Antimicrobial Usage and Detection of Multidrug-Resistant Staphylococcus aureus: Methicillin- and Tetracycline-Resistant Strains in Raw Milk of Lactating Dairy Cattle
Abstract
:1. Introduction
2. Results
2.1. Somatic Cell Count
2.2. Prevalence of S. Aureus
2.3. Antibiotic Susceptibility Test
2.4. Detection of Resistance Genes
3. Discussion
4. Materials and Methods
4.1. Study Design and Sample Collection
4.2. Somatic Cell Count
4.3. Bacterial Isolation
4.4. Biochemical Tests
4.5. S. aureus Stock Preparation
4.6. DNA Extraction and Molecular Identification of S. aureus
4.7. Antimicrobial Susceptibility Testing
4.8. Molecular Detection of Antimicrobial Resistance Gene
4.9. Gel Electrophoresis
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patnaik, S.; Prasad, A.; Ganguly, S. Mastitis, an infection of cattle udder: A review. J. Chem. Biol. Phys. Sci. JCBPS 2013, 3, 2676. [Google Scholar]
- Sordillo, L.M.; Streicher, K.L. Mammary gland immunity and mastitis susceptibility. J. Mammary Gland Biol. Neoplasia 2002, 7, 135–146. [Google Scholar] [CrossRef]
- Kovačević, Z.; Mihajlović, J.; Mugoša, S.; Horvat, O.; Tomanić, D.; Kladar, N.; Samardžija, M. Pharmacoeconomic Analysis of the Different Therapeutic Approaches in Control of Bovine Mastitis: Phytotherapy and Antimicrobial Treatment. Antibiotics 2023, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Bude, S.A.; Mengesha, A.K. Isolation and Identification of Staphylococcus aureus from Dairy Farms in Bishoftu Town, Ethiopia. J. Biochem. Biotech. 2021, 4, 9–13. [Google Scholar]
- Williamson, J.; Callaway, T.; Rollin, E.; Ryman, V. Association of Milk Somatic Cell Count with Bacteriological Cure of Intramammary Infection—A Review. Agriculture 2022, 12, 1437. [Google Scholar] [CrossRef]
- Bogni, C.; Odierno, L.; Raspanti, C.; Giraudo, J.; Larriestra, A.; Reinoso, E.; Lasagno, M.; Ferrari, M.; Ducrós, E.; Frigerio, C. War against mastitis: Current concepts on controlling bovine mastitis pathogens. Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 11, 483–494. [Google Scholar]
- Hameed, K.G.A.; Sender, G.; Korwin-Kossakowska, A. Public health hazard due to mastitis in dairy cows. Anim. Sci. Pap. Rep. 2007, 25, 73–85. [Google Scholar]
- Ashraf, A.; Imran, M. Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Anim. Health Res. Rev. 2020, 21, 36–49. [Google Scholar] [CrossRef]
- Riekerink, R.O.; Barkema, H.; Kelton, D.; Scholl, D. Incidence rate of clinical mastitis on Canadian dairy farms. J. Dairy Sci. 2008, 91, 1366–1377. [Google Scholar] [CrossRef] [Green Version]
- Tesfaye, K.; Gizaw, Z.; Haile, A.F. Prevalence of Mastitis and Phenotypic Characterization of Methicillin-Resistant Staphylococcus aureus in Lactating Dairy Cows of Selected Dairy Farms in and Around Adama Town, Central Ethiopia. Environ. Health Insights 2021, 15, 11786302211021297. [Google Scholar] [CrossRef]
- Botaro, B.G.; Cortinhas, C.S.; Dibbern, A.G.; Benites, N.R.; dos Santos, M.V. Staphylococcus aureus intramammary infection affects milk yield and SCC of dairy cows. Trop. Anim. Health Prod. 2015, 47, 61–66. [Google Scholar] [CrossRef]
- Ali, T.; Kamran, n.; Raziq, A.; Wazir, I.; Ullah, R.; Shah, P.; Ali, M.I.; Han, B.; Liu, G. Prevalence of Mastitis Pathogens and Antimicrobial Susceptibility of Isolates from Cattle and Buffaloes in Northwest of Pakistan. Front. Vet. Sci. 2021, 8, 746755. [Google Scholar] [CrossRef] [PubMed]
- Bitrus, A.; Peter, O.; Abbas, M.; Goni, M. Staphylococcus aureus: A review of antimicrobial resistance mechanisms. Vet. Sci. Res. Rev. 2018, 4, 43–54. [Google Scholar] [CrossRef]
- Harris, L.G.; Foster, S.; Richards, R.G. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: Review. Eur. Cell Mater. 2002, 4, 100–120. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, N.A.; Hussein, N.R. Staphylococcus aureus: An Overview of Discovery, Characteristics, Epidemiology, Virulence Factors and Antimicrobial Sensitivity. Eur. J. Mol. Clin. Med. 2021, 8, 1160–1183. [Google Scholar]
- Tang, Y.; Qiao, Z.; Wang, Z.; Li, Y.; Ren, J.; Wen, L.; Xu, X.; Yang, J.; Yu, C.; Meng, C. The Prevalence of Staphylococcus aureus and the Occurrence of MRSA CC398 in Monkey Feces in a Zoo Park in Eastern China. Animals 2021, 11, 732. [Google Scholar] [CrossRef] [PubMed]
- Kateete, D.P.; Kabugo, U.; Baluku, H.; Nyakarahuka, L.; Kyobe, S.; Okee, M.; Najjuka, C.F.; Joloba, M.L. Prevalence and antimicrobial susceptibility patterns of bacteria from milkmen and cows with clinical mastitis in and around Kampala, Uganda. PLoS ONE 2013, 8, e63413. [Google Scholar] [CrossRef] [Green Version]
- Basanisi, M.; La Bella, G.; Nobili, G.; Franconieri, I.; La Salandra, G. Genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and dairy products in South Italy. Food Microbiol. 2017, 62, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, Q.; Zhang, H.; Li, X.; Huang, W.; Fu, Q.; Li, M. Molecular characteristics of community-associated Staphylococcus aureus isolates from pediatric patients with bloodstream infections between 2012 and 2017 in Shanghai, China. Front. Microbiol. 2018, 9, 1211. [Google Scholar] [CrossRef] [Green Version]
- Guzmán-Rodríguez, J.J.; León-Galván, M.F.; Barboza-Corona, J.E.; Valencia-Posadas, M.; Loeza-Lara, P.D.; Sánchez-Ceja, M.; Ochoa-Zarzosa, A.; López-Meza, J.E.; Gutiérrez-Chávez, A.J. Analysis of virulence traits of Staphylococcus aureus isolated from bovine mastitis in semi-intensive and family dairy farms. J. Vet. Sci. 2020, 21, e77. [Google Scholar] [CrossRef]
- Song, M.; Bai, Y.; Xu, J.; Carter, M.Q.; Shi, C.; Shi, X. Genetic diversity and virulence potential of Staphylococcus aureus isolates from raw and processed food commodities in Shanghai. Int. J. Food Microbiol. 2015, 195, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cavicchioli, V.; Scatamburlo, T.; Yamazi, A.; Pieri, F.; Nero, L. Occurrence of Salmonella, Listeria monocytogenes, and enterotoxigenic Staphylococcus in goat milk from small and medium-sized farms located in Minas Gerais State, Brazil. J. Dairy Sci. 2015, 98, 8386–8390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennekinne, J.-A.; De Buyser, M.-L.; Dragacci, S. Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiol. Rev. 2012, 36, 815–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagundes, H.; Barchesi, L.; Filho, A.N.; Ferreira, L.M.; Oliveira, C.A.F. Occurrence of Staphylococcus aureus in raw milk produced in dairy farms in São Paulo state, Brazil. Braz. J. Microbiol. 2010, 41, 376–380. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 20 December 2022).
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health 2014, 2, 145. [Google Scholar] [CrossRef]
- Algammal, A.M.; Enany, M.E.; El-Tarabili, R.M.; Ghobashy, M.O.I.; Helmy, Y.A. Prevalence, Antimicrobial Resistance Profiles, Virulence and Enterotoxins-Determinant Genes of MRSA Isolated from Subclinical Bovine Mastitis in Egypt. Pathogens 2020, 9, 362. [Google Scholar] [CrossRef]
- Jamali, H.; Paydar, M.; Radmehr, B.; Ismail, S.; Dadrasnia, A. Prevalence and antimicrobial resistance of Staphylococcus aureus isolated from raw milk and dairy products. Food Control. 2015, 54, 383–388. [Google Scholar] [CrossRef]
- Walther, C.; Perreten, V. Methicillin-resistant Staphylococcus epidermidis in organic milk production. J. Dairy Sci. 2007, 90, 5351. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhang, L.; Yong, C.; Shen, M.; Ali, T.; Shahid, M.; Han, K.; Zhou, X.; Han, B. Relationships among superantigen toxin gene profiles, genotypes, and pathogenic characteristics of Staphylococcus aureus isolates from bovine mastitis. J. Dairy Sci. 2017, 100, 4276–4286. [Google Scholar] [CrossRef]
- Bhosale, R.R.; Osmani, R.A.; Ghodake, P.P.; Shaikh, S.M.; Chavan, S.R. Mastitis: An intensive crisis in veterinary science. Int. J. Pharma Res. Health Sci. 2014, 2, 96–103. [Google Scholar]
- Wang, W.; Lin, X.; Jiang, T.; Peng, Z.; Xu, J.; Yi, L.; Li, F.; Fanning, S.; Baloch, Z. Prevalence and Characterization of Staphylococcus aureus Cultured from Raw Milk Taken From Dairy Cows With Mastitis in Beijing, China. Front Microbiol. 2018, 9, 1123. [Google Scholar] [CrossRef] [PubMed]
- Giacinti, G.; Carfora, V.; Caprioli, A.; Sagrafoli, D.; Marri, N.; Giangolini, G.; Amoruso, R.; Iurescia, M.; Stravino, F.; Dottarelli, S.; et al. Prevalence and characterization of methicillin-resistant Staphylococcus aureus carrying mecA or mecC and methicillin-susceptible Staphylococcus aureus in dairy sheep farms in central Italy. J. Dairy Sci. 2017, 100, 7857–7863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bano, S.A.; Hayat, M.; Samreen, T.; Asif, M.; Habiba, U.; Uzair, B. Detection of Pathogenic Bacteria Staphylococcus aureus and Salmonella sp. from Raw Milk Samples of Different Cities of Pakistan. Nat. Sci. 2020, 12, 295. [Google Scholar] [CrossRef]
- Aqib, A.I.; Ijaz, M.; Anjum, A.A.; Malik, M.A.R.; Mehmood, K.; Farooqi, S.H.; Hussain, K. Antibiotic susceptibilities and prevalence of Methicillin resistant Staphylococcus aureus (MRSA) isolated from bovine milk in Pakistan. Acta Trop. 2017, 176, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Altaf, M.; Ijaz, M.; Iqbal, M.K.; Rehman, A.; Avais, M.; Ghaffar, A.; Ayyub, R.M. Molecular Characterization of Methicillin Resistant Staphylococcus aureus (MRSA) and Associated Risk Factors with the Occurrence of Goat Mastitis. Pak. Vet. J. 2020, 40, 1–6. [Google Scholar] [CrossRef]
- Javed, M.U. Frequency and Antimicrobial Susceptibility of Methicillin and Vancomycin-Resistant Staphylococcus aureus from Bovine Milk. PVJ 2021, 41, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Maalik, A.; Ali, S.; Iftikhar, A.; Rizwan, M.; Ahmed, H.; Khan, I. Prevalence and Antibiotic Resistance of Staphylococcus aureus and Risk Factors for Bovine Subclinical Mastitis in District Kasur, Punjab, Pakistan. Pak. J. Zool. 2019, 51, 1123. [Google Scholar] [CrossRef]
- Kurjogi, M.M.; Kaliwal, B.B. Epidemiology of Bovine Mastitis in Cows of Dharwad District. Int. Sch. Res. Not. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Stefani, S.; Goglio, A. Methicillin-resistant Staphylococcus aureus: Related infections and antibiotic resistance. Int. J. Infect. Dis. 2010, 14, S19–S22. [Google Scholar] [CrossRef] [Green Version]
- Beyene, G.F. Antimicrobial Susceptibility of Staphylococcus aureus in Cow Milk, Afar Ethiopia. Int. J. Mod. Chem. Appl. Sci. 2016, 3, 280–283. [Google Scholar]
- Behiry, A.E.; Schlenker, G.; Szabo, I.; Roesler, U. In vitro susceptibility of Staphylococcus aureus strains isolated from cows with subclinical mastitis to different antimicrobial agents. J. Vet. Sci. 2012, 13, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Vásquez-García, A.; Silva, T.d.S.; Almeida-Queiroz, S.R.d.; Godoy, S.H.S.; Fernandes, A.M.; Sousa, R.L.M.; Franzolin, R. Species identification and antimicrobial susceptibility profile of bacteria causing subclinical mastitis in buffalo. Pesqui. Veterinária Bras. 2017, 37, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Ferreri, M.; Yu, F.; Liu, X.; Chen, L.; Su, J.; Han, B. Molecular types and antibiotic resistance of Staphylococcus aureus isolates from bovine mastitis in a single herd in China. Vet. J. 2012, 192, 550–552. [Google Scholar] [CrossRef] [PubMed]
- Chambers, H.F. Methicillin-resistant Staphylococcus aureus. Mechanisms of resistance and implications for treatment. Postgrad. Med. 2001, 109, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, F.M.; Agersø, Y.; Ahrens, P.; Jørgensen, J.C.Ø.; Madsen, M.; Jensen, L.B. Antimicrobial susceptibility and presence of resistance genes in staphylococci from poultry. Vet. Microbiol. 2000, 74, 353–364. [Google Scholar] [CrossRef]
- Saidi, R.; Cantekin, Z.; Khelef, D.; Ergün, Y.; Solmaz, H.; Kaidi, R. Antibiotic Susceptibility and Molecular Identification of Antibiotic Resistance Genes of Staphylococci Isolated from Bovine Mastitis in Algeria. Kafkas Üniversitesi Vet. Fakültesi Derg. 2015, 21, 513–520. [Google Scholar]
- Ganai, A.; Kotwal, S.K.; Wani, N.; Malik, M.A.; Jeelani, R.; Kour, S.; Zargar, R. Detection of mecA gene of methicillin resistant Staphylococcus aureus by PCR assay from raw milk. Indian J. Anim. Sci. 2016, 86, 508–511. [Google Scholar]
- Keyvan, E.; Yurdakul, O.; Demirtas, A.; Yalcin, H.; Bilgen, N. Identification of Methicillin-Resistant Staphylococcus aureus in Bulk Tank Milk. Food Sci. Technol. 2020, 40, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Selim, A.; Kelis, K.; AlKahtani, M.D.F.; Albohairy, F.M.; Attia, K.A. Prevalence, antimicrobial susceptibilities and risk factors of Methicillin resistant Staphylococcus aureus (MRSA) in dairy bovines. BMC Vet. Res. 2022, 18, 293. [Google Scholar] [CrossRef] [PubMed]
- Titouche, Y.; Hakem, A.; Houali, K.; Meheut, T.; Vingadassalon, N.; Ruiz-Ripa, L.; Salmi, D.; Chergui, A.; Chenouf, N.; Hennekinne, J.A.; et al. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) ST8 in raw milk and traditional dairy products in the Tizi Ouzou area of Algeria. J. Dairy Sci. 2019, 102, 6876–6884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, Y.; Zhang, L.; Wang, R. Prevalence, Enterotoxin Gene and Antimicrobial Resistance of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus from Clinical Healthy Dairy Cows. Pak. Vet. J. 2016, 10, 641. [Google Scholar]
- Usman, T.; Wang, Y.; Liu, C.; Wang, X.; Zhang, Y.; Yu, Y. Association study of single nucleotide polymorphisms in JAK 2 and STAT 5B genes and their differential mRNA expression with mastitis susceptibility in Chinese Holstein cattle. Anim. Genet. 2015, 46, 371–380. [Google Scholar] [CrossRef]
- Quinn, P.J.; Markey, B.K.; Carter, M.E.; Donnelly, W.J.C.; Leonard, F.C. Veterinary Microbiology and Microbial Disease; Blackwell Science: Hoboken, NJ, USA, 2002. [Google Scholar]
- Walsh, P.S.; Metzger, D.A.; Higushi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 1991, 10, 506–513, reprinted in Biotechniques 2013, 54, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Louie, L.; Goodfellow, J.; Mathieu, P.; Glatt, A.; Louie, M.; Simor, A.E. Rapid detection of methicillin-resistant staphylococci from blood culture bottles by using a multiplex PCR assay. J. Clin. Microbiol. 2002, 40, 2786–2790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Brakstad, O.G.; Aasbakk, K.; Maeland, J.A. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 1992, 30, 1654–1660. [Google Scholar] [CrossRef] [Green Version]
- Faisal, M. Optimasi Suhu Annealing Gen mecA Resistensi Antibiotik Amoksisilin dari Bakteri Staphylococcus aureus pada Pasien Ulkus Diabetik. J. Mhs. Farm. Fak. Kedokt. UNTAN 2019, 4, 1. [Google Scholar]
- Qu, Y.; Zhao, H.; Nobrega, D.B.; Cobo, E.R.; Han, B.; Zhao, Z.; Li, S.; Li, M.; Barkema, H.W.; Gao, J. Molecular epidemiology and distribution of antimicrobial resistance genes of Staphylococcus species isolated from Chinese dairy cows with clinical mastitis. J. Dairy Sci. 2019, 102, 1571–1583. [Google Scholar] [CrossRef] [Green Version]
Variable | Prevalence % (Infected/Total) | Chi-Square (χ2) | p-Value |
---|---|---|---|
Farm | |||
Harichand dairy farm | 65.30 (32/49) | 32.97 | 0.0001 * |
Agriculture University Peshawar dairy farm | 28% (7/25) | ||
Munda dairy farm | 41.66% (10/26) | ||
Hanifa research center Dir | 8.69% (2/23) | ||
Field 1 Dir | 28.57% (4/14) | ||
Field 2 Swat | 0% (0/13) | ||
Breed | |||
Holstein Friesian | 48.98% (24/49) | 8.08 | 0.018 * |
Jersey | 20% (8/40) | ||
Achai | 37.70% (23/61) |
Antimicrobial Agents | Conc (μg) | Zone Diameter (mm) | ||
---|---|---|---|---|
Sensitive % | Intermediate % | Resistant % | ||
Oxacillin | 10 | ≥13 (0%) | 11–12 (0%) | ≤10 (100%) |
Gentamycin | 10 | ≥15 (72.72%) | 13–14 (18.19%) | ≤12 (9.09%) |
Tetracycline | 30 | ≥19 (27.28%) | 15–18 (0%) | ≤14 (72.72) |
Ciprofloxacin | 10 | ≥21 (100%) | 16–20 (0%) | ≤15 (0%) |
Penicillin | 10 | ≥29 (0%) | - (0%) | ≤28 (100%) |
Amoxicillin | 30 | ≥20 (100%) | - (0%) | ≤19 (0%) |
Sulfamethoxazole/ trimethoprim | 25 | ≥16 (81.82%) | 11–15 (0%) | ≤10 (18.18%) |
Tobramycin | 10 | ≥15 (72.73%) | 13–14 (9.09%) | ≤12 (18.18%) |
Amikacin | 30 | ≥17 (63.64%) | 15–16 (9.09%) | ≤14 (27.27%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lubna; Hussain, T.; Shami, A.; Rafiq, N.; Khan, S.; Kabir, M.; Khan, N.U.; Khattak, I.; Kamal, M.; Usman, T. Antimicrobial Usage and Detection of Multidrug-Resistant Staphylococcus aureus: Methicillin- and Tetracycline-Resistant Strains in Raw Milk of Lactating Dairy Cattle. Antibiotics 2023, 12, 673. https://doi.org/10.3390/antibiotics12040673
Lubna, Hussain T, Shami A, Rafiq N, Khan S, Kabir M, Khan NU, Khattak I, Kamal M, Usman T. Antimicrobial Usage and Detection of Multidrug-Resistant Staphylococcus aureus: Methicillin- and Tetracycline-Resistant Strains in Raw Milk of Lactating Dairy Cattle. Antibiotics. 2023; 12(4):673. https://doi.org/10.3390/antibiotics12040673
Chicago/Turabian StyleLubna, Tahir Hussain, Ashwag Shami, Naseem Rafiq, Shehryar Khan, Muhammad Kabir, Naimat Ullah Khan, Irfan Khattak, Mustafa Kamal, and Tahir Usman. 2023. "Antimicrobial Usage and Detection of Multidrug-Resistant Staphylococcus aureus: Methicillin- and Tetracycline-Resistant Strains in Raw Milk of Lactating Dairy Cattle" Antibiotics 12, no. 4: 673. https://doi.org/10.3390/antibiotics12040673
APA StyleLubna, Hussain, T., Shami, A., Rafiq, N., Khan, S., Kabir, M., Khan, N. U., Khattak, I., Kamal, M., & Usman, T. (2023). Antimicrobial Usage and Detection of Multidrug-Resistant Staphylococcus aureus: Methicillin- and Tetracycline-Resistant Strains in Raw Milk of Lactating Dairy Cattle. Antibiotics, 12(4), 673. https://doi.org/10.3390/antibiotics12040673