Pseudomonas Bacteremia in a Tertiary Hospital and Factors Associated with Mortality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Type and Ethics Approval
2.2. Sample Collection, Transport, and Processing
2.3. Statistics
3. Results
3.1. Patients’ Characteristics
3.2. Microbiology of Pseudomonas BSIs
3.3. Antimicrobial Resistance of P. aeruginosa Isolated from BSI Episodes
3.4. Regression Analysis of 30-Day Mortality among Patients with BSI by Pseudomonas spp.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horino, T.; Chiba, A.; Kawano, S.; Kato, T.; Sato, F.; Maruyama, Y.; Nakazawa, Y.; Yoshikawa, K.; Yoshida, M.; Hori, S. Clinical Characteristics and Risk Factors for Mortality in Patients with Bacteremia Caused by Pseudomonas Aeruginosa. Intern. Med. 2012, 51, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Kim, S.; Kim, H.; Park, S.; Choe, Y.; Oh, M.; Kim, E.; Choe, K. Pseudomonas Aeruginosa Bacteremia: Risk Factors for Mortality and Influence of Delayed Receipt of Effective Antimicrobial Therapy on Clinical Outcome. Clin. Infect. Dis. 2003, 37, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate Point-Prevalence Survey of Health Care-Associated Infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Thaden, J.T.; Park, L.P.; Maskarinec, S.A.; Ruffin, F.; Fowler, V.G.; van Duin, D. Results from a 13-Year Prospective Cohort Study Show Increased Mortality Associated with Bloodstream Infections Caused by Pseudomonas Aeruginosa Compared to Other Bacteria. Antimicrob Agents Chemother 2017, 61, e02671-16. [Google Scholar] [CrossRef]
- Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial Bloodstream Infections in US Hospitals: Analysis of 24,179 Cases from a Prospective Nationwide Surveillance Study. Clin. Infect. Dis. 2004, 39, 309–317. [Google Scholar] [CrossRef]
- Chatzinikolaou, I.; Abi-Said, D.; Bodey, G.P.; Rolston, K.V.; Tarrand, J.J.; Samonis, G. Recent Experience with Pseudomonas Aeruginosa Bacteremia in Patients with Cancer: Retrospective Analysis of 245 Episodes. Arch. Intern. Med. 2000, 160, 501–509. [Google Scholar] [CrossRef]
- Sifuentes-Osornio, J.; Gonzalez, R.; Ponce-de-Leon, A.; Guerrero, M.L. Epidemiology and Prognosis of Pseudomonas Aeruginosa Bacteremia in a Tertiary Care Center. Rev. Investig. Clin. 1998, 50, 383–388. [Google Scholar]
- Vidal, F.; Mensa, J.; Almela, M.; Martínez, J.A.; Marco, F.; Casals, C.; Gatell, J.M.; Soriano, E.; Jimenez de Anta, M.T. Epidemiology and Outcome of Pseudomonas Aeruginosa Bacteremia, with Special Emphasis on the Influence of Antibiotic Treatment. Analysis of 189 Episodes. Arch. Intern. Med. 1996, 156, 2121–2126. [Google Scholar] [CrossRef]
- Al-Hasan, M.N.; Wilson, J.W.; Lahr, B.D.; Eckel-Passow, J.E.; Baddour, L.M. Incidence of Pseudomonas Aeruginosa Bacteremia: A Population-Based Study. Am. J. Med. 2008, 121, 702–708. [Google Scholar] [CrossRef]
- Sligl, W.I.; Dragan, T.; Smith, S.W. Nosocomial Gram-Negative Bacteremia in Intensive Care: Epidemiology, Antimicrobial Susceptibilities, and Outcomes. Int. J. Infect. Dis. 2015, 37, 129–134. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, Y.; Wan, Q. Pseudomonas Aeruginosa Bacteremia among Liver Transplant Recipients. Infect. Drug Resist. 2018, 11, 2345–2356. [Google Scholar] [CrossRef] [PubMed]
- Schechner, V.; Nobre, V.; Kaye, K.S.; Leshno, M.; Giladi, M.; Rohner, P.; Harbarth, S.; Anderson, D.J.; Karchmer, A.W.; Schwaber, M.J.; et al. Gram-Negative Bacteremia upon Hospital Admission: When Should Pseudomonas Aeruginosa Be Suspected? Clin. Infect. Dis. 2009, 48, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, M.H.; Gurtman, A.; Szabo, S.; Neibart, E.; Meyers, B.R.; Policar, M.; Cheung, T.W.; Lillienfeld, D.; Hammer, G.; Reddy, S. Pseudomonas Aeruginosa Bacteremia in Patients with AIDS. Clin. Infect. Dis. 1994, 18, 886–895. [Google Scholar] [CrossRef]
- Shepp, D.H.; Tang, I.T.; Ramundo, M.B.; Kaplan, M.K. Serious Pseudomonas Aeruginosa Infection in AIDS. J. Acquir. Immune. Defic. Syndr. 1994, 7, 823–831. [Google Scholar]
- Leigh, L.; Stoll, B.J.; Rahman, M.; McGowan, J. Pseudomonas Aeruginosa Infection in Very Low Birth Weight Infants: A Case-Control Study. Pediatr. Infect. Dis. J. 1995, 14, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Vuotto, F.; Berthon, C.; Lemaitre, N.; Duhamel, A.; Balkaran, S.; Le Ray, E.; Micol, J.B.; Faure, K.; Alfandari, S. Risk Factors, Clinical Features, and Outcome of Pseudomonas Aeruginosa Bacteremia in Patients with Hematologic Malignancies: A Case-Control Study. Am. J. Infect. Control. 2013, 41, 527–530. [Google Scholar] [CrossRef]
- Jeon, K.; Jeong, S.; Lee, N.; Park, M.-J.; Song, W.; Kim, H.-S.; Kim, H.S.; Kim, J.-S. Impact of COVID-19 on Antimicrobial Consumption and Spread of Multidrug-Resistance in Bacterial Infections. Antibiotics 2022, 11, 535. [Google Scholar] [CrossRef]
- Langford, B.J.; Soucy, J.-P.R.; Leung, V.; So, M.; Kwan, A.T.H.; Portnoff, J.S.; Bertagnolio, S.; Raybardhan, S.; MacFadden, D.R.; Daneman, N. Antibiotic Resistance Associated with the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 2022, 29, 302–309. [Google Scholar] [CrossRef]
- Spernovasilis, N.A.; Kofteridis, D.P. COVID-19 and Antimicrobial Stewardship: What Is the Interplay? Infect. Control. Hosp. Epidemiol. 2021, 42, 378–379. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Guidelines for the Treatment of Infections Caused by Multidrug-Resistant Gram-Negative Bacilli (Endorsed by European Society of Intensive Care Medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; (M100-S32); Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- Dropulic, L.K.; Leslie, J.M.; Eldred, L.J.; Zenilman, J.; Sears, C.L. Clinical Manifestations and Risk Factors of Pseudomonas Aeruginosa Infection in Patients with AIDS. J. Infect. Dis. 1995, 171, 930–937. [Google Scholar] [CrossRef]
- Chen, S.C.; Lawrence, R.H.; Byth, K.; Sorrell, T.C. Pseudomonas Aeruginosa Bacteraemia. Is Pancreatobiliary Disease a Risk Factor? Med. J. Aust. 1993, 159, 592–597. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Pseudomonas Aeruginosa Infections Associated with Transrectal Ultrasound-Guided Prostate Biopsies--Georgia, 2005. Morb. Mortal Wkly Rep. 2006, 55, 776–777. [Google Scholar]
- Moore, J.E.; McCaughan, J.; Rendall, J.C.; Millar, B.C. The Microbiology of Non-Aeruginosa Pseudomonas Isolated from Adults With Cystic Fibrosis: Criteria to Help Determine the Clinical Significance of Non-Aeruginosa Pseudomonas in CF Lung Pathology. Br. J. Biomed. Sci. 2022, 79, 10468. [Google Scholar] [CrossRef]
- Aoun, M.; Van der Auwera, P.; Devleeshouwer, C.; Daneau, D.; Seraj, N.; Meunier, F.; Gerain, J. Bacteraemia Caused by Non-Aeruginosa Pseudomonas Species in a Cancer Centre. J. Hosp. Infect. 1992, 22, 307–316. [Google Scholar] [CrossRef]
- Hsueh, P.R.; Teng, L.J.; Pan, H.J.; Chen, Y.C.; Sun, C.C.; Ho, S.W.; Luh, K.T. Outbreak of Pseudomonas Fluorescens Bacteremia among Oncology Patients. J. Clin. Microbiol. 1998, 36, 2914–2917. [Google Scholar] [CrossRef]
- Picollo, M.; Ferraro, D.K.; Pérez, G.; Reijtman, V.; Gomez, S.; Garcia, M.E.; Mastroianni, A.; Rosanova, M.T. Pseudomonas Putida Bacteremia in Pediatric Patients: A Case Series Study. Enferm. Infecc. Microbiol. Clin. 2022, in press. [CrossRef]
- Tan, G.; Xi, Y.; Yuan, P.; Sun, Z.; Yang, D. Risk Factors and Antimicrobial Resistance Profiles of Pseudomonas Putida Infection in Central China, 2010-2017. Medicine 2019, 98, e17812. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef]
- Kofteridis, D.P.; Andrianaki, A.M.; Maraki, S.; Mathioudaki, A.; Plataki, M.; Alexopoulou, C.; Ioannou, P.; Samonis, G.; Valachis, A. Treatment Pattern, Prognostic Factors, and Outcome in Patients with Infection Due to Pan-Drug-Resistant Gram-Negative Bacteria. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 965–970. [Google Scholar] [CrossRef]
- Bassetti, M.; Garau, J. Current and Future Perspectives in the Treatment of Multidrug-Resistant Gram-Negative Infections. J. Antimicrob. Chemother. 2021, 76, iv23–iv37. [Google Scholar] [CrossRef]
- Muller, A.E.; Theuretzbacher, U.; Mouton, J.W. Use of Old Antibiotics Now and in the Future from a Pharmacokinetic/Pharmacodynamic Perspective. Clin. Microbiol. Infect. 2015, 21, 881–885. [Google Scholar] [CrossRef]
- Nang, S.C.; Azad, M.A.K.; Velkov, T.; Zhou, Q.T.; Li, J. Rescuing the Last-Line Polymyxins: Achievements and Challenges. Pharmacol. Rev. 2021, 73, 679–728. [Google Scholar] [CrossRef]
- Giurazza, R.; Mazza, M.C.; Andini, R.; Sansone, P.; Pace, M.C.; Durante-Mangoni, E. Emerging Treatment Options for Multi-Drug-Resistant Bacterial Infections. Life 2021, 11, 519. [Google Scholar] [CrossRef]
- Theuretzbacher, U.; Van Bambeke, F.; Cantón, R.; Giske, C.G.; Mouton, J.W.; Nation, R.L.; Paul, M.; Turnidge, J.D.; Kahlmeter, G. Reviving Old Antibiotics. J. Antimicrob. Chemother. 2015, 70, 2177–2181. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic Resistance in Pseudomonas Aeruginosa: Mechanisms and Alternative Therapeutic Strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-Lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas Aeruginosa with Difficult-to-Treat Resistance (DTR-P. Aeruginosa). Clin. Infect. Dis. 2022, 75, 187–212. [Google Scholar] [CrossRef]
- Hakeam, H.A.; Askar, G.; Al Sulaiman, K.; Mansour, R.; Al Qahtani, M.M.; Abbara, D.; Aldhayyan, N.; Dyab, N.; Afaneh, L.; Islami, M.; et al. Treatment of Multidrug-Resistant Pseudomonas Aeruginosa Bacteremia Using Ceftolozane-Tazobactam-Based or Colistin-Based Antibiotic Regimens: A Multicenter Retrospective Study. J. Infect. Public Health 2022, 15, 1081–1088. [Google Scholar] [CrossRef]
- Karruli, A.; Catalini, C.; D’Amore, C.; Foglia, F.; Mari, F.; Harxhi, A.; Galdiero, M.; Durante-Mangoni, E. Evidence-Based Treatment of Pseudomonas Aeruginosa Infections: A Critical Reappraisal. Antibiotics 2023, 12, 399. [Google Scholar] [CrossRef]
- Kim, S.E.; Park, S.-H.; Park, H.B.; Park, K.-H.; Kim, S.-H.; Jung, S.-I.; Shin, J.-H.; Jang, H.-C.; Kang, S.J. Nosocomial Pseudomonas Putida Bacteremia: High Rates of Carbapenem Resistance and Mortality. Chonnam Med. J. 2012, 48, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Treviño, M.; Moldes, L.; Hernández, M.; Martínez-Lamas, L.; García-Riestra, C.; Regueiro, B.J. Nosocomial Infection by VIM-2 Metallo-Beta-Lactamase-Producing Pseudomonas Putida. J. Med. Microbiol. 2010, 59, 853–855. [Google Scholar] [CrossRef]
- Lee, K.; Lim, J.B.; Yum, J.H.; Yong, D.; Chong, Y.; Kim, J.M.; Livermore, D.M. Bla(VIM-2) Cassette-Containing Novel Integrons in Metallo-Beta-Lactamase-Producing Pseudomonas Aeruginosa and Pseudomonas Putida Isolates Disseminated in a Korean Hospital. Antimicrob Agents Chemother 2002, 46, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Spernovasilis, N.; Kritsotakis, E.I.; Mathioudaki, A.; Vouidaski, A.; Markaki, I.; Psaroudaki, D.; Ioannou, P.; Kofteridis, D.P. Antimicrobial Prescribing before and after the Implementation of a Carbapenem-Focused Antimicrobial Stewardship Program in a Greek Tertiary Hospital during the COVID-19 Pandemic. Antibiotics 2022, 12, 39. [Google Scholar] [CrossRef]
- Spernovasilis, N.; Kritsotakis, E.I.; Mathioudaki, A.; Vouidaski, A.; Spanias, C.; Petrodaskalaki, M.; Ioannou, P.; Chamilos, G.; Kofteridis, D.P. A Carbapenem-Focused Antimicrobial Stewardship Programme Implemented during the COVID-19 Pandemic in a Setting of High Endemicity for Multidrug-Resistant Gram-Negative Bacteria. J. Antimicrob. Chemother. 2023, dkad035. [Google Scholar] [CrossRef]
- Al-Omari, A.; Al Mutair, A.; Alhumaid, S.; Salih, S.; Alanazi, A.; Albarsan, H.; Abourayan, M.; Al Subaie, M. The Impact of Antimicrobial Stewardship Program Implementation at Four Tertiary Private Hospitals: Results of a Five-Years Pre-Post Analysis. Antimicrob. Resist. Infect. Control. 2020, 9, 95. [Google Scholar] [CrossRef]
- Sloot, R.; Nsonwu, O.; Chudasama, D.; Rooney, G.; Pearson, C.; Choi, H.; Mason, E.; Springer, A.; Gerver, S.; Brown, C.; et al. Rising Rates of Hospital-Onset Klebsiella Spp. and Pseudomonas Aeruginosa Bacteraemia in NHS Acute Trusts in England: A Review of National Surveillance Data, August 2020-February 2021. J. Hosp. Infect. 2022, 119, 175–181. [Google Scholar] [CrossRef]
- Meschiari, M.; Onorato, L.; Bacca, E.; Orlando, G.; Menozzi, M.; Franceschini, E.; Bedini, A.; Cervo, A.; Santoro, A.; Sarti, M.; et al. Long-Term Impact of the COVID-19 Pandemic on In-Hospital Antibiotic Consumption and Antibiotic Resistance: A Time Series Analysis (2015-2021). Antibiotics 2022, 11, 826. [Google Scholar] [CrossRef]
- Amarsy, R.; Trystram, D.; Cambau, E.; Monteil, C.; Fournier, S.; Oliary, J.; Junot, H.; Sabatier, P.; Porcher, R.; Robert, J.; et al. Surging Bloodstream Infections and Antimicrobial Resistance during the First Wave of COVID–19: A Study in a Large Multihospital Institution in the Paris Region. Int. J. Infect. Dis. 2022, 114, 90–96. [Google Scholar] [CrossRef]
- Mena Lora, A.J.; Sorondo, C.; Billini, B.; Gonzalez, P.; Bleasdale, S.C. Antimicrobial Resistance in Escherichia Coli and Pseudomonas Aeruginosa before and after the Coronavirus Disease 2019 (COVID-19) Pandemic in the Dominican Republic. Antimicrob Steward. Healthc Epidemiol 2022, 2, e191. [Google Scholar] [CrossRef]
- Bongiovanni, M.; Barilaro, G.; Zanini, U.; Giuliani, G. Impact of the COVID-19 Pandemic on Multidrug-Resistant Hospital-Acquired Bacterial Infections. J. Hosp. Infect. 2022, 123, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Prowle, J.R.; Echeverri, J.E.; Ligabo, E.V.; Sherry, N.; Taori, G.C.; Crozier, T.M.; Hart, G.K.; Korman, T.M.; Mayall, B.C.; Johnson, P.D.R.; et al. Acquired Bloodstream Infection in the Intensive Care Unit: Incidence and Attributable Mortality. Crit Care 2011, 15, R100. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, P.; Karakonstantis, S.; Kofteridis, D.P. Admissions in a Medical Ward and Factors Independently Associated with Mortality. Eur. J. Intern. Med. 2022, 98, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Franceschini, E.; Meschiari, M.; Menozzi, M.; Zona, S.; Venturelli, C.; Digaetano, M.; Rogati, C.; Guaraldi, G.; Paul, M.; et al. Epidemiology and Risk Factors Associated with Mortality in Consecutive Patients With Bacterial Bloodstream Infection: Impact of MDR and XDR Bacteria. Open Forum Infect. Dis. 2020, 7, ofaa461. [Google Scholar] [CrossRef]
2015–2022 (n = 419) | Survived (n = 295) | Died (n = 124) | p | |
---|---|---|---|---|
Age, years, median (IQR) | 66 (48–76.3) | 62 (39–75) | 72 (59–80) | <0.0001 |
Male gender, n (%) | 262 (62.5) | 184 (62.4) | 78 (62.9) | 1.0000 |
Site where culture was collected | ||||
Medical ward, n (%) | 142 (33.9) | 95 (32.2) | 47 (37.9) | 0.2610 |
Surgical ward, n (%) | 76 (18.1) | 71 (24.1) | 5 (4.0) | <0.0001 |
ICU, n (%) | 201 (48.0) | 129 (43.7) | 72 (58.1) | 0.0076 |
Hospital-acquired, n (%) | 329 (78.5) | 61 (20.7) | 124 (100) | <0.0001 |
Hospital day when the positive culture was drawn, median (IQR) | 15 (4–32) | 14 (3–27) | 20 (5–43.8) | 0.0089 |
Duration of hospital stay, days, median (IQR) | 36 (19–71) | 42.5 (20–76.3) | 30.5 (15.3–51) | 0.0008 |
Hospital mortality, n (%) | 185 (44.2) | |||
30-day mortality, n (%) | 124 (29.6) |
Pathogen | 2015–2022 (%) | Pre-COVID-19 (%) | Post-COVID-19 (%) | p |
---|---|---|---|---|
P. aeruginosa | 357 (85.2) | 232 (88.6) | 125 (79.6) | 0.0155 |
P. alcaligenes | 2 (0.5) | 0 (0.0) | 2 (1.3) | 0.1398 |
P. fluorescens | 4 (1.0) | 2 (0.8) | 2 (1.3) | 0.6325 |
P. luteola | 1 (0.2) | 0 (0.0) | 1 (0.6) | 0.3747 |
P. mendocina | 2 (0.5) | 1 (0.4) | 1 (0.6) | 1.0000 |
P. oleovorans | 2 (0.5) | 0 (0.0) | 2 (1.3) | 0.1398 |
P. oryzihabitans | 17 (4.1) | 11 (4.2) | 6 (3.8) | 1.0000 |
P. putida | 26 (6.2) | 12 (4.6) | 14 (8.9) | 0.0938 |
P. stutzeri | 8 (1.9) | 4 (1.5) | 4 (2.6) | 0.4799 |
All Pseudomonas strains | 419 (100) | 262 (62.5) | 157 (37.5) | NA |
Pathogen | Survived (%) | Died (%) | p |
---|---|---|---|
P. aeruginosa | 243 (82.4) | 114 (91.9) | 0.0106 |
P. alcaligenes | 2 (0.7) | 0 (0.0) | 1.0000 |
P. fluorescens | 4 (1.4) | 0 (0.0) | 0.3239 |
P. luteola | 1 (0.4) | 0 (0.0) | 1.0000 |
P. mendocina | 1 (0.4) | 1 (0.8) | 0.5048 |
P. oleovorans | 2 (0.7) | 0 (0.0) | 1.0000 |
P. oryzihabitans | 13 (4.4) | 4 (3.2) | 0.7873 |
P. putida | 22 (7.5) | 4 (3.2) | 0.1222 |
P. stutzeri | 7 (2.4) | 1 (0.8) | 0.44456 |
All Pseudomonas strains | 243 (70.4) | 124 (29.6) | NA |
Antibacterial | 2015–2022 (%) | Pre-COVID-19 (%) | Post-COVID-19 (%) | p |
---|---|---|---|---|
Amikacin | 61 (17.1) | 45 (19.4) | 16 (12.6) | 0.1081 |
Aztreonam | 90 (25.3) | 62 (26.8) | 28 (22.1) | 0.3735 |
Cefepime | 78 (21.9) | 56 (24.1) | 22(17.3) | 0.1432 |
Ceftazidime | 83 (23.3) | 55 (23.7) | 28 (22.1) | 0.7939 |
Colistin | 3 (0.8) | 3 (1.3) | 0 (0.0) | 0.5550 |
Gentamicin | 51 (14.3) | 41 (17.7) | 10 (7.9) | 0.0112 |
Meropenem | 82 (23.0) | 57 (24.6) | 25 (19.7) | 0.3575 |
Piperacillin | 85 (23.8) | 61 (26.3) | 24 (18.9) | 0.1213 |
Ticarcillin | 123 (34.5) | 85 (36.6) | 38 (29.9) | 0.2448 |
Tobramycin | 69 (19.3) | 53 (22.8) | 16 (12.6) | 0.0244 |
Ciprofloxacin | 73 (23.0) | 58 (25.0) | 15 (17.1) | 0.1387 |
Pefloxacin | 74 (25.7) | 64 (27.6) | 10 (17.5) | 0.1306 |
MDR | 70 (19.6) | 53 (22.8) | 17 (13.6) | 0.0369 |
XDR | 44 (12.3) | 37 (15.9) | 7 (5.6) | 0.0040 |
DTR | 41 (11.5) | 36 (15.5) | 5 (4) | 0.0008 |
Antibacterial | Survived (%) | Died (%) | p |
---|---|---|---|
Amikacin | 27 (11.1) | 34 (29.8) | <0.0001 |
Aztreonam | 42 (17.4) | 48 (42.1) | <0.0001 |
Cefepime | 34 (14.0) | 44 (38.6) | <0.0001 |
Ceftazidime | 37 (15.2) | 46 (40.4) | <0.0001 |
Colistin | 1 (0.4) | 2 (1.8) | 0.2401 |
Gentamicin | 23 (9.5) | 28 (24.6) | 0.0003 |
Meropenem | 36 (14.8) | 46 (40.4) | <0.0001 |
Piperacillin | 39 (16.0) | 46 (40.4) | <0.0001 |
Ticarcillin | 64 (26.3) | 59 (51.8) | <0.0001 |
Tobramycin | 30 (12.3) | 39 (34.2) | <0.0001 |
Ciprofloxacin | 35 (16.2) | 38 (37.3) | <0.0001 |
Pefloxacin | 37 (18.6) | 37 (41.6) | <0.0001 |
MDR | 33 (13.6) | 37 (32.5) | <0.0001 |
XDR | 15 (6.2) | 29 (25.4) | <0.0001 |
DTR | 13 (5.3) | 28 (24.6) | <0.0001 |
Characteristic | Univariate Analysis p | Multivariate Analysis p | OR (95% CI) |
---|---|---|---|
Age (per year) | <0.0001 | <0.001 | 1.032 (1.019–1.045) |
Acquired in ICU | 0.0073 | 0.01 | 2.213 (1.378–3.556) |
Hospital day when the positive culture was drawn (per day) | 0.0231 | 0.005 | 1.01 (1.003–1.017) |
P. aeruginosa | 0.0118 | 0.075 | 1.985 (0.933–4.224) |
MDR | <0.0001 | 0.631 | 0.79 (0.302–2.065) |
XDR | <0.0001 | 0.186 | 3.019 (0.587–15.527) |
DTR | <0.0001 | 0.278 | 2.415 (0.491–11.865) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannou, P.; Alexakis, K.; Maraki, S.; Kofteridis, D.P. Pseudomonas Bacteremia in a Tertiary Hospital and Factors Associated with Mortality. Antibiotics 2023, 12, 670. https://doi.org/10.3390/antibiotics12040670
Ioannou P, Alexakis K, Maraki S, Kofteridis DP. Pseudomonas Bacteremia in a Tertiary Hospital and Factors Associated with Mortality. Antibiotics. 2023; 12(4):670. https://doi.org/10.3390/antibiotics12040670
Chicago/Turabian StyleIoannou, Petros, Konstantinos Alexakis, Sofia Maraki, and Diamantis P. Kofteridis. 2023. "Pseudomonas Bacteremia in a Tertiary Hospital and Factors Associated with Mortality" Antibiotics 12, no. 4: 670. https://doi.org/10.3390/antibiotics12040670
APA StyleIoannou, P., Alexakis, K., Maraki, S., & Kofteridis, D. P. (2023). Pseudomonas Bacteremia in a Tertiary Hospital and Factors Associated with Mortality. Antibiotics, 12(4), 670. https://doi.org/10.3390/antibiotics12040670