Version]
- Carleton, C.L.; Donahue, J.M.; Marteniuk, J.V.; Sells, S.F.; Timoney, P.J. Bacterial and fungal microflora on the external genitalia of male donkeys (Equus asinus). Anim. Reprod. Sci. 2015, 153, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Cullinane, A.A.; Barr, B.; Bernard, W.; Duncan, J.L.; Mulcahy, G.; Smith, I.M.; Timoney, J.F. Infectious diseases. In the Equine Manual, 2nd ed.; Higgins, A.J., Snyder, J.R., Eds.; Saunders: Philadelphia, PA, USA, 2006; pp. 1–111. [Google Scholar]
- Delerue, M.; Breuil, M.F.; Duquesne, F.; Bayon-Auboyer, M.H.; Amenna-Bernard, N.; Petry, S. Acute endometritis due to Taylorella equigenitalis transmission by insemination of cryopreserved stallion semen. J. Equine Vet. Sci. 2019, 78, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Mawhinney, I.; Davis, N.; Carson, T.; Torrens, N.; Wales, A. Screening for Taylorella equigenitalis in equine semen: An exploratory study. J. Equine Vet. Sci. 2022, 119, 104138. [Google Scholar] [CrossRef]
- Båverud, V.; Nyström, C.; Johansson, K.E. Isolation and identification of Taylorella asinigenitalis from the genital tract of a stallion, first case of a natural infection. Vet. Microbiol. 2006, 116, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Donati, V.; Troiano, P.; Lorenzetti, R.; Zini, M.; Autorino, G.L.; Petrella, A.; Maggi, A.; Battisti, A. Detection of Taylorella asinigenitalis in donkey jacks in Italy. Vet. Rec. 2009, 165, 540–541. [Google Scholar] [CrossRef] [PubMed]
- Meade, B.J.; Timoney, P.J.; Donahue, J.M.; Branscum, A.J.; Ford, R.; Rowe, R. Initial occurrence of Taylorella asinigenitalis and its detection in nurse mares, a stallion and donkeys in Kentucky. Prev. Vet. Med. 2010, 95, 292–296. [Google Scholar] [CrossRef]
- Donahue, J.M.; Timoney, P.J.; Carleton, C.L.; Marteniuk, J.V.; Sells, S.F.; Meade, B.J. Prevalence and persistence of Taylorella asinigenitalis in male donkeys. Vet. Microbiol. 2012, 160, 435–442. [Google Scholar] [CrossRef]
- Wilsher, S.; Omar, H.; Ismer, A.; Allen, T.; Wernery, U.; Joseph, M.; Mawhinney, I.; Florea, L.; Thurston, L.; Duquesne, F.; et al. A new strain of Taylorella asinigenitalis shows differing pathogenicity in mares and jenny donkeys. Equine Vet. J. 2021, 53, 990–995. [Google Scholar] [CrossRef]
- Wakeley, P.R.; Errington, J.; Hannon, S.; Roest, H.I.J.; Carson, T.; Hunt, B.; Sawyer, J.; Heath, P. Development of a real time PCR for the detection of Taylorella equigenitalis directly from genital swabs and discrimination from Taylorella asinigenitalis. Vet. Microbiol. 2006, 118, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Dorrego, A.; Herranz, C.; Pérez-Sancho, M.; Camino, E.; Gómez-Arrones, V.; Carrasco, J.J.; De Gabriel-Pérez, J.; Serres, C.; Cruz-López, F. First report and molecular characterisation of cases of natural Taylorella asinigenitalis infection in three donkey breeds in Spain. Vet. Microbiol. 2022, 276, 109604. [Google Scholar] [CrossRef] [PubMed]
- Bostedt, H.; Lehmann, B.; Peip, D. The problems of mastitis in mares. Tierarztl. Prax. 1988, 16, 367–371. [Google Scholar]
- McGladdery, A.J. Differential diagnosis and treatment of diseases of the equine mammary gland. Equine Vet. Educ. 1998, 10, 266–268. [Google Scholar] [CrossRef]
- Smiet, E.; Grinwis, G.C.M.; Van Den Top, J.G.B.; Sloet van Oldruitenborgh-Oosterbaan, M.M. Equine mammary gland disease with a focus on botryomycosis: A review and case study. Equine Vet. Educ. 2012, 24, 357–366. [Google Scholar] [CrossRef]
- Brendemuehl, J.P. Mammary gland enlargement in the mare. Equine Vet. Educ. 2008, 20, 8–9. [Google Scholar] [CrossRef]
- Böhm, K.H.; Klug, E.; Jacobs, B.J. Mastitis in the mare-a long-term study on the incidence, clinical symptoms, diagnostics, microbiology, therapy and economic importance, as well as recommendations for veterinary practice. Prakt. Tierarzt. 2009, 90, 842–849. [Google Scholar]
- McCue, P.M.; Wilson, W.D. Equine mastitis-a review of 28 cases. Equine Vet. J. 1989, 21, 351–353. [Google Scholar] [CrossRef]
- Knottenbelt, D.C. The mammary gland. In Equine Stud Farm Medicine and Surgery; Knottenbelt, D.C., LeBlanc, M., Lopate, C., Pascoe, R.R., Eds.; Saunders Elsevier: Edinburgh, UK, 2003; pp. 343–352. [Google Scholar]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- Scholtzek, A.D.; Hanke, D.; Walther, B.; Eichhorn, I.; Stöckle, S.D.; Klein, K.-S.; Gehlen, H.; Lübke-Becker, A.; Schwarz, S.; Feßler, A.T. Molecular characterization of Equine Staphylococcus aureus isolates exhibiting reduced oxacillin susceptibility. Toxins 2019, 11, 535. [Google Scholar] [CrossRef] [Green Version]
- Berry, A.V.; Kuti, J.L. Pharmacodynamic thresholds for beta-lactam antibiotics: A story of mouse versus man. Front. Pharmacol. 2022, 13, 833189. [Google Scholar] [CrossRef]
- Papich, M.G. Antibacterial drug therapy. In Textbook of Veterinary Internal Medicine, 8th ed.; Feldman, E.C., Cote, E., Ettinger, S.J., Eds.; Elsevier: St. Louis, MI, USA, 2017; pp. 683–688. [Google Scholar]
- Wilson, W.D.; Magdesian, K.G. Antimicrobial selection for the equine practitioner. Vet. Clin. N. Am. Equine Pract. 2021, 37, 461–494. [Google Scholar] [CrossRef] [PubMed]
- Katila, T. Update on endometritis therapy. Pferdeheilkunde Equine Med. 2016, 3, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Ellerbrock, R.E.; Canisso, I.F.; Roady, P.J.; Rothrock, L.T.; Zhong, L.; Wilkins, P.; Dirikolu, L.; Lima, F.S.; Honoroto, J. Diffusion of enrofloxacin to pregnancy fluids and effects on fetal cartilage after intravenous administration to late pregnant mares. Equine Vet. J. 2019, 51, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Schoster, A.; Amsler, M.; Kirchgaessner, C.; Saleh, L.; Schwarzwald, C.; Schmitt, S. Gentamicin plasma concentrations in hospitalized horses and retrospective minimal inhibitory concentrations of gram-negative equine pathogens. J. Vet. Emerg. Crit. Care 2021, 31, 323–330. [Google Scholar] [CrossRef]
- Beachler, T.M.; Papich, M.G.; Andrews, N.C.; Von Dollen, K.A.; Ellis, K.E.; Withowski, K.; Bailey, C.S. Clinical outcome of transcervical infusion of a combination of procaine penicillin and gentamicin in late-term pregnant mares. J. Equine Vet. Sci. 2021, 106, 103727. [Google Scholar] [CrossRef]
- Liepman, R.S.; Swink, J.M.; Habing, G.G.; Boyaka, P.N.; Caddey, B.; Costa, M.; Gomez, D.E.; Toribio, R.E. Effects of intravenous antimicrobial drugs on the equine fecal microbiome. Animals 2022, 12, 1013. [Google Scholar] [CrossRef]
- Hardefeldt, L.Y.; Crabb, H.K.; Bailey, K.E.; Gilkerson, J.R.; Billman-Jacobe, H.; Browning, G.F. Antimicrobial dosing for common equine drugs: A content review and practical advice for veterinarians in Australia. Aus. Vet. J. 2019, 97, 103–107. [Google Scholar] [CrossRef]
- Ferrer, M.S.; Palomares, R. Aerobic uterine isolates and antimicrobial susceptibility in mares with post-partum metritis. Equine Vet. J. 2018, 50, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Davolli, G.M.; Beavers, K.N.; Medina, V.; Sones, J.; Pinto, C.R.; Paccamonti, D.L.; Causey, R.C. Concentrations of sulfadiazine and trimethoprim in blood and endometrium of mares after administration of an oral suspension. J. Equine Vet. Sci. 2018, 67, 27–30. [Google Scholar] [CrossRef]
- Perkins, N.R.; Threlfall, W.R. Mastitis in the mare. Equine Vet. Educ. 2002, 5, 99–102. [Google Scholar] [CrossRef]
- Mendes, L.C.N.; De Araujo, M.A.; Bovino, F.; Rozza, D.B.; Machado, G.F.; Cadioli, F.A.; Feitosa, F.F.L.; Peiró, J.R. Clinical, histological and immunophenotypic findings in a mare with a mammary lymphoma associated with anaemia and pruritus. Equine Vet. Educ. 2011, 23, 177–183. [Google Scholar] [CrossRef]
- Gilday, R.; Lewis, D.; Lohmann, K.L. Mastitis in a neonatal filly. Can. Vet. J. 2015, 56, 63. [Google Scholar]
- Canisso, I.F.; Podico, G.; Ellerbrock, R.E. Diagnosis and treatment of mastitis in mares. Equine Vet. Educ. 2021, 33, 320–326. [Google Scholar] [CrossRef]
- LeBlanc, M.M. The current status of antibiotic use in equine reproduction. Equine Vet. Educ. 2009, 21, 156–167. [Google Scholar] [CrossRef]
- Causey, R.C. Making sense of equine uterine infections: The many faces of physical clearance. Vet. J. 2006, 172, 405–421. [Google Scholar] [CrossRef]
- Baggot, J.D.; Giguère, S. Principles of antimicrobial drug bioavailability and disposition. In Antimicrobial Therapy in Veterinary Medicine; Giguère, S., Prescott, J.F., Dowling, P.M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 41–77. [Google Scholar]
- Pyörälä, S.; Taponen, J.; Katila, T. Use of antimicrobials in the treatment of reproductive diseases in cattle and horses. Reprod. Domest. Anim. 2014, 49, 16–26. [Google Scholar] [CrossRef]
- Murchie, T.A.; Macpherson, M.L.; LeBlanc, M.M.; Luznar, S.; Vickroy, T.W. Continuous monitoring of penicillin G and gentamicin in allantoic fluid of pregnant pony mares by in vivo microdialysis. Equine Vet. J. 2006, 38, 520–525. [Google Scholar] [CrossRef]
- González, C.; Moreno, L.; Fumuso, E.; García, J.; Rivulgo, M.; Confalonieri, A.; Sparo, M.; Sánchez Bruni, S. Enrofloxacin-based therapeutic strategy for the prevention of endometritis in susceptible mares. J. Vet. Pharmacol. Ther. 2010, 33, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.; Thomas, V.; Wilhelm, C. Antibacterial activity of cefquinome against equine bacterial pathogens. Vet. Microbiol. 2006, 115, 140–147. [Google Scholar] [CrossRef]
- LeBlanc, M.M. Advances in the diagnosis and treatment of chronic infectious and post–mating-induced e in the mare. Reprod. Domest. Anim. 2010, 45, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.A.; Stanton, M.B.; Thungrat, K.; Boothe, D.M. Uterine bacterial isolates from mares and their resistance to antimicrobials: 8296 cases (2003–2008). J. Am. Vet. Med. Assoc. 2013, 242, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Ensink, J.M.; Bosch, G.; Van Duijkeren, E. Clinical efficacy of prophylactic administration of trimethoprim/sulfadiazine in a Streptococcus equi subsp. zooepidemicus infection model in ponies. J. Vet. Pharmacol. Ther. 2005, 28, 45–49. [Google Scholar] [CrossRef]
- LeBlanc, M.M. Common peripartum problems in the mare. J. Equine Vet. Sci. 2008, 28, 709–715. [Google Scholar] [CrossRef]
- Ricketts, S.W.; Mackintosh, M.E. Role of anaerobic bacteria in equine endometritis. J. Reprod. Fertil. 1987, 35, 343–351. [Google Scholar]
- Burden, C.A.; Meijer, M.; Pozor, M.A.; Macpherson, M.L. Fetal membrane removal in the mare: Proactive versus reactive approaches. Vet. Clin. N. Am. Equine Pract. 2019, 35, 289–298. [Google Scholar] [CrossRef]
- Canisso, I.F.; Rodriguez, J.S.; Sanz, M.G.; da Silva, M.A.C. A clinical approach to the diagnosis and treatment of retained fetal membranes with an emphasis placed on the critically ill mare. Equine Vet. Sci. 2013, 33, 570–579. [Google Scholar] [CrossRef]
- Karam, K.M.; Alebady, A.S.; Alhilfi, H.O.; Al-Delemi, D.H. Comparative study utilizing different post-breeding treatment regimens in cyclic Arabian mares. Vet. World 2021, 14, 2863. [Google Scholar] [CrossRef]
- Ravaioli, V.; Raffini, E.; Tamburini, M.; Galletti, G.; Frasnelli, M. Infectious endometritis in mares: Microbiological findings in field samples. J. Equine Vet. Sci. 2022, 112, 103913. [Google Scholar] [CrossRef]
- Olsen, L.M.; Al-Bagdadi, F.K.; Richardson, G.F.; Archbald, L.F.; Braun, W.F.; McCoy, D.J.; Godke, R.A.; Titkemeyer, C.W.; Thompson, D.L. A histological study of the effect of saline and povidone-iodine infusions on the equine endometrium. Theriogenology 1992, 37, 1311–1325. [Google Scholar] [CrossRef]
- Kalpokas, I.; Perdigón, F.; Rivero, R.; Talmon, M.; Sartore, I.; Viñoles, C. Effect of a povidone-iodine intrauterine infusion on progesterone levels and endometrial steroid receptor expression in mares. Acta Vet. Scand. 2010, 52, 66. [Google Scholar] [CrossRef] [Green Version]
- LeBlanc, M.M.; Neuwirth, L.; Asbury, A.C.; Tran, T.; Mauragis, D.; Klapstein, E. Scintigraphic measurement of uterine clearance in normal mares and mares with recurrent endometritis. Equine Vet. J. 1994, 26, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Troedsson, M.H.; Scott, M.A.; Liu, I.K. Comparative treatment of mares susceptible to chronic uterine infection. Am. J. Vet. Res. 1995, 56, 468–472. [Google Scholar]
- Troedsson, M.H.; Desvousges, A.; Macpherson, M.L.; Pozor, M.P. Persistent breeding-induced endometritis. Pferdeheilkunde 2008, 24, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Andersson, G.; Ekman, L.; Månsson, I.; Persson, S.; Rubarth, S.; Tufvesson, G. Lethal complications following administration of oxytetracycline in the horse. Nord. Vet. Med. 1971, 23, 9–22. [Google Scholar]
- Arnold, C.; Pilla, R.; Chaffin, K.; Lidbury, J.; Steiner, J.; Suchodolski, J. Alterations in the fecal microbiome and metabolome of horses with antimicrobial-associated diarrhea compared to antibiotic-treated and non-treated healthy case controls. Animals 2021, 11, 1807. [Google Scholar] [CrossRef]
- Léon, A.; Castagnet, S.; Maillard, K.; Paillot, R.; Giard, J.C. Evolution of in vitro antimicrobial susceptibility of equine clinical isolates in France between 2016 and 2019. Anim. Open Access J. 2020, 10, 812. [Google Scholar] [CrossRef]
- Ang, L.; Vinderola, G.; Endo, A.; Kantanen, J.; Jingfeng, C.; Binetti, A.; Burns, P.; Qingmiao, S.; Suying, D.; Zujiang, Y.; et al. Gut microbiome characteristics in feral and domesticated horses from different geographic locations. Commun. Biol. 2022, 5, 172. [Google Scholar] [CrossRef] [PubMed]
- Samper, J.C.; Tibary, A. Disease transmission in horses. Theriogenology 2006, 66, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Varner, D.D.; Schumacher, J.; Blanchard, T.L.; Johnson, L. Diseases and Management of Breeding Stallions; Mosby: St Louis, MI, USA, 1991. [Google Scholar]
- Scheeren, V.F.; Sancler-Silva, Y.F.; Ali, H.E.S.; Kastelic, J.P.; Alvarenga, M.A.; Papa, F.O. Update on seminal vesiculitis in stallions. J. Equine Vet. Sci. 2020, 94, 103234. [Google Scholar] [CrossRef]
- Motta, R.G.; Ribeiro, M.G.; Langoni, H.; Motta, D.G.; Franco, M.M.J.; Almeida, A.C.S.; Perrotti, I.B.M.; Listoni, F.J.P.; Menozzi, B.D. Study of routine diagnosis methods of mastitis in mares. Arq. Bras. Med. Vet. Zootec. 2011, 63, 1028–1032. [Google Scholar] [CrossRef] [Green Version]
- Schnepf, A.; Bienert-Zeit, A.; Ertugrul, H.; Wagels, R.; Werner, N.; Hartmann, M.; Feige, K.; Kreienbrock, L. Antimicrobial usage in horses: The use of electronic data, data curation, and first results. Front. Vet. Sci. 2020, 7, 216. [Google Scholar] [CrossRef] [PubMed]
- Pisello, L.; Rampacci, E.; Stefanetti, V.; Beccati, F.; Hyatt, D.R.; Passamonti, F. Temporal efficacy of antimicrobials against aerobic bacteria isolated from equine endometritis: An Italian retrospective analysis (2010–2017). Vet. Rec. 2019, 185, 105413. [Google Scholar] [CrossRef] [Green Version]
- Goncagül, G.; Seyrek-İntas, K. Antimicrobial susceptibility of bacteria isolated from uteri of Thoroughbred mares with fertility problems. Kafkas Univ. Vet. Fak. Derg. 2013, 19, A105–A109. [Google Scholar] [CrossRef]
- Rathbone, P.; Arango-Sabogal, J.C.; De Mestre, A.M.; Scott, C.J. Antimicrobial resistance of endometrial bacterial isolates collected from UK Thoroughbred mares between 2014 and 2020. Vet. Rec. 2023, 192, e2591. [Google Scholar] [CrossRef] [PubMed]
- Mota, S.L.; Dos Santos, L.O.; Vidaletti, M.R.; Rodrigues, R.O.; de Menezes Coppola, M.; Mayer, F.Q. Antimicrobial resistance of coagulase-positive Staphylococcus isolated from healthy Crioulo horses and associated risk factors. J. Equine Vet. Sci. 2021, 107, 103779. [Google Scholar] [CrossRef] [PubMed]
- Awosile, B.B. Antimicrobial resistance in bacteria isolated from the uteri of horses with endometritis. Vet. Rec. 2019, 185, 596. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, K.; Subapriya, S.; Dinesh, N.M.; Partheban, P. Antibiotic sensitivity test on pathogens causing reproductive tract infection in thoroughbred mares. J. Entomol. Zool. Stud. 2020, 8, 913–915. [Google Scholar]
- Trundell, D.A.; Ferris, R.A.; Hennet, M.R.; Wittenburg, L.A.; Gustafson, D.L.; Borlee, B.R.; McCue, P.M. Pharmacokinetics of intrauterine ciprofloxacin in the mare and establishment of minimum inhibitory concentrations for equine uterine bacterial isolates. J. Equine Vet. Sci. 2017, 54, 54–59. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on the assessment of animal diseases caused by bacteria resistant to antimicrobials: Horses. EFSA J. 2021, 19, 7112. [Google Scholar]
- Albert, E.; Sahin-Tóth, J.; Horváth, A.; Papp, M.; Biksi, I.; Dobay, O. Genomic evidence for direct transmission of mecC-MRSA between a horse and Its veterinarian. Antibiotics 2023, 12, 408. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Archambault, M.; Willey, B.M.; Dick, H.; Hearn, P.; Kreiswirth, B.N.; Said-Salim, B.; McGeer, A.; Likhoshvay, Y.; Prescott, J.F.; et al. Methicillin-resistant Staphylococcus aureus in horses and horse personnel, 2000–2002. Emerg. Infect. Dis. 2005, 11, 430. [Google Scholar] [CrossRef] [PubMed]
- Cuny, C.; Abdelbary, M.M.; Köck, R.; Layer, F.; Scheidemann, W.; Werner, G.; Witte, W. Methicillin-resistant Staphylococcus aureus from infections in horses in Germany are frequent colonizers of veterinarians but rare among MRSA from infections in humans. One Health 2016, 2, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mama, O.M.; Gómez, P.; Ruiz-Ripa, L.; Gómez-Sanz, E.; Zarazaga, M.; Torres, C. Antimicrobial resistance, virulence, and genetic lineages of staphylococci from horses destined for human consumption: High detection of S. aureus isolates of lineage ST1640 and those carrying the lukPQ gene. Animals 2019, 9, 900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, K.; Marsella, R. Evolution of the prevalence of antibiotic resistance to Staphylococcus spp. isolated from horses in Florida over a 10-year period. Vet. Sci. 2023, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Guérin, F.; Fines-Guyon, M.; Meignen, P.; Delente, G.; Fondrinier, C.; Bourdon, N.; Cattoir, V.; Léon, A. Nationwide molecular epidemiology of methicillin-resistant Staphylococcus aureus responsible for horse infections in France. BMC Microbiol. 2017, 17, 104. [Google Scholar] [CrossRef] [Green Version]
- Anzai, T.; Kamada, M.; Ike, K.; Kanemaru, T.; Kumanomido, T. Drug susceptibility of Escherichia coli isolated from foals with diarrhea and mares with metritis. Bull. Equine Res. Inst. 1987, 24, 42–50. [Google Scholar]
- Lavoie, J.P.; Couture, L.; Higgins, R.; Laverty, S. Aerobic bacterial isolates in horses in a university hospital, 1986-1988. Can. Vet. J. 1991, 32, 292. [Google Scholar]
- Bucknell, D.G.; Gasser, R.B.; Irving, A.; Whithear, K. Antimicrobial resistance in Salmonella and Escherichia coli isolated from horses. Aust. Vet. J. 1997, 75, 355–356. [Google Scholar] [CrossRef]
- Dunowska, M.; Morley, P.S.; Traub-Dargatz, J.L.; Hyatt, D.R.; Dargatz, D.A. Impact of hospitalization and antimicrobial drug administration on antimicrobial susceptibility patterns of commensal Escherichia coli isolated from the feces of horses. J. Am. Vet. Med. Assoc. 2006, 228, 1909–1917. [Google Scholar] [CrossRef]
- Vo, A.T.; van Duijkeren, E.; Fluit, A.C.; Gaastra, W. Characteristics of extended-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates from horses. Vet. Microbiol. 2007, 124, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.O.; Clegg, P.D.; Williams, N.J.; Baptiste, K.E.; Bennett, M. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saputra, S.; Jordan, D.; Worthing, K.A.; Norris, J.M.; Wong, H.S.; Abraham, R.; Trott, D.J.; Abraham, S. Antimicrobial resistance in coagulase-positive Staphylococci isolated from companion animals in Australia: A one year study. PLoS ONE 2017, 12, e0176379. [Google Scholar] [CrossRef] [Green Version]
- Reshadi, P.; Heydari, F.; Ghanbarpour, R.; Bagheri, M.; Jajarmi, M.; Amiri, M.; Alizade, H.; Badouei, M.A.; Sahraei, S.; Adib, N. Molecular characterization and antimicrobial resistance of potentially human-pathogenic Escherichia coli strains isolated from riding horses. BMC Vet. Res. 2021, 17, 131. [Google Scholar] [CrossRef]
- Shaikh, S.; Fatima, J.; Shakil, S.; Rizvi, S.M.D.; Kamal, M.A. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi, J. Biol. Sci. 2015, 22, 90–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolny-Koładka, K. Resistance to antibiotics and the occurrence of genes responsible for the development of methicillin resistance in Staphylococcus bacteria isolated from the environment of horse riding centers. J. Equine Vet. Sci. 2018, 61, 65–71. [Google Scholar] [CrossRef]
- Tsilipounidaki, K.; Florou, Z.; Skoulakis, A.; Fthenakis, G.C.; Miriagou, V.; Petinaki, E. Diversity of bacterial clones and plasmids of NDM-1 producing Escherichia coli clinical isolates in Central Greece. Microorganisms 2023, 11, 516. [Google Scholar] [CrossRef]
- Zordan, S.; Prenger-Berninghoff, E.; Weiss, R.; van der Reijden, T.; van den Broek, P.; Baljer, G.; Dijkshoorn, L. Multidrug-resistant Acinetobacter baumannii in veterinary clinics, Germany. Emerg. Infect. Dis. 2011, 17, 1751. [Google Scholar] [CrossRef]
- World Health Organization. Critically Important Antimicrobials for Human Medicine: Categorization for the Development of Risk Management Strategies to Contain Antimicrobial Resistance due to Non-Human Antimicrobial Use: Report of the Second WHO Expert Meeting, 2007. Available online: https://apps.who.int/iris/handle/10665/43765 (accessed on 14 December 2022).
- Allen, J.L.; Begg, A.P.; Browning, G.F. Outbreak of equine endometritis caused by a genotypically identical strain of Pseudomonas aeruginosa. J. Vet. Diagn. Investig. 2011, 23, 1236–1239. [Google Scholar] [CrossRef] [Green Version]
- Asbury, A.C. Uterine defense mechanisms in the mare: The use of intrauterine plasma in the management of endometritis. Theriogenology 1984, 21, 387–393. [Google Scholar] [CrossRef]
- Gordon, J.; Álvarez-Narváez, S.; Peroni, J.F. Antimicrobial effects of equine platelet lysate. Front. Vet. Sci. 2021, 8, 703414. [Google Scholar] [CrossRef] [PubMed]
- Segabinazzi, L.G.T.M.; Canisso, I.F.; Podico, G.; Cunha, L.L.; Novello, G.; Rosser, M.F.; Loux, S.C.; Lima, F.S.; Alvarenga, M.A. Intrauterine blood plasma platelet-therapy mitigates persistent breeding-induced endometritis, reduces uterine infections, and improves embryo recovery in mares. Antibiotics 2021, 10, 490. [Google Scholar] [CrossRef] [PubMed]
- Mousa, H.A.; Blum, J.; Abou El Senoun, G.; Shakur, H.; Alfirevic, Z. Treatment for primary postpartum haemorrhage. Cochrane Database Syst. Rev. 2014, 2014, CD003249. [Google Scholar] [CrossRef] [PubMed]
- Sanborn, B.M.; Qian, A.; Ku, C.Y.; Wen, Y.; Anwer, K.; Monga, M.; Singh, S.P. Mechanisms regulating oxytocin receptor coupling to phospholipase C in rat and human myometrium. In Oxytocin: Cellular and Molecular Approaches in Medicine and Research; Ivell, R., Russell, J.A., Eds.; Plenum Press: New York, NY, USA, 1995; pp. 469–479. [Google Scholar]
- Meyer, G.A.; Rashmir-Raven, A.; Helms, R.J.; Brashier, M. The effect of oxytocin on contractility of the equine oesophagus: A potential treatment for oesophageal obstruction. Equine Vet. J. 2000, 32, 151–155. [Google Scholar] [CrossRef]
- Ishii, M.; Kobayashi, S.; Acosta, T.J.; Miki, W.; Matsui, M.; Yamanoi, T.; Miyake, Y.I.; Miyamoto, A. Effective oxytocin treatment on placental expulsion after foaling in heavy draft mares. J. Vet. Med. Sci. 2009, 71, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Marcet-Rius, M.; Bienboire-Frosini, C.; Lezama-García, K.; Domínguez-Oliva, A.; Olmos-Hernández, A.; Mora-Medina, P.; Hernández-Ávalos, I.; Casas-Alvarado, A.; Gazzano, A. Clinical experiences and mechanism of action with the use of oxytocin injection at parturition in domestic animals: Effect on the myometrium and fetuses. Animals 2023, 13, 768. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Gao, Y.; Zhu, Y.; Holyoak, G.R.; Zeng, S. Treatments for endometritis in mares caused by Streptococcus equi subspecies zooepidemicus: A structured literature review. J. Equine Vet. Sci. 2021, 102, 103430. [Google Scholar] [CrossRef]
- Schramme, A.R.; Pinto, C.R.F.; Davis, J.; Whisnant, C.S.; Whitacre, M.D. Pharmacokinetics of carbetocin, a long-acting oxytocin analogue, following intravenous administration in horses. Equine Vet. J. 2008, 40, 658–661. [Google Scholar] [CrossRef]
- Steckler, D.; Naidoo, V.; Gerber, D.; Kähn, W. Ex vivo influence of carbetocin on equine myometrial muscles and comparison with oxytocin. Theriogenology 2012, 78, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Woodward, E.M.; Christoffersen, M.; Campos, J.; Betancourt, A.; Horohov, D.; Scoggin, K.E.; Squires, E.L.; Troedsson, M.H.T. Endometrial inflammatory markers of the early immune response in mares susceptible or resistant to persistent breeding-induced endometritis. Reproduction 2013, 145, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Troedsson, M.H.; Nielsen, J.M. Non-antibiotic treatment of equine endometritis. Pferdeheilkunde 2018, 34, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Christoffersen, M.; Woodward, E.M.; Bojesen, A.M.; Petersen, M.R.; Squires, E.L.; Lehn-Jensen, H.; Troedsson, M.H.T. Effect of immunomodulatory therapy on the endometrial inflammatory response to induced infectious endometritis in susceptible mares. Theriogenology 2012, 78, 991–1004. [Google Scholar] [CrossRef]
- Arlas, T.R.; Wolf, C.A.; Petrucci, B.P.L.; Estanislau, J.F.; Gregory, R.M.; Jobim, M.I.M.; Mattos, R.C. Proteomics of endometrial fluid after dexamethasone treatment in mares susceptible to endometritis. Theriogenology 2015, 84, 617–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucca, S.; Carli, A.; Buckley, T.; Dolci, G.; Fogarty, U. The use of dexamethasone administered to mares at breeding time in the modulation of persistent mating induced endometritis. Theriogenology 2008, 70, 1093–1100. [Google Scholar] [CrossRef]
- Morrell, J.M.; Wallgren, M. Alternatives to antibiotics in semen extenders: A review. Pathogens 2014, 3, 934–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barone, F.; Ventrella, D.; Zannoni, A.; Forni, M.; Bacci, M.L. Can microfiltered seminal plasma preserve the morphofunctional characteristics of porcine spermatozoa in the absence of antibiotics? A preliminary study. Reprod. Domest. Anim. 2016, 51, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Morrell, J.M.; Kumaresan, A.; Johannisson, A. Practical implications of sperm selection techniques for improving reproduction. Anim. Reprod. 2017, 14, 572–580. [Google Scholar] [CrossRef]
- Cortés-Araya, Y.; Amilon, K.; Rink, B.E.; Black, G.; Lisowski, Z.; Donadeu, F.X.; Esteves, C.L. Comparison of antibacterial and immunological properties of mesenchymal stem/stromal cells from equine bone marrow, endometrium, and adipose tissue. Stem Cells Dev. 2018, 27, 1518–1525. [Google Scholar] [CrossRef] [PubMed]
- Harman, R.M.; Yang, S.; He, M.K.; Van de Walle, G.R. Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem Cell Res. Ther. 2017, 8, 157. [Google Scholar] [CrossRef] [Green Version]
- Anon. Antimicrobial resistance: A top ten global public health threat. eClinicalMedicine 2021, 41, 101221. [Google Scholar] [CrossRef]
- Islam, M.Z.; Espinosa-Gongora, C.; Damborg, P.; Sieber, R.N.; Munk, R.; Husted, L.; Moodley, A.; Skov, R.; Larsen, J.; Guardabassi, L. Horses in Denmark are a reservoir of diverse clones of methicillin-resistant and -susceptible Staphylococcus aureus. Front. Microbiol. 2017, 8, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One Health approach. Vet. World 2022, 15, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Guardabassi, L.; Jensen, L.B.; Kruse, H. Guide to Antimicrobial Use in Animals; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- British Equine Veterinary Association. Protect Me Toolkit. 2020. Available online: https://www.beva.org.uk/Protect-Me (accessed on 14 March 2023).
- European Network for Optimisation of Veterinary Antimicrobial Treatment. COST Action CA18217-ENOVAT, 2019. Available online: https://www.cost.eu/actions/CA18217/ (accessed on 14 March 2023).
- Lepper, H.C.; Woolhouse, M.E.J.; van Bunnik, B.A.D. The role of the environment in dynamics of antibiotic resistance in humans and animals: A modelling study. Antibiotics 2022, 11, 1361. [Google Scholar] [CrossRef] [PubMed]
Antibiotic (Dose Rate) | Route of Administration | Comments |
---|---|---|
Amikacin sulphate (10 mg kg−1 per 24 h) | Systemic (intravenous (i.v.) or intramuscular (i.m.) | Good efficacy against uterine infections caused by Gram −ve bacteria. Resistance by staphylococci and streptococci. Inactivation in purulent material. Recommendation for administration in infections caused by gentamicin-resistant bacteria. Nephrotoxicity. |
Amikacin sulphate (2 g) | Intrauterine | Buffering with bicarbonate or dilution with large volume of normal saline. |
Ampicillin sodium (20 mg kg−1, per 6–8 h) | Systemic (i.v. or i.m.) | Improved efficacy over penicillin against Gram −ve bacteria. |
Ampicillin (1 g) | Intrauterine | Effective against Gram +ve bacteria. |
Benzylpenicillin (22,000 IU kg−1 per 4–6 h) | Systemic (i.v.) | Antibiotic of choice against streptococcal infections. Excellent efficacy against anaerobes (except Bacteroides spp.). Possibility for combination with aminoglycosides for broad spectrum coverage. |
Benzylpenicillin | Intrauterine | Inactivation in solutions with pH < 5.5 or pH > 8.0. No mixing with gentamicin, sulphonamides or sodium bicarbonate. Use should be guided by bacteriological culture, cytology or ultrasonographic findings. |
Ceftiofur sodium or ceftiofur crystalline free acid (1.1–2.2 mg kg−1 per 12 h) | Systematic (i.v. or i.m.) | Avoidance of use, in alignment with recommendations for keeping 3rd generation cephalosporins (e.g., ceftiofur) as reserve drugs [95]. Possible swelling at injection site. |
Enrofloxacin (5–7.5 mg kg−1) | Systemic (i.v.) or per os | Broad spectrum activity. Avoidance of use, in alignment with recommendations for keeping 3rd generation fluoroquinolones as reserve drugs. Use only based on results of bacterial culture and susceptibility testing. Generally, avoidance of use in horses < 4 years of age and during pregnancy. Synergism with β-lactams and aminoglycosides. Intrauterine administration of the licenced product for administration to cattle: not recommended (association with development of necrosis) [96]. |
Gentamicin (adult animals: 6.6 mg kg−1 per 24 h) | Systemic (i.v.) | Potential development of nephrotoxicity or ototoxicity. Development of muscular discomfort after intramuscular administration [97]. |
Gentamicin (1–2 g) | Intrauterine | Irritation to endometrium or induction of depigmentation of vulvar skin if administered without buffering (performed with an equal volume of 7.5% sodium bicarbonate and dilution into 200 mL normal saline). Recommendation for administration in infections by Gram −ve bacteria. Inactivation by purulent material. Synergistic action with drugs that interfere with cell wall synthesis, e.g., penicillin [98]. |
Oxytetracycline (6.6 mg kg−1 per 12 h) | Systemic (slow i.v.) | Broad-spectrum antibacterial activity. Good spectrum of activity against anaerobic bacteria, but variable against Bacteroides spp. and Clostridium spp. Adverse effects: hypotension and collapse after rapid intravenous administration, renal tubular necrosis after administration of high doses, colitis and irritation after extravascular administration [99]. |
Procaine penicillin (20,000–25,000 IU kg−1) | Systemic (i.m.) | Efficacy against infections by β-haemolytic streptococci, anaerobic organisms (bar Bacteroides fragilis) and some Gram −ve bacteria (e.g., Actinobacillus spp. and Pasteurella spp.). Time dependent action. Long-acting formulations inappropriate for horses. Adverse effects: possibly hypersensitivity reactions (urticaria, anaphylaxis, immune mediated haemolytic anaemia) [100]. |
Procaine penicillin (1.2 g) | Intrauterine | |
Trimethoprim/sulfamethoxazole (30 mg kg−1 per 12 h) | Systemic (slow i.v.) or per os | Inactivation in purulent material [101]. Concurrent administration of penicillin can act antagonistically to sulphonamides. Drugs are irritant if administered intramuscularly or by the intrauterine route [102]. |
Antibiotic (Dose Rate) | Route of Administration | Comments |
---|---|---|
Amoxicillin | Intramammary | Administration of products for intramammary administration licenced for cattle under provisions for ‘off-label’ use. Choice should depend on the results of culture and sensitivity examinations. Administration of ‘dry cow’ products may provide long-standing antibiotic activity after the end of therapeutic administration [88,103]. |
Ceftiofur crystalline | Systemic | Empirical treatment regime with questionable efficacy [96]. |
Ceftiofur hydrochloride | Intramammary | Administration of products for intramammary administration licenced for cattle under provisions for ‘off-label’ use. Choice should depend on the results of culture and sensitivity examinations. |
Cefquinome | Intramammary | Administration of products for intramammary administration licenced for cattle under provisions for ‘off-label’ use. Choice should depend on the results of culture and sensitivity examinations. |
Gentamycin | Intramammary | Intramammary administration of a product available in pharmaceutical form for injectable administration [104]. |
Trimethoprim/sulfamethoxazole (30 mg kg−1) | Per os | Empirical treatment regime, often used until results of bacteriological examinations (bacterial identification and sensitivity testing) become available [105,106]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyrnenopoulou, P.; Fthenakis, G.C. Clinical Aspects of Bacterial Distribution and Antibiotic Resistance in the Reproductive System of Equids. Antibiotics 2023, 12, 664. https://doi.org/10.3390/antibiotics12040664
Tyrnenopoulou P, Fthenakis GC. Clinical Aspects of Bacterial Distribution and Antibiotic Resistance in the Reproductive System of Equids. Antibiotics. 2023; 12(4):664. https://doi.org/10.3390/antibiotics12040664
Chicago/Turabian StyleTyrnenopoulou, Panagiota, and George C. Fthenakis. 2023. "Clinical Aspects of Bacterial Distribution and Antibiotic Resistance in the Reproductive System of Equids" Antibiotics 12, no. 4: 664. https://doi.org/10.3390/antibiotics12040664
APA StyleTyrnenopoulou, P., & Fthenakis, G. C. (2023). Clinical Aspects of Bacterial Distribution and Antibiotic Resistance in the Reproductive System of Equids. Antibiotics, 12(4), 664. https://doi.org/10.3390/antibiotics12040664