Targeting BAM for Novel Therapeutics against Pathogenic Gram-Negative Bacteria
Abstract
:1. Introduction
2. Mutations in BAM Demonstrate Druggability and Enhancement of Antibiotic Sensitivity
3. Targeting BAM with Small Molecules
4. Targeting BAM with Peptides and Proteins
5. Bacterial Warfare Using BAM: Lectin-like Bacteriocins and Contact-Dependent Growth Inhibition
6. Targeting BAM for Vaccines
7. Summary and Future Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. Antibiotic Resistance Threats in the United States; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019.
- Lin, J.; Huang, S.; Zhang, Q. Outer membrane proteins: Key players for bacterial adaptation in host niches. Microbes Infect. 2002, 4, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Ricci, D.P.; Silhavy, T.J. The Bam machine: A molecular cooper. Biochim. Biophys. Acta 2012, 1818, 1067–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bos, M.P.; Robert, V.; Tommassen, J. Biogenesis of the gram-negative bacterial outer membrane. Annu. Rev. Microbiol. 2007, 61, 191–214. [Google Scholar] [CrossRef] [Green Version]
- Knowles, T.J.; Scott-Tucker, A.; Overduin, M.; Henderson, I.R. Membrane protein architects: The role of the BAM complex in outer membrane protein assembly. Nat. Rev. Microbiol. 2009, 7, 206–214. [Google Scholar] [CrossRef]
- Noinaj, N.; Rollauer, S.E.; Buchanan, S.K. The beta-barrel membrane protein insertase machinery from Gram-negative bacteria. Curr. Opin. Struct. Biol. 2015, 31, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Rouvière, P.E.; Gross, C.A. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev. 1996, 10, 3170–3182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazar, S.W.; Kolter, R. SurA assists the folding of Escherichia coli outer membrane proteins. J. Bacteriol. 1996, 178, 1770–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrens, S.; Maier, R.; de Cock, H.; Schmid, F.X.; Gross, C.A. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J. 2001, 20, 285–294. [Google Scholar] [CrossRef]
- Bitto, E.; McKay, D.B. Crystallographic Structure of SurA, a Molecular Chaperone that Facilitates Folding of Outer Membrane Porins. Structure 2002, 10, 1489–1498. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Zhang, X.; Chen, Y.; Wu, Y.; Zhou, Z.H.; Chang, Z.; Sui, S.-F. Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins. Proc. Natl. Acad. Sci. USA 2008, 105, 11939–11944. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Wang, R.; Ma, J.; Liu, Y.; Ezemaduka, A.N.; Chen, P.R.; Fu, X.; Chang, Z. DegP primarily functions as a protease for the biogenesis of beta-barrel outer membrane proteins in the Gram-negative bacterium Escherichia coli. FEBS J. 2014, 281, 1226–1240. [Google Scholar] [CrossRef]
- Rollauer, S.E.; Sooreshjani, M.A.; Noinaj, N.; Buchanan, S.K. Outer membrane protein biogenesis in Gram-negative bacteria. Philos Trans. R. Soc. Lond B. Biol. Sci. 2015, 370. [Google Scholar] [CrossRef] [Green Version]
- Driessen, A.J.; Nouwen, N. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 2008, 77, 643–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Malinverni, J.; Ruiz, N.; Kim, S.; Silhavy, T.J.; Kahne, D. Identification of a Multicomponent Complex Required for Outer Membrane Biogenesis in Escherichia coli. Cell 2005, 121, 235–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakelar, J.; Buchanan, S.K.; Noinaj, N. The structure of the beta-barrel assembly machinery complex. Science 2016, 351, 180–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Li, H.; Dong, H.; Zeng, Y.; Zhang, Z.; Paterson, N.G.; Stansfeld, P.J.; Wang, Z.; Zhang, Y.; Wang, W.; et al. Structural basis of outer membrane protein insertion by the BAM complex. Nature 2016, 531, 64–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Zheng, J.; Wang, Y.; Yang, X.; Liu, Y.; Sun, C.; Cao, B.; Zhou, H.; Ni, D.; Lou, J.; et al. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat. Struct. Mol. Biol. 2016, 23, 192–196. [Google Scholar] [CrossRef]
- Wu, R.; Bakelar, J.W.; Lundquist, K.; Zhang, Z.; Kuo, K.M.; Ryoo, D.; Pang, Y.T.; Sun, C.; White, T.; Klose, T.; et al. Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM. Nat. Commun. 2021, 12, 7131. [Google Scholar] [CrossRef]
- Tomasek, D.; Rawson, S.; Lee, J.; Wzorek, J.S.; Harrison, S.C.; Li, Z.; Kahne, D. Structure of a nascent membrane protein as it folds on the BAM complex. Nature 2020, 583, 473–478. [Google Scholar] [CrossRef]
- Iadanza, M.G.; Higgins, A.J.; Schiffrin, B.; Calabrese, A.N.; Brockwell, D.J.; Ashcroft, A.E.; Radford, S.E.; Ranson, N.A. Lateral opening in the intact beta-barrel assembly machinery captured by cryo-EM. Nat. Commun. 2016, 7, 12865. [Google Scholar] [CrossRef] [Green Version]
- Iadanza, M.G.; Schiffrin, B.; White, P.; Watson, M.A.; Horne, J.E.; Higgins, A.J.; Calabrese, A.N.; Brockwell, D.J.; Tuma, R.; Kalli, A.C.; et al. Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs. Commun. Biol. 2020, 3, 766. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Han, L.; Li, B.; Zhang, M.; Zhou, H.; Luo, Q.; Zhang, X.; Huang, Y. Structures of the beta-barrel assembly machine recognizing outer membrane protein substrates. FASEB J. 2021, 35, e21207. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Capalash, N.; Sharma, P. Immunoprotective potential of BamA, the outer membrane protein assembly factor, against MDR Acinetobacter baumannii. Sci. Rep. 2017, 7, 12411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noinaj, N.; Kuszak, A.J.; Gumbart, J.C.; Lukacik, P.; Chang, H.; Easley, N.C.; Lithgow, T.; Buchanan, S.K. Structural insight into the biogenesis of beta-barrel membrane proteins. Nature 2013, 501, 385–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, R.; Hsu, S.C.; Bedard, J.; Inoue, K.; Jarvis, P. The Omp85-related chloroplast outer envelope protein OEP80 is essential for viability in Arabidopsis. Plant Physiol. 2008, 148, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.C.; Patel, R.; Bedard, J.; Jarvis, P.; Inoue, K. Two distinct Omp85 paralogs in the chloroplast outer envelope membrane are essential for embryogenesis in Arabidopsis thaliana. Plant Signal Behav. 2008, 3, 1134–1135. [Google Scholar] [CrossRef] [Green Version]
- Topel, M.; Ling, Q.; Jarvis, P. Neofunctionalization within the Omp85 protein superfamily during chloroplast evolution. Plant Signal Behav. 2012, 7, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Noinaj, N.; Gumbart, J.C.; Buchanan, S.K. The beta-barrel assembly machinery in motion. Nat. Rev. Microbiol. 2017, 15, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Bakelar, J.; Buchanan, S.K.; Noinaj, N. Structural snapshots of the beta-barrel assembly machinery. FEBS J. 2017, 284, 1778–1786. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Stephenson, R.; Gichaba, A.; Noinaj, N. The big BAM theory: An open and closed case? Biochim. Et Biophys. Acta. Biomembr. 2020, 1862, 183062. [Google Scholar] [CrossRef]
- Noinaj, N.; Kuszak, A.J.; Balusek, C.; Gumbart, J.C.; Buchanan, S.K. Lateral Opening and Exit Pore Formation Are Required for BamA Function. Structure 2014, 22, 1055–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, C.T.; Selkrig, J.; Perry, A.J.; Noinaj, N.; Buchanan, S.K.; Lithgow, T. Dynamic association of BAM complex modules includes surface exposure of the lipoprotein BamC. J. Mol. Biol. 2012, 422, 545–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rassam, P.; Copeland, N.A.; Birkholz, O.; Toth, C.; Chavent, M.; Duncan, A.L.; Cross, S.J.; Housden, N.G.; Kaminska, R.; Seger, U.; et al. Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria. Nature 2015, 523, 333–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikora, A.E.; Wierzbicki, I.H.; Zielke, R.A.; Ryner, R.F.; Korotkov, K.V.; Buchanan, S.K.; Noinaj, N. Structural and functional insights into the role of BamD and BamE within the beta-barrel assembly machinery in Neisseria gonorrhoeae. J. Biol. Chem. 2018, 293, 1106–1119. [Google Scholar] [CrossRef] [Green Version]
- Bennion, D.; Charlson, E.S.; Coon, E.; Misra, R. Dissection of beta-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. Mol. Microbiol. 2010, 77, 1153–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browning, D.F.; Matthews, S.A.; Rossiter, A.E.; Sevastsyanovich, Y.R.; Jeeves, M.; Mason, J.L.; Wells, T.J.; Wardius, C.A.; Knowles, T.J.; Cunningham, A.F.; et al. Mutational and topological analysis of the Escherichia coli BamA protein. PLoS ONE 2013, 8, e84512. [Google Scholar] [CrossRef] [PubMed]
- Ghequire, M.G.K.; Swings, T.; Michiels, J.; Buchanan, S.K.; De Mot, R. Hitting with a BAM: Selective Killing by Lectin-Like Bacteriocins. mBio 2018, 9, e02138-17. [Google Scholar] [CrossRef] [Green Version]
- Hart, E.M.; Mitchell, A.M.; Konovalova, A.; Grabowicz, M.; Sheng, J.; Han, X.; Rodriguez-Rivera, F.P.; Schwaid, A.G.; Malinverni, J.C.; Balibar, C.J.; et al. A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier. Proc. Natl. Acad. Sci. USA 2019, 116, 21748–21757. [Google Scholar] [CrossRef] [Green Version]
- Imai, Y.; Meyer, K.J.; Iinishi, A.; Favre-Godal, Q.; Green, R.; Manuse, S.; Caboni, M.; Mori, M.; Niles, S.; Ghiglieri, M.; et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 2019, 576, 459–464. [Google Scholar] [CrossRef]
- Kaur, H.; Jakob, R.P.; Marzinek, J.K.; Green, R.; Imai, Y.; Bolla, J.R.; Agustoni, E.; Robinson, C.V.; Bond, P.J.; Lewis, K.; et al. The antibiotic darobactin mimics a beta-strand to inhibit outer membrane insertase. Nature 2021, 593, 125–129. [Google Scholar] [CrossRef]
- Lee, J.; Sutterlin, H.A.; Wzorek, J.S.; Mandler, M.D.; Hagan, C.L.; Grabowicz, M.; Tomasek, D.; May, M.D.; Hart, E.M.; Silhavy, T.J.; et al. Substrate binding to BamD triggers a conformational change in BamA to control membrane insertion. Proc. Natl. Acad. Sci. USA 2018, 115, 2359–2364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonard-Rivera, M.; Misra, R. Conserved residues of the putative L6 loop of Escherichia coli BamA play a critical role in the assembly of beta-barrel outer membrane proteins, including that of BamA itself. J. Bacteriol. 2012, 194, 4662–4668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundquist, K.; Bakelar, J.; Noinaj, N.; Gumbart, J.C. C-terminal kink formation is required for lateral gating in BamA. Proc. Natl. Acad. Sci. USA 2018, 115, E7942–E7949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luther, A.; Urfer, M.; Zahn, M.; Muller, M.; Wang, S.Y.; Mondal, M.; Vitale, A.; Hartmann, J.B.; Sharpe, T.; Monte, F.L.; et al. Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature 2019, 576, 452–458. [Google Scholar] [CrossRef]
- Storek, K.M.; Auerbach, M.R.; Shi, H.; Garcia, N.K.; Sun, D.; Nickerson, N.N.; Vij, R.; Lin, Z.; Chiang, N.; Schneider, K.; et al. Monoclonal antibody targeting the beta-barrel assembly machine of Escherichia coli is bactericidal. Proc. Natl. Acad. Sci. USA 2018, 115, 3692–3697. [Google Scholar] [CrossRef] [Green Version]
- Wzorek, J.S.; Lee, J.; Tomasek, D.; Hagan, C.L.; Kahne, D.E. Membrane integration of an essential beta-barrel protein prerequires burial of an extracellular loop. Proc. Natl. Acad. Sci. USA 2017, 114, 2598–2603. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.D.; Iinishi, A.; Modaresi, S.M.; Yoo, B.K.; Curtis, T.D.; Lariviere, P.J.; Liang, L.; Son, S.; Nicolau, S.; Bargabos, R.; et al. Computational identification of a systemic antibiotic for gram-negative bacteria. Nat. Microbiol. 2022, 7, 1661–1672. [Google Scholar] [CrossRef]
- Namdari, F.; Hurtado-Escobar, G.A.; Abed, N.; Trotereau, J.; Fardini, Y.; Giraud, E.; Velge, P.; Virlogeux-Payant, I. Deciphering the roles of BamB and its interaction with BamA in outer membrane biogenesis, T3SS expression and virulence in Salmonella. PLoS ONE 2012, 7, e46050. [Google Scholar] [CrossRef]
- Ruiz, N.; Falcone, B.; Kahne, D.; Silhavy, T.J. Chemical conditionality: A genetic strategy to probe organelle assembly. Cell 2005, 121, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Steenhuis, M.; Abdallah, A.M.; de Munnik, S.M.; Kuhne, S.; Sterk, G.J.; van den Berg van Saparoea, B.; Westerhausen, S.; Wagner, S.; van der Wel, N.N.; Wijtmans, M.; et al. Inhibition of autotransporter biogenesis by small molecules. Mol. Microbiol. 2019, 112, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Vuong, P.; Bennion, D.; Mantei, J.; Frost, D.; Misra, R. Analysis of YfgL and YaeT interactions through bioinformatics, mutagenesis, and biochemistry. J. Bacteriol. 2008, 190, 1507–1517. [Google Scholar] [CrossRef] [Green Version]
- Fuangthong, M.; Sallabhan, R.; Atichartpongkul, S.; Rangkadilok, N.; Sriprang, R.; Satayavivad, J.; Mongkolsuk, S. The omlA gene is involved in multidrug resistance and its expression is inhibited by coumarins in Xanthomonas campestris pv. phaseoli. Arch Microbiol. 2008, 189, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Knowles, T.J.; Browning, D.F.; Jeeves, M.; Maderbocus, R.; Rajesh, S.; Sridhar, P.; Manoli, E.; Emery, D.; Sommer, U.; Spencer, A.; et al. Structure and function of BamE within the outer membrane and the beta-barrel assembly machine. EMBO Rep. 2011, 12, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochsner, U.A.; Vasil, A.I.; Johnson, Z.; Vasil, M.L. Pseudomonas aeruginosa fur overlaps with a gene encoding a novel outer membrane lipoprotein, OmlA. J. Bacteriol. 1999, 181, 1099–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sklar, J.G.; Wu, T.; Gronenberg, L.S.; Malinverni, J.C.; Kahne, D.; Silhavy, T.J. Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. Proc. Natl. Acad. Sci. USA 2007, 104, 6400–6405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volokhina, E.B.; Beckers, F.; Tommassen, J.; Bos, M.P. The beta-barrel outer membrane protein assembly complex of Neisseria meningitidis. J. Bacteriol. 2009, 191, 7074–7085. [Google Scholar] [CrossRef] [Green Version]
- Anwari, K.; Webb, C.T.; Poggio, S.; Perry, A.J.; Belousoff, M.; Celik, N.; Ramm, G.; Lovering, A.; Sockett, R.E.; Smit, J.; et al. The evolution of new lipoprotein subunits of the bacterial outer membrane BAM complex. Mol. Microbiol. 2012, 84, 832–844. [Google Scholar] [CrossRef]
- Storek, K.M.; Vij, R.; Sun, D.; Smith, P.A.; Koerber, J.T.; Rutherford, S.T. The Escherichia coli beta-Barrel Assembly Machinery Is Sensitized to Perturbations under High Membrane Fluidity. J. Bacteriol. 2019, 201. [Google Scholar] [CrossRef] [Green Version]
- Konovalova, A.; Grabowicz, M.; Balibar, C.J.; Malinverni, J.C.; Painter, R.E.; Riley, D.; Mann, P.A.; Wang, H.; Garlisi, C.G.; Sherborne, B.; et al. Inhibitor of intramembrane protease RseP blocks the sigma(E) response causing lethal accumulation of unfolded outer membrane proteins. Proc. Natl. Acad. Sci. USA 2018, 115, E6614–E6621. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, T.F.; Ricci, D.P.; Silhavy, T.J. Classifying beta-Barrel Assembly Substrates by Manipulating Essential Bam Complex Members. J. Bacteriol. 2016, 198, 1984–1992. [Google Scholar] [CrossRef] [Green Version]
- Onufryk, C.; Crouch, M.-L.; Fang, F.C.; Gross, C.A. Characterization of Six Lipoproteins in the σE Regulon. J. Bacteriol. 2005, 187, 4552–4561. [Google Scholar] [CrossRef] [Green Version]
- Rigel, N.W.; Schwalm, J.; Ricci, D.P.; Silhavy, T.J. BamE modulates the Escherichia coli beta-barrel assembly machine component BamA. J. Bacteriol. 2012, 194, 1002–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malinverni, J.C.; Werner, J.; Kim, S.; Sklar, J.G.; Kahne, D.; Misra, R.; Silhavy, T.J. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol. Microbiol. 2006, 61, 151–164. [Google Scholar] [CrossRef]
- Genevrois, S.; Steeghs, L.; Roholl, P.; Letesson, J.J.; van der Ley, P. The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane. EMBO J. 2003, 22, 1780–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voulhoux, R.; Tommassen, J. Omp85, an evolutionarily conserved bacterial protein involved in outer-membrane-protein assembly. Res. Microbiol. 2004, 155, 129–135. [Google Scholar] [CrossRef]
- Gentle, I.; Gabriel, K.; Beech, P.; Waller, R.; Lithgow, T. The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J. Cell Biol. 2004, 164, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Psonis, J.J.; Chahales, P.; Henderson, N.S.; Rigel, N.W.; Hoffman, P.S.; Thanassi, D.G. The small molecule nitazoxanide selectively disrupts BAM-mediated folding of the outer membrane usher protein. J. Biol. Chem. 2019, 294, 14357–14369. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, X.; Zhang, J.; Lin, Y.; You, X.; Chen, M.; Wang, Y.; Zhu, N.; Si, S. Identification of a Compound That Inhibits the Growth of Gram-Negative Bacteria by Blocking BamA-BamD Interaction. Front. Microbiol. 2020, 11, 1252. [Google Scholar] [CrossRef]
- Vij, R.; Lin, Z.; Chiang, N.; Vernes, J.M.; Storek, K.M.; Park, S.; Chan, J.; Meng, Y.G.; Comps-Agrar, L.; Luan, P.; et al. A targeted boost-and-sort immunization strategy using Escherichia coli BamA identifies rare growth inhibitory antibodies. Sci. Rep. 2018, 8, 7136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, P.; Haysom, S.F.; Iadanza, M.G.; Higgins, A.J.; Machin, J.M.; Whitehouse, J.M.; Horne, J.E.; Schiffrin, B.; Carpenter-Platt, C.; Calabrese, A.N.; et al. The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding. Nat. Commun. 2021, 12, 4174. [Google Scholar] [CrossRef]
- Kaur, H.; Hartmann, J.B.; Jakob, R.P.; Zahn, M.; Zimmermann, I.; Maier, T.; Seeger, M.A.; Hiller, S. Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach. J. Biomol. NMR 2019, 73, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Urfer, M.; Bogdanovic, J.; Lo Monte, F.; Moehle, K.; Zerbe, K.; Omasits, U.; Ahrens, C.H.; Pessi, G.; Eberl, L.; Robinson, J.A. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli. J. Biol. Chem. 2016, 291, 1921–1932. [Google Scholar] [CrossRef] [Green Version]
- Mori, N.; Ishii, Y.; Tateda, K.; Kimura, S.; Kouyama, Y.; Inoko, H.; Mitsunaga, S.; Yamaguchi, K.; Yoshihara, E. A peptide based on homologous sequences of the beta-barrel assembly machinery component BamD potentiates antibiotic susceptibility of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2012, 67, 2173–2181. [Google Scholar] [CrossRef] [Green Version]
- Hagan, C.L.; Wzorek, J.S.; Kahne, D. Inhibition of the beta-barrel assembly machine by a peptide that binds BamD. Proc. Natl. Acad. Sci. USA 2015, 112, 2011–2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vimala, A.; Ramakrishnan, C.; Gromiha, M.M. Identifying a potential receptor for the antibacterial peptide of sponge Axinella donnani endosymbiont. Gene 2015, 566, 166–174. [Google Scholar] [CrossRef]
- Ghequire, M.G.K.; De Mot, R. LlpB represents a second subclass of lectin-like bacteriocins. Microb. Biotechnol. 2019, 12, 567–573. [Google Scholar] [CrossRef] [Green Version]
- Shamir, E.R.; Warthan, M.; Brown, S.P.; Nataro, J.P.; Guerrant, R.L.; Hoffman, P.S. Nitazoxanide inhibits biofilm production and hemagglutination by enteroaggregative Escherichia coli strains by blocking assembly of AafA fimbriae. Antimicrob. Agents Chemother. 2010, 54, 1526–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zav’yalov, V.; Zavialov, A.; Zav’yalova, G.; Korpela, T. Adhesive organelles of Gram-negative pathogens assembled with the classical chaperone/usher machinery: Structure and function from a clinical standpoint. FEMS Microbiol. Rev. 2010, 34, 317–378. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, N.; Jetter, P.; Ueberbacher, B.J.; Werneburg, M.; Zerbe, K.; Steinmann, J.; Van der Meijden, B.; Bernardini, F.; Lederer, A.; Dias, R.L.; et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 2010, 327, 1010–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagan, C.L.; Westwood, D.B.; Kahne, D. bam Lipoproteins Assemble BamA in vitro. Biochemistry 2013, 52, 6108–6113. [Google Scholar] [CrossRef] [Green Version]
- Diederichs, K.A.; Ni, X.; Rollauer, S.E.; Botos, I.; Tan, X.; King, M.S.; Kunji, E.R.S.; Jiang, J.; Buchanan, S.K. Structural insight into mitochondrial beta-barrel outer membrane protein biogenesis. Nat. Commun. 2020, 11, 3290. [Google Scholar] [CrossRef] [PubMed]
- Lundquist, K.; Billings, E.; Bi, M.; Wellnitz, J.; Noinaj, N. The assembly of beta-barrel membrane proteins by BAM and SAM. Mol. Microbiol. 2021, 115, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Paschen, S.A.; Neupert, W.; Rapaport, D. Biogenesis of beta-barrel membrane proteins of mitochondria. Trends Biochem. Sci. 2005, 30, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Kutik, S.; Stojanovski, D.; Becker, L.; Becker, T.; Meinecke, M.; Kruger, V.; Prinz, C.; Meisinger, C.; Guiard, B.; Wagner, R.; et al. Dissecting membrane insertion of mitochondrial beta-barrel proteins. Cell 2008, 132, 1011–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, R. Assembly of the beta-Barrel Outer Membrane Proteins in Gram-Negative Bacteria, Mitochondria, and Chloroplasts. ISRN Mol. Biol. 2012, 2012, 708203. [Google Scholar] [CrossRef] [Green Version]
- Richardson, L.G.; Paila, Y.D.; Siman, S.R.; Chen, Y.; Smith, M.D.; Schnell, D.J. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane. Front. Plant Sci. 2014, 5, 269. [Google Scholar] [CrossRef] [Green Version]
- Schwenkert, S.; Dittmer, S.; Soll, J. Structural components involved in plastid protein import. Essays Biochem. 2018, 62, 65–75. [Google Scholar] [CrossRef]
- Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004, 32, W526–W531. [Google Scholar] [CrossRef] [Green Version]
- Beard, H.; Cholleti, A.; Pearlman, D.; Sherman, W.; Loving, K.A. Applying physics-based scoring to calculate free energies of binding for single amino acid mutations in protein-protein complexes. PLoS ONE 2013, 8, e82849. [Google Scholar] [CrossRef] [Green Version]
- Gross, S.; Panter, F.; Pogorevc, D.; Seyfert, C.E.; Deckarm, S.; Bader, C.D.; Herrmann, J.; Muller, R. Improved broad-spectrum antibiotics against Gram-negative pathogens via darobactin biosynthetic pathway engineering. Chem. Sci. 2021, 12, 11882–11893. [Google Scholar] [CrossRef]
- Willett, J.L.; Gucinski, G.C.; Fatherree, J.P.; Low, D.A.; Hayes, C.S. Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways. Proc. Natl. Acad. Sci. UAS 2015, 112, 11341–11346. [Google Scholar] [CrossRef] [Green Version]
- Aoki, S.K.; Malinverni, J.C.; Jacoby, K.; Thomas, B.; Pamma, R.; Trinh, B.N.; Remers, S.; Webb, J.; Braaten, B.A.; Silhavy, T.J.; et al. Contact-dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB. Mol. Microbiol. 2008, 70, 323–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruhe, Z.C.; Wallace, A.B.; Low, D.A.; Hayes, C.S. Receptor polymorphism restricts contact-dependent growth inhibition to members of the same species. mBio 2013, 4, e00480-13. [Google Scholar] [CrossRef] [Green Version]
- Webb, C.T.; Heinz, E.; Lithgow, T. Evolution of the beta-barrel assembly machinery. Trends Microbiol. 2012, 20, 612–620. [Google Scholar] [CrossRef]
- Heinz, E.; Lithgow, T. A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. Front. Microbiol. 2014, 5, 370. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.; O’Donoghue, M.; Feeney, A.; Sleator, R.D. Acinetobacter baumannii: An emerging opportunistic pathogen. Virulence 2012, 3, 243–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havenga, B.; Ndlovu, T.; Clements, T.; Reyneke, B.; Waso, M.; Khan, W. Exploring the antimicrobial resistance profiles of WHO critical priority list bacterial strains. BMC Microbiol. 2019, 19, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, S.; Ranaghan, K.E.; Azam, S.S. Combating tigecycline resistant Acinetobacter baumannii: A leap forward towards multi-epitope based vaccine discovery. Eur. J. Pharm. Sci. 2019, 132, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Rami, F.E.; Zielke, R.A.; Wi, T.; Sikora, A.E.; Unemo, M. Quantitative Proteomics of the 2016 WHO Neisseria gonorrhoeae Reference Strains Surveys Vaccine Candidates and Antimicrobial Resistance Determinants. Mol. Cell Proteom. 2019, 18, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Baarda, B.I.; Zielke, R.A.; Nicholas, R.A.; Sikora, A.E. PubMLST for Antigen Allele Mining to Inform Development of Gonorrhea Protein-Based Vaccines. Front. Microbiol. 2018, 9, 2971. [Google Scholar] [CrossRef]
- Zielke, R.A.; Wierzbicki, I.H.; Baarda, B.I.; Gafken, P.R.; Soge, O.O.; Holmes, K.K.; Jerse, A.E.; Unemo, M.; Sikora, A.E. Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea. Mol. Cell Proteom. 2016, 15, 2338–2355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, Q.; Wang, X.; Wang, X.; Teng, D.; Wang, J. In silico analysis and recombinant expression of BamA protein as a universal vaccine against Escherichia coli in mice. Appl. Microbiol. Biotechnol. 2016, 100, 5089–5098. [Google Scholar] [CrossRef] [PubMed]
- Grassmann, A.A.; Kremer, F.S.; Dos Santos, J.C.; Souza, J.D.; Pinto, L.D.S.; McBride, A.J.A. Discovery of Novel Leptospirosis Vaccine Candidates Using Reverse and Structural Vaccinology. Front. Immunol. 2017, 8, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baliga, P.; Shekar, M.; Venugopal, M.N. Potential Outer Membrane Protein Candidates for Vaccine Development Against the Pathogen Vibrio anguillarum: A Reverse Vaccinology Based Identification. Curr. Microbiol. 2018, 75, 368–377. [Google Scholar] [CrossRef] [PubMed]
Bam Mutant | Mutation | Effect | Publication | |
---|---|---|---|---|
1 | BamA | BamAΔR64 | Slight sensitivity to vancomycin and rifampin | Bennion et al., 2010. [36] |
2 | BamA | 46 N-terminal insertions into POTRA domains and linker, 41 insertions into β-barrel | Variable vancomycin sensitivity | Browning et al., 2013. [37] |
3 | BamA | BamA G667V, T671A, R666C | Resistance to LlpA | Ghequire et al., 2018. [38] |
4 | BamA | BamA E470K | Resistance to MRL-494 | Hart et al., 2019. [39] |
5 | BamA | BamA G429R, G429V, T434A, Q445P, A705T, G433D/E435K/F394V | Resistance to darobactin | Imai et al., 2019. [40] |
6 | BamA | G429V, G807V, E435K, Q445P, Q445P/T434A | Increased sensitivity to darobactin | Kaur et al., 2021 [41] |
7 | BamA | BamA F494L | With LptD Y721D, decreased vancomycin sensitivity; in WT, increased vancomycin sensitivity in nutrient-depleting conditions | Lee et al., 2018. [42] |
8 | BamA | R641E, Δ641RGF643, R641A/G642A/F643A, R641A/G642A, R641A/F643A, G642A/F643A | Increased sensitivity to vancomycin and rifampin | Leonard-Rivera et al., 2012. [43] |
9 | BamA | G807A, G807V, G807F | G807A, G807V, G807F: increased sensitivity to rifampicin; G807V, G807F: increased sensitivity to vancomycin | Lundquist et al., 2018. [44] |
10 | BamA | BamA D703Y | Decreased sensitivity to colistin | Luther et al., 2019. [45] |
11 | BamA | E554Q, H555Y, E554Q/H555Y, L6 deletion | E554Q, H555Y, E554Q/H555Y: decreased sensitivity to MAB1; L6 deletion: decreased sensitivity to MAB2 | Storek et al., 2018. [46] |
12 | BamA | BamA G771A, F738, V660A/R661A, V660A/R661A-LL (loop-to-lumen disulfide bond) | A strain lacking BamA: G771A: hypersensitivity to rifampicin; Strain lacking DegP-BamA G771A, F738: resistant to rifampicin, V660A/R661A: sensitive to rifampicin; (BamA V660A/R661A)-LL: decreased sensitivity to rifampicin | Wzorek et al., 2017. [47] |
13 | BamA | BamA G429, G809, L501Q, P782, G429V/G807V | Resistance to dynobactin | Miller et al., 2022. [48] |
14 | BamB | ΔBamB, BamB D227A, D229A, L173S/L175S/R176A | ΔBamB: increased sensitivity to amoxicillin; ΔBamB, D277A, and L173S/L175S/R176A: increased sensitivity to vancomycin, erythromycin, and bacitracin; ΔBamB, D277A, D229A, and L173S/L175S/R176A: increased sensitivity to rifampin, flumequine, and enrofloxacin | Namdari et al., 2012. [49] |
15 | BamB | recessive LOF mutations in yfgML locus via independent element insertions | yfgML: resistance to bile salts, chlorobiphenyl vancomycin (CBPV) | Ruiz et al., 2005. [50] |
16 | BamB | ΔBamB | Increased sensitivity to VUF15259 | Steenhuis et al., 2019. [51] |
17 | BamB | S172-A180 amino acid substitutions (scramble 1 & 2), L173S, L175S, R176A, L173S/L175S, L173S/R176A, L175S/R176A, L173S/L175S/R176A, YfgL(D227A)-His6 | Scramble 1 and 2: vancomycin hypersensitivity; R176A and either L173S or L175S: vancomycin sensitivity; L173S & L175S & R176A: vancomycin hypersensitivity; YfgL(D227A)-His6: slight increase in vancomycin sensitivity | Vuong et al., 2008. [52] |
18 | BamE | omlA: 170 bp insertion mutation via single recombination | Increased sensitivity to novobiocin, coumermycinA1, chloramphenicol, SDS, and menadione | Fuangthong et al., 2008. [53] |
19 | BamE | C20G, I32G, Q34G/C, G35C, N36G/C, Y37G, L38G, I46G, V55G, L59G, M64G/C, D66G, F68G/C, W73G, F74G, Y75G/C, V76G, R78G, Q88C, L91G, L93G, F95G/C, L101G | Increased sensitivity to vancomycin | Knowles et al., 2011. [54] |
20 | BamE | mutant strains: 6B- producing lesser amounts of OmlA (BamE) protein, 3A- lacking a functional omlA gene | 6B & 3A: increased sensitivity to SDS, deoxycholate 3A: increased sensitivity to nalidixic acid, rifampin, novobiocin, and chloramphenicol | Ochsner et al., 1999. [55] |
21 | BamE | smpA (strain lacking BamE) | Increased sensitivity (4-fold) to rifampin and cholate (2-fold); lethality on media with 0.5% SDS and 1 mM EDTA | Sklar et al., 2007. [56] |
22 | BamE | BamE deletion | Increased sensitivity to vancomycin | Volokhina et al., 2009. [57] |
23 | BamF | ΔBamF | Increased sensitivity to TritonX-100, SDS, nalidixic acid, rifampicin, vancomycin, and erythromycin | Anwari et al., 2012. [58] |
24 | BamA, BamB, BamC, BamE | ΔBamB, ΔBamC, ΔBamE, bamA101, BamA H555Y, V322A, P518L, T571M, G575D, G575S | ΔBamB, ΔBamC, ΔBamE, bamA101: increased sensitivity to MAB1; BamA H555Y, V322A, P518L, T571M, G575D, G575S: resistance to MAB1 | Storek et al., 2019. [59] |
25 | BamA, BamB, BamD, BamE | mutant strain bamA101, ΔBamB, ΔBamC, BamD L13P | Mutant strain bamA101, BamD L13P: significantly increased sensitivity to batimastat; ΔBamB, ΔBamC: slightly increased sensitivity to batimastat | Konovalova et al., 2018. [60] |
26 | BamA, BamD | bamA101 (mutant strain with lower BamA expression), BamDRBS, BamDSS | Sensitivity to bile salts and SDS that is increased at temperatures lower than 37 °C | Mahoney et al., 2016. [61] |
27 | BamB, BamC | ΔyfgL (BamB deletion) ΔnlpB (BamC deletion) | ΔyfgL eliminated by kanamycin, increased sensitivity to SDS and novobiocin; ΔnlpB increased sensitivity to kanamycin | Onufryk et al., 2005. [62] |
28 | BamB, BamC, BamE | bamB::kan, ΔBamC/ΔBamE | bamB::kan, ΔBamC/ΔBamE: increased sensitivity to bacitracin, erythromycin, novobiocin, rifampin, and vancomycin | Rigel et al., 2012. [63] |
29 | BamC, BamD | BamC: insertion at codon 41 (nlpB::kan); BamD: insertion at codon 227 (yfiO::kan) | yfiO::kan allele caused lethality on a BamB LOF allele yfgl8 background; nlpB::dan yflG8 double mutants had irregular colony morphology when exposed to kanamycin | Wu et al., 2005. [15] |
Class of Antimicrobial | Name | Source | Cellular Target | MIC | Ref. |
---|---|---|---|---|---|
Small Molecule | VUF 15259 | Autotransporter (AT) pathway | N/A | Steenhuis et al., 2019. [51] | |
Nitazoxanide (NTZ) | BamB, BamE, BamD | N/A | Psonis et al., 2019. [68] | ||
MRL-494 | BamA (Gram-negatives); Cytoplasmic membrane integrity (Gram-positives) | 25 μM (E. coli JCM320) | Hart et al., 2019. [39] | ||
IMB-H4 | BamA, BamD | 4 μg/mL (E. coli ATCC 25922) | Li et al., 2020. [69] | ||
Peptide/Protein | |||||
Antibodies | MAB1 (monoclonal antibody) | Mouse/rat | BamA | N/A | Storek et al., 2018. [46] |
anti-BamA monoclonal antibodies | Rat | BamA | N/A | Vij et al., 2018. [70] | |
Fabs/Nanobodies | Fab1 | BamA | N/A | White et al., 2021. [71] | |
nanoE6 | BamA | N/A | Kaur et al., 2019. [72] | ||
nanoE7 | BamA | N/A | Kaur et al., 2019. [72] | ||
Peptides | JB-95 (β-hairpin peptidomimetic) | possibly BamA or LptD; active against Gram-positives | 0.15 μg/mL E. coli (E. coli ATCC 25922) | Urfer et al., 2016. [73] | |
FIRL (BamD mimic) | BamD | No solo antimicrobial activity; synergizes with existing drugs to lower MIC | Mori et al., 2012. [74] | ||
Chimeric peptidomimetic antibiotics (peptides 3, 4, 7, 8) | BamA, LPS | Luther et al., 2019. [45] | |||
Peptide 2 (BamA mimic) | E. coli | BamD | N/A | Hagan et al., 2015. [75] | |
Antibacterial peptide | Axinella donnani | BamA | N/A | Vimala et al., 2015. [76] | |
Darobactin A | Photorhabdus khanii | BamA | 4 μg/mL (E. coli MG1655) 2 μg/mL (E. coli ATCC 25922) | Imai et al., 2019. [40] | |
Dynobactin A | Photorhabdus australis | BamA | 16 μg/mL (E. coli MG1655) 8 μg/mL (E. coli ATCC 25922) | Miller et al., 2022. [48] | |
Lectin-like bacteriocins | LlpA | BamA | N/A | Ghequire et al., 2018; Ghequire et al., 2019. [38,77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Overly Cottom, C.; Stephenson, R.; Wilson, L.; Noinaj, N. Targeting BAM for Novel Therapeutics against Pathogenic Gram-Negative Bacteria. Antibiotics 2023, 12, 679. https://doi.org/10.3390/antibiotics12040679
Overly Cottom C, Stephenson R, Wilson L, Noinaj N. Targeting BAM for Novel Therapeutics against Pathogenic Gram-Negative Bacteria. Antibiotics. 2023; 12(4):679. https://doi.org/10.3390/antibiotics12040679
Chicago/Turabian StyleOverly Cottom, Claire, Robert Stephenson, Lindsey Wilson, and Nicholas Noinaj. 2023. "Targeting BAM for Novel Therapeutics against Pathogenic Gram-Negative Bacteria" Antibiotics 12, no. 4: 679. https://doi.org/10.3390/antibiotics12040679
APA StyleOverly Cottom, C., Stephenson, R., Wilson, L., & Noinaj, N. (2023). Targeting BAM for Novel Therapeutics against Pathogenic Gram-Negative Bacteria. Antibiotics, 12(4), 679. https://doi.org/10.3390/antibiotics12040679