Personal Care Products as a Contributing Factor to Antimicrobial Resistance: Current State and Novel Approach to Investigation
Abstract
:1. Introduction
Usage of Personal Care Products and the Spread of Infectious Diseases
2. Parabens, Triclocarban, and Triclosan: The Dark Side of Personal Care Products
The Mechanisms of Antibiotic Resistance
3. Modeling and Tracking Antimicrobial Resistance: From Bi-Dimensional Models to Artificial Intelligence
3.1. The Potentiality of the Zebrafish Model
3.2. Artificial Intelligence against Antimicrobial Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soni, M.G.; Carabin, I.G.; Burdock, G.A. Safety Assessment of Esters of P-Hydroxybenzoic Acid (Parabens). Food Chem. Toxicol. 2005, 43, 985–1015. [Google Scholar] [CrossRef]
- Halden, R.U.; Lindeman, A.E.; Aiello, A.E.; Andrews, D.; Arnold, W.A.; Fair, P.; Fuoco, R.E.; Geer, L.A.; Johnson, P.I.; Lohmann, R.; et al. The Florence Statement on Triclosan and Triclocarban. Environ. Health Perspect. 2017, 125, 064501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vimalkumar, K.; Seethappan, S.; Pugazhendhi, A. Fate of Triclocarban (TCC) in Aquatic and Terrestrial Systems and Human Exposure. Chemosphere 2019, 230, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, G.; Zhu, Q.; Liao, C. Occurrence of Parabens, Triclosan and Triclocarban in Paired Human Urine and Indoor Dust from Two Typical Cities in China and Its Implications for Human Exposure. Sci. Total Environ. 2021, 786, 147485. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Mortimer, M.; Cheng, H.; Sang, N.; Guo, L.-H. Parabens as Chemicals of Emerging Concern in the Environment and Humans: A Review. Sci. Total Environ. 2021, 778, 146150. [Google Scholar] [CrossRef]
- Loraine, G.A.; Pettigrove, M.E. Seasonal Variations in Concentrations of Pharmaceuticals and Personal Care Products in Drinking Water and Reclaimed Wastewater in Southern California. Environ. Sci. Technol. 2006, 40, 687–695. [Google Scholar] [CrossRef]
- Liao, C.; Lee, S.; Moon, H.-B.; Yamashita, N.; Kannan, K. Parabens in Sediment and Sewage Sludge from the United States, Japan, and Korea: Spatial Distribution and Temporal Trends. Environ. Sci. Technol. 2013, 47, 10895–10902. [Google Scholar] [CrossRef]
- Singer, H.; Müller, S.; Tixier, C.; Pillonel, L. Triclosan: Occurrence and Fate of a Widely Used Biocide in the Aquatic Environment: Field Measurements in Wastewater Treatment Plants, Surface Waters, and Lake Sediments. Environ. Sci. Technol. 2002, 36, 4998–5004. [Google Scholar] [CrossRef]
- Ying, G.-G.; Kookana, R.S. Triclosan in Wastewaters and Biosolids from Australian Wastewater Treatment Plants. Environ. Int. 2007, 33, 199–205. [Google Scholar] [CrossRef]
- Zhao, J.-L.; Ying, G.-G.; Liu, Y.-S.; Chen, F.; Yang, J.-F.; Wang, L. Occurrence and Risks of Triclosan and Triclocarban in the Pearl River System, South China: From Source to the Receiving Environment. J. Hazard. Mater. 2010, 179, 215–222. [Google Scholar] [CrossRef]
- Ying, G.-G.; Kookana, R.S.; Kolpin, D.W. Occurrence and Removal of Pharmaceutically Active Compounds in Sewage Treatment Plants with Different Technologies. J. Environ. Monit. 2009, 11, 1498–1505. [Google Scholar] [CrossRef]
- Nishi, I.; Kawakami, T.; Onodera, S. Monitoring of Triclosan in the Surface Water of the Tone Canal, Japan. Bull. Environ. Contam. Toxicol. 2008, 80, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Shi, J.; Wang, X.; Zhu, Q.; Kannan, K. Occurrence and Distribution of Parabens and Bisphenols in Sediment from Northern Chinese Coastal Areas. Environ. Pollut. 2019, 253, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-H.; Feng, J.-L.; Xi, N.-N.; Sun, J.-H. Determination of Paraben and Its Metabolite in Sediments by Ultra Performance Liquid Chromatography-Triple Quadrupole Tandem Mass Spectrometry. Chin. J. Anal. Chem. 2018, 12, 260–264. [Google Scholar]
- Huang, C.; Wu, L.-H.; Liu, G.-Q.; Shi, L.; Guo, Y. Occurrence and Ecological Risk Assessment of Eight Endocrine-Disrupting Chemicals in Urban River Water and Sediments of South China. Arch. Environ. Contam. Toxicol. 2018, 75, 224–235. [Google Scholar] [CrossRef]
- Carmona, E.; Andreu, V.; Picó, Y. Occurrence of Acidic Pharmaceuticals and Personal Care Products in Turia River Basin: From Waste to Drinking Water. Sci. Total Environ. 2014, 484, 53–63. [Google Scholar] [CrossRef]
- Xue, X.; Xue, J.; Liu, W.; Adams, D.H.; Kannan, K. Trophic Magnification of Parabens and Their Metabolites in a Subtropical Marine Food Web. Environ. Sci. Technol. 2017, 51, 780–789. [Google Scholar] [CrossRef]
- Chen, J.; Hartmann, E.M.; Kline, J.; Van Den Wymelenberg, K.; Halden, R.U. Assessment of Human Exposure to Triclocarban, Triclosan and Five Parabens in U.S. Indoor Dust Using Dispersive Solid Phase Extraction Followed by Liquid Chromatography Tandem Mass Spectrometry. J. Hazard. Mater. 2018, 360, 623–630. [Google Scholar] [CrossRef]
- Kenda, M.; Karas, K.N.; Iida, M.; Kojima, H.; Sollner, D.M. Triclocarban, Triclosan, Bromochlorophene, Chlorophene, and Climbazole Effects on Nuclear Receptors: An in Silico and in Vitro Study. Environ. Health Perspect. 2020, 128, 107005. [Google Scholar] [CrossRef]
- Nowak, K.; Ratajczak-Wrona, W.; Górska, M.; Jabłońska, E. Parabens and Their Effects on the Endocrine System. Mol. Cell. Endocrinol. 2018, 474, 238–251. [Google Scholar] [CrossRef]
- Merola, C.; Lai, O.; Conte, A.; Crescenzo, G.; Torelli, T.; Alloro, M.; Perugini, M. Toxicological Assessment and Developmental Abnormalities Induced by Butylparaben and Ethylparaben Exposure in Zebrafish Early-Life Stages. Environ. Toxicol. Pharmacol. 2020, 80, 103504. [Google Scholar] [CrossRef] [PubMed]
- Iannetta, A.; Caioni, G.; Di Vito, V.; Benedetti, E.; Perugini, M.; Merola, C. Developmental Toxicity Induced by Triclosan Exposure in Zebrafish Embryos. Birth Defects Res. 2022, 114, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Caioni, G.; d’Angelo, M.; Panella, G.; Merola, C.; Cimini, A.; Amorena, M.; Benedetti, E.; Perugini, M. Environmentally Relevant Concentrations of Triclocarban Affect Morphological Traits and Melanogenesis in Zebrafish Larvae. Aquat. Toxicol. 2021, 236, 105842. [Google Scholar] [CrossRef] [PubMed]
- Pycke, B.F.G.; Geer, L.A.; Dalloul, M.; Abulafia, O.; Jenck, A.M.; Halden, R.U. Human Fetal Exposure to Triclosan and Triclocarban in an Urban Population from Brooklyn, New York. Environ. Sci. Technol. 2014, 48, 8831–8838. [Google Scholar] [CrossRef] [PubMed]
- Leppert, B.; Strunz, S.; Seiwert, B.; Schlittenbauer, L.; Schlichting, R.; Pfeiffer, C.; Röder, S.; Bauer, M.; Borte, M.; Stangl, G.I.; et al. Maternal Paraben Exposure Triggers Childhood Overweight Development. Nat. Commun. 2020, 11, 561. [Google Scholar] [CrossRef] [Green Version]
- Aker, A.M.; Ferguson, K.K.; Rosario, Z.Y.; Mukherjee, B.; Alshawabkeh, A.N.; Cordero, J.F.; Meeker, J.D. The Associations between Prenatal Exposure to Triclocarban, Phenols and Parabens with Gestational Age and Birth Weight in Northern Puerto Rico. Environ. Res. 2019, 169, 41–51. [Google Scholar] [CrossRef]
- El-Zubeir, I.; El Owni, O. Antimicrobial Resistance of Bacteria Associated with Raw Milk Contaminated by Chemical Preservatives. World J. Dairy Food Sci. 2009, 4, 65–69. [Google Scholar]
- Orús, P.; Gomez-Perez, L.; Leranoz, S.; Berlanga, M. Increasing Antibiotic Resistance in Preservative-Tolerant Bacterial Strains Isolated from Cosmetic Products. Int. Microbiol. 2015, 18, 51–59. [Google Scholar] [CrossRef]
- Romero, J.L.; Grande Burgos, M.J.; Pérez-Pulido, R.; Gálvez, A.; Lucas, R. Resistance to Antibiotics, Biocides, Preservatives and Metals in Bacteria Isolated from Seafoods: Co-Selection of Strains Resistant or Tolerant to Different Classes of Compounds. Front. Microbiol. 2017, 8, 1650. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Ning, J.; Ahmed, S.; Huang, J.; Ullah, R.; An, B.; Hao, H.; Dai, M.; Huang, L.; Wang, X.; et al. Selection and Dissemination of Antimicrobial Resistance in Agri-Food Production. Antimicrob. Resist. Infect. Control 2019, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Cen, T.; Zhang, X.; Xie, S.; Li, D. Preservatives Accelerate the Horizontal Transfer of Plasmid-Mediated Antimicrobial Resistance Genes via Differential Mechanisms. Environ. Int. 2020, 138, 105544. [Google Scholar] [CrossRef] [PubMed]
- Gygli, S.M.; Borrell, S.; Trauner, A.; Gagneux, S. Antimicrobial Resistance in Mycobacterium Tuberculosis: Mechanistic and Evolutionary Perspectives. FEMS Microbiol. Rev. 2017, 41, 354–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Grady, K.; Knight, D.R.; Riley, T.V. Antimicrobial Resistance in Clostridioides Difficile. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2459–2478. [Google Scholar] [CrossRef]
- Habboush, Y.; Guzman, N. Antibiotic Resistance. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic Resistance in Bacteria—A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Yadav, S.; Jadeja, N.B.; Dafale, N.A.; Purohit, H.J.; Kapley, A. Pharmaceuticals and Personal Care Products Mediated Antimicrobial Resistance: Future Challenges. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 409–428. ISBN 978-0-12-816189-0. [Google Scholar]
- Larson, E. Hygiene of the Skin: When Is Clean Too Clean? Emerg. Infect. Dis. 2001, 7, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Karatzas, K.A.G.; Webber, M.A.; Jorgensen, F.; Woodward, M.J.; Piddock, L.J.V.; Humphrey, T.J. Prolonged Treatment of Salmonella Enterica Serovar Typhimurium with Commercial Disinfectants Selects for Multiple Antibiotic Resistance, Increased Efflux and Reduced Invasiveness. J. Antimicrob. Chemother. 2007, 60, 947–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braoudaki, M.; Hilton, A.C. Low Level of Cross-Resistance between Triclosan and Antibiotics in Escherichia coli K-12 and E. coli O55 Compared to E. coli O157. FEMS Microbiol. Lett. 2004, 235, 305–309. [Google Scholar] [CrossRef]
- Larson, E.L.; Lin, S.X.; Gomez-Pichardo, C.; Della-Latta, P. Effect of Antibacterial Home Cleaning and Handwashing Products on Infectious Disease Symptoms. Ann. Intern. Med. 2004, 140, 321–329. [Google Scholar] [CrossRef]
- Guitor, A.K.; Wright, G.D. Antimicrobial Resistance and Respiratory Infections. Chest 2018, 154, 1202–1212. [Google Scholar] [CrossRef]
- Chuanchuen, R.; Karkhoff-Schweizer, R.R.; Schweizer, H.P. High-Level Triclosan Resistance in Pseudomonas Aeruginosa Is Solely a Result of Efflux. Am. J. Infect. Control 2003, 31, 124–127. [Google Scholar] [CrossRef]
- Bargiota, E.; Rico-Munoz, E.; Davidson, P.M. Lethal Effect of Methyl and Propyl Parabens as Related to Staphylococcus Aureus Lipid Composition. Int. J. Food Microbiol. 1987, 4, 257–266. [Google Scholar] [CrossRef]
- Selvaraj, K.K.; Sivakumar, S.; Sampath, S.; Shanmugam, G.; Sundaresan, U.; Ramaswamy, B.R. Paraben Resistance in Bacteria from Sewage Treatment Plant Effluents in India. Water Sci. Technol. 2013, 68, 2067–2073. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Raikhel, V.; Gopalakrishnan, K.; Fernandez-Hernandez, H.; Lambertini, L.; Manservisi, F.; Falcioni, L.; Bua, L.; Belpoggi, F.L.; Teitelbaum, S.; et al. Effect of Postnatal Low-Dose Exposure to Environmental Chemicals on the Gut Microbiome in a Rodent Model. Microbiome 2016, 4, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matzaras, R.; Nikopoulou, A.; Protonotariou, E.; Christaki, E. Gut Microbiota Modulation and Prevention of Dysbiosis as an Alternative Approach to Antimicrobial Resistance: A Narrative Review. Yale J. Biol. Med. 2022, 95, 479–494. [Google Scholar]
- Zhang, D.; Lu, S. A Holistic Review on Triclosan and Triclocarban Exposure: Epidemiological Outcomes, Antibiotic Resistance, and Health Risk Assessment. Sci. Total Environ. 2023, 872, 162114. [Google Scholar] [CrossRef]
- Barrett, H.; Sun, J.; Gong, Y.; Yang, P.; Hao, C.; Verreault, J.; Zhang, Y.; Peng, H. Triclosan Is the Predominant Antibacterial Compound in Ontario Sewage Sludge. Environ. Sci. Technol. 2022, 56, 14923–14936. [Google Scholar] [CrossRef]
- Carey, D.E.; McNamara, P.J. Altered Antibiotic Tolerance in Anaerobic Digesters Acclimated to Triclosan or Triclocarban. Chemosphere 2016, 163, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gao, J.; Wang, S.; Zhao, Y.; Dai, H.; Li, D.; Cui, Y.; Li, Z. Triclocarban Shifted the Microbial Communities and Promoted the Spread of Antibiotic Resistance Genes in Nitrifying Granular Sludge System. Bioresour. Technol. 2022, 347, 126429. [Google Scholar] [CrossRef]
- Wang, D.; Ning, Q.; Dong, J.; Brooks, B.W.; You, J. Predicting Mixture Toxicity and Antibiotic Resistance of Fluoroquinolones and Their Photodegradation Products in Escherichia coli. Environ. Pollut. 2020, 262, 114275. [Google Scholar] [CrossRef]
- Manaia, C.M.; Aga, D.S.; Cytryn, E.; Gaze, W.H.; Graham, D.W.; Guo, J.; Leonard, A.F.C.; Li, L.; Murray, A.K.; Nunes, O.C.; et al. The Complex Interplay Between Antibiotic Resistance and Pharmaceutical and Personal Care Products in the Environment. Environ. Toxicol. Chem. 2022. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, A.; Banerjee, T. Antibacterial Agents Used in COVID-19: A Systematic Review and Meta-Analysis. Environ. Sustain. 2021, 4, 503–513. [Google Scholar] [CrossRef]
- Japanese Society of Chemotherapy; Antimicrobial Agents Safety Evaluation Standards Committee; Watanabe, A.; Tokue, Y.; Aoki, N.; Matsumoto, T.; Yanagihara, K.; Higa, F.; Tsuge, H.; Nagashima, M.; et al. Criteria for Safety Evaluation of Antimicrobial Agents. J. Infect. Chemother. 2011, 17, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Kirchhof, M.G.; de Gannes, G.C. The Health Controversies of Parabens. Skin Ther. Lett. 2013, 18, 5–7. [Google Scholar]
- Weatherly, L.M.; Gosse, J.A. Triclosan Exposure, Transformation, and Human Health Effects. J. Toxicol. Environ. Health Part B 2017, 20, 447–469. [Google Scholar] [CrossRef] [PubMed]
- Musee, N. Environmental Risk Assessment of Triclosan and Triclocarban from Personal Care Products in South Africa. Environ. Pollut. 2018, 242, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.; Liang, B.; Kong, D.; Li, X.; Wang, A. Fate, Risk and Removal of Triclocarban: A Critical Review. J. Hazard. Mater. 2020, 387, 121944. [Google Scholar] [CrossRef] [PubMed]
- Cherian, P.; Zhu, J.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; et al. Amended Safety Assessment of Parabens as Used in Cosmetics. Int. J. Toxicol. 2020, 39, 5S–97S. [Google Scholar] [CrossRef]
- Lincho, J.; Martins, R.C.; Gomes, J. Paraben Compounds—Part I: An Overview of Their Characteristics, Detection, and Impacts. Appl. Sci. 2021, 11, 2307. [Google Scholar] [CrossRef]
- Nes, I.F.; Eklund, T. The Effect of Parabens on DNA, RNA and Protein Synthesis in Escherichia coli and Bacillus subtilis. J. Appl. Bacteriol. 1983, 54, 237–242. [Google Scholar] [CrossRef]
- Ma, Y.; Marquis, R.E. Irreversible Paraben Inhibition of Glycolysis by Streptococcus Mutans GS-5. Lett. Appl. Microbiol. 1996, 23, 329–333. [Google Scholar] [CrossRef]
- Freese, E.; Sheu, C.W.; Galliers, E. Function of Lipophilic Acids as Antimicrobial Food Additives. Nature 1973, 241, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Iacopetta, D.; Catalano, A.; Ceramella, J.; Saturnino, C.; Salvagno, L.; Ielo, I.; Drommi, D.; Scali, E.; Plutino, M.R.; Rosace, G.; et al. The Different Facets of Triclocarban: A Review. Molecules 2021, 26, 2811. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.-L.; Stingley, R.L.; Beland, F.A.; Harrouk, W.; Lumpkins, D.L.; Howard, P. Occurrence, Efficacy, Metabolism, and Toxicity of Triclosan. J. Environ. Sci. Health Part C 2010, 28, 147–171. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Yan, K.; Wallis, N.G.; Reed, S.; Moore, T.D.; Rittenhouse, S.F.; DeWolf, W.E., Jr.; Huang, J.; McDevitt, D.; Miller, W.H.; et al. Defining and Combating the Mechanisms of Triclosan Resistance in Clinical Isolates of Staphylococcus Aureus. Antimicrob. Agents Chemother. 2002, 46, 3343–3347. [Google Scholar] [CrossRef] [Green Version]
- Fahimipour, A.K.; Ben Mamaar, S.; McFarland, A.G.; Blaustein, R.A.; Chen, J.; Glawe, A.J.; Kline, J.; Green, J.L.; Halden, R.U.; Van Den Wymelenberg, K.; et al. Antimicrobial Chemicals Associate with Microbial Function and Antibiotic Resistance Indoors. mSystems 2018, 3, e00200-18. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, E.M.; Hickey, R.; Hsu, T.; Betancourt Román, C.M.; Chen, J.; Schwager, R.; Kline, J.; Brown, G.Z.; Halden, R.U.; Huttenhower, C.; et al. Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome. Environ. Sci. Technol. 2016, 50, 9807–9815. [Google Scholar] [CrossRef]
- Thompson, J.R.; Argyraki, A.; Bashton, M.; Bramwell, L.; Crown, M.; Hursthouse, A.S.; Jabeen, K.; Marinho Reis, P.; Namdeo, A.; Nelson, A.; et al. Bacterial Diversity in House Dust: Characterization of a Core Indoor Microbiome. Front. Environ. Sci. 2021, 9, 533. [Google Scholar] [CrossRef]
- Geens, T.; Roosens, L.; Neels, H.; Covaci, A. Assessment of Human Exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through Indoor Dust Intake in Belgium. Chemosphere 2009, 76, 755–760. [Google Scholar] [CrossRef]
- Canosa, P.; Rodríguez, I.; Rubí, E.; Cela, R. Determination of Parabens and Triclosan in Indoor Dust Using Matrix Solid-Phase Dispersion and Gas Chromatography with Tandem Mass Spectrometry. Anal. Chem. 2007, 79, 1675–1681. [Google Scholar] [CrossRef]
- Fan, X.; Kubwabo, C.; Rasmussen, P.; Jones-Otazo, H. Simultaneous Quantitation of Parabens, Triclosan, and Methyl Triclosan in Indoor House Dust Using Solid Phase Extraction and Gas Chromatography-Mass Spectrometry. J. Environ. Monit. 2010, 12, 1891–1897. [Google Scholar] [CrossRef]
- Son, A.; Kennedy, I.M.; Scow, K.M.; Hristova, K.R. Quantitative Gene Monitoring of Microbial Tetracycline Resistance Using Magnetic Luminescent Nanoparticles. J. Environ. Monit. 2010, 12, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Chuanchuen, R.; Beinlich, K.; Hoang, T.T.; Becher, A.; Karkhoff-Schweizer, R.R.; Schweizer, H.P. Cross-Resistance between Triclosan and Antibiotics in Pseudomonas Aeruginosa Is Mediated by Multidrug Efflux Pumps: Exposure of a Susceptible Mutant Strain to Triclosan Selects NfxB Mutants Overexpressing MexCD-OprJ. Antimicrob. Agents Chemother. 2001, 45, 428–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Wang, Y.; Li, J.; Mao, L.; Nguyen, S.H.; Duarte, T.; Coin, L.; Bond, P.; Yuan, Z.; Guo, J. Triclosan at Environmentally Relevant Concentrations Promotes Horizontal Transfer of Multidrug Resistance Genes within and across Bacterial Genera. Environ. Int. 2018, 121, 1217–1226. [Google Scholar] [CrossRef]
- Bredin, J.; Davin-Régli, A.; Pagès, J.-M. Propyl Paraben Induces Potassium Efflux in Escherichia coli. J. Antimicrob. Chemother. 2005, 55, 1013–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagès, J.-M. Bacterial porin and antibiotic susceptibility. Med. Sci. 2004, 20, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Levy, S.B. Active Efflux Mechanisms for Antimicrobial Resistance. Antimicrob. Agents Chemother. 1992, 36, 695–703. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, I.; Favini-Stabile, S.; Dessen, A. Resistance to Antibiotics Targeted to the Bacterial Cell Wall. Protein Sci. 2014, 23, 243–259. [Google Scholar] [CrossRef]
- Willers, C.; Wentzel, J.F.; du Plessis, L.H.; Gouws, C.; Hamman, J.H. Efflux as a Mechanism of Antimicrobial Drug Resistance in Clinical Relevant Microorganisms: The Role of Efflux Inhibitors. Expert Opin. Ther. Targets 2017, 21, 23–36. [Google Scholar] [CrossRef]
- Peterson, E.; Kaur, P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front. Microbiol. 2018, 9, 2928. [Google Scholar] [CrossRef] [Green Version]
- Neely, M.N. The Zebrafish as a Model for Human Bacterial Infections. Methods Mol. Biol. 2017, 1535, 245–266. [Google Scholar] [CrossRef] [PubMed]
- Rashidian, G.; Boldaji, J.T.; Rainis, S.; Prokić, M.D.; Faggio, C. Oregano (Origanum vulgare) Extract Enhances Zebrafish (Danio rerio) Growth Performance, Serum and Mucus Innate Immune Responses and Resistance against Aeromonas Hydrophila Challenge. Animals 2021, 11, 299. [Google Scholar] [CrossRef] [PubMed]
- Jijie, R.; Mihalache, G.; Balmus, I.-M.; Strungaru, S.-A.; Baltag, E.S.; Ciobica, A.; Nicoara, M.; Faggio, C. Zebrafish as a Screening Model to Study the Single and Joint Effects of Antibiotics. Pharmaceuticals 2021, 14, 578. [Google Scholar] [CrossRef] [PubMed]
- Merola, C.; Perugini, M.; Conte, A.; Angelozzi, G.; Bozzelli, M.; Amorena, M. Embryotoxicity of Methylparaben to Zebrafish (Danio rerio) Early-Life Stages. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 236, 108792. [Google Scholar] [CrossRef]
- Loftie-Eaton, W.; Crabtree, A.; Perry, D.; Millstein, J.; Baytosh, J.; Stalder, T.; Robison, B.D.; Forney, L.J.; Top, E.M. Contagious Antibiotic Resistance: Plasmid Transfer among Bacterial Residents of the Zebrafish Gut. Appl. Environ. Microbiol. 2021, 87, e02735-20. [Google Scholar] [CrossRef]
- Milanović, V.; Cardinali, F.; Aquilanti, L.; Maoloni, A.; Garofalo, C.; Zarantoniello, M.; Olivotto, I.; Riolo, P.; Ruschioni, S.; Isidoro, N.; et al. Quantitative Assessment of Transferable Antibiotic Resistance Genes in Zebrafish (Danio rerio) Fed Hermetia Illucens-Based Feed. Anim. Feed. Sci. Technol. 2021, 277, 114978. [Google Scholar] [CrossRef]
- Rasheed, S.; Fries, F.; Müller, R.; Herrmann, J. Zebrafish: An Attractive Model to Study Staphylococcus Aureus Infection and Its Use as a Drug Discovery Tool. Pharmaceuticals 2021, 14, 594. [Google Scholar] [CrossRef]
- Hossain, S.; Dahanayake, P.S.; De Silva, B.C.J.; Wickramanayake, M.V.K.S.; Wimalasena, S.H.M.P.; Heo, G.-J. Multidrug Resistant Aeromonas Spp. Isolated from Zebrafish (Danio rerio): Antibiogram, Antimicrobial Resistance Genes and Class 1 Integron Gene Cassettes. Lett. Appl. Microbiol. 2019, 68, 370–377. [Google Scholar] [CrossRef]
- Almeida, A.R.; Alves, M.; Domingues, I.; Henriques, I. The Impact of Antibiotic Exposure in Water and Zebrafish Gut Microbiomes: A 16S RRNA Gene-Based Metagenomic Analysis. Ecotoxicol. Environ. Saf. 2019, 186, 109771. [Google Scholar] [CrossRef]
- Almeida, A.R.; Tacão, M.; Soares, J.; Domingues, I.; Henriques, I. Tetracycline-Resistant Bacteria Selected from Water and Zebrafish after Antibiotic Exposure. Int. J. Environ. Res. Public Health 2021, 18, 3218. [Google Scholar] [CrossRef]
- Almeida, A.R.; Domingues, I.; Henriques, I. Zebrafish and Water Microbiome Recovery after Oxytetracycline Exposure. Environ. Pollut. 2021, 272, 116371. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Q.; Lu, T.; Zhang, J.; Sun, L.; Hu, B.; Hu, J.; Peñuelas, J.; Zhu, L.; Qian, H. Residual Chlorine Disrupts the Microbial Communities and Spreads Antibiotic Resistance in Freshwater. J. Hazard. Mater. 2022, 423, 127152. [Google Scholar] [CrossRef] [PubMed]
- Popa, S.L.; Pop, C.; Dita, M.O.; Brata, V.D.; Bolchis, R.; Czako, Z.; Saadani, M.M.; Ismaiel, A.; Dumitrascu, D.I.; Grad, S.; et al. Deep Learning and Antibiotic Resistance. Antibiotics 2022, 11, 1674. [Google Scholar] [CrossRef]
- Melo, M.C.R.; Maasch, J.R.M.A.; de la Fuente-Nunez, C. Accelerating Antibiotic Discovery through Artificial Intelligence. Commun. Biol. 2021, 4, 1050. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Maguire, F.; Tsang, K.K.; Gouliouris, T.; Peacock, S.J.; McAllister, T.A.; McArthur, A.G.; Beiko, R.G. Machine Learning for Antimicrobial Resistance Prediction: Current Practice, Limitations, and Clinical Perspective. Clin. Microbiol. Rev. 2022, 35, e0017921. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.-H.; Nguyen, N.Q.; Pham, H.T. A New Hope in the Fight Against Antimicrobial Resistance with Artificial Intelligence. IDR 2022, 15, 2685–2688. [Google Scholar] [CrossRef] [PubMed]
- Feretzakis, G.; Sakagianni, A.; Loupelis, E.; Kalles, D.; Skarmoutsou, N.; Martsoukou, M.; Christopoulos, C.; Lada, M.; Petropoulou, S.; Velentza, A.; et al. Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy. Healthc. Inform. Res. 2021, 27, 214–221. [Google Scholar] [CrossRef]
- Anahtar, M.N.; Yang, J.H.; Kanjilal, S. Applications of Machine Learning to the Problem of Antimicrobial Resistance: An Emerging Model for Translational Research. J. Clin. Microbiol. 2021, 59, e01260-20. [Google Scholar] [CrossRef]
- Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al. Applications of Machine Learning in Drug Discovery and Development. Nat. Rev. Drug Discov. 2019, 18, 463–477. [Google Scholar] [CrossRef]
- Johnson, E.O.; LaVerriere, E.; Office, E.; Stanley, M.; Meyer, E.; Kawate, T.; Gomez, J.E.; Audette, R.E.; Bandyopadhyay, N.; Betancourt, N.; et al. Large-Scale Chemical-Genetics Yields New M. Tuberculosis Inhibitor Classes. Nature 2019, 571, 72–78. [Google Scholar] [CrossRef] [Green Version]
Agents | Sources | Main Characteristics |
---|---|---|
Parabens (p-Hydroxybenzoates derivatives) | Cosmetics (makeup, moisturizers, hair care, and shaving products), food, drinks, and pharmaceuticals [60]. | Broad spectrum of antimicrobial activity, chemical stability, and low production costs. |
Physical properties: small colorless crystals or crystalline powders (no odor, no taste). | ||
Solubility: high oil/water coefficient. | ||
Stability: they are stable in air, in hot or cold water, and in acidic solutions [1]. | ||
Mechanism of action: According to some theories, they inhibit the synthesis of DNA and RNA [61], block the activity of some crucial enzymes, such as ATPases and phosphotransferases in some bacterial species [62], or interfere with membrane transport procedures [63]. The antimicrobial properties increase with increasing alkyl chain length. | ||
Triclocarban | Antibacterial soaps, detergents, toothpaste, and body washes [64]. | It is a triclosan analog, and particularly effective against Gram-positive bacteria such as Staphylococcus aureus [64]. |
Physical appearance: white plates or white powder, with a distinctive odor. | ||
Mechanism of action: it works by stopping the enzyme enoyl-acyl-carrier-protein (ACP) reductase from catalyzing the last step in each cycle of fatty acid elongation in the type II fatty acid synthase systems. | ||
Triclosan | Dental care products, soaps, and cosmetics [56]. | It is a broad-spectrum antimicrobial agent, effective against most Gram-negative and Gram-positive bacteria. |
Physical appearance: colorless to off-white crystalline powder (no taste, slightly aromatic odor). | ||
Solubility: highly soluble in organic solutions (benzene, ethanol, acetone) [65]. | ||
Mechanism of action: it works by inhibiting enoyl-acyl carrier protein (ACP) reductase (FabI) [66]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caioni, G.; Benedetti, E.; Perugini, M.; Amorena, M.; Merola, C. Personal Care Products as a Contributing Factor to Antimicrobial Resistance: Current State and Novel Approach to Investigation. Antibiotics 2023, 12, 724. https://doi.org/10.3390/antibiotics12040724
Caioni G, Benedetti E, Perugini M, Amorena M, Merola C. Personal Care Products as a Contributing Factor to Antimicrobial Resistance: Current State and Novel Approach to Investigation. Antibiotics. 2023; 12(4):724. https://doi.org/10.3390/antibiotics12040724
Chicago/Turabian StyleCaioni, Giulia, Elisabetta Benedetti, Monia Perugini, Michele Amorena, and Carmine Merola. 2023. "Personal Care Products as a Contributing Factor to Antimicrobial Resistance: Current State and Novel Approach to Investigation" Antibiotics 12, no. 4: 724. https://doi.org/10.3390/antibiotics12040724
APA StyleCaioni, G., Benedetti, E., Perugini, M., Amorena, M., & Merola, C. (2023). Personal Care Products as a Contributing Factor to Antimicrobial Resistance: Current State and Novel Approach to Investigation. Antibiotics, 12(4), 724. https://doi.org/10.3390/antibiotics12040724