Prevalence and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Dogs and Cats in South Korea
Abstract
:1. Introduction
2. Results
2.1. Prevalence of Cefovecin and Enrofloxacin Resistance
2.2. Distribution and Characterization of ESBL/AmpC-Producing E. coli
2.3. Mechanisms of Quinolone Resistance
2.4. Molecular Characterization
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. E. coli Isolation
4.3. Antimicrobial Susceptibility Testing
4.4. Mechanisms of Antimicrobial Resistance
4.5. Molecular Characterization
4.6. Statistical Analysis
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robins-Browne, R.M.; Holt, K.E.; Ingle, D.J.; Hocking, D.M.; Yang, J.; Tauschek, M. Are Escherichia coli Pathotypes Still Relevant in the Era of Whole-Genome Sequencing? Front. Cell. Infect. Microbiol. 2016, 6, 141. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Jiménez, D.; García-Meniño, I.; Herrera, A.; García, V.; López-Beceiro, A.M.; Alonso, M.P.; Blanco, J.; Mora, A. Genomic Characterization of Escherichia coli Isolates Belonging to a New Hybrid AEPEC/ExPEC Pathotype O153: H10-A-ST10 Eae-Beta1 Occurred in Meat, Poultry, Wildlife and Human Diarrheagenic Samples. Antibiotics 2020, 9, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bélanger, L.; Garenaux, A.; Harel, J.; Boulianne, M.; Nadeau, E.; Dozois, C.M. Escherichia coli from Animal Reservoirs as a Potential Source of Human Extraintestinal Pathogenic E. coli. FEMS Immunol. Med. Microbiol. 2011, 62, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Seni, J.; Falgenhauer, L.; Simeo, N.; Mirambo, M.M.; Imirzalioglu, C.; Matee, M.; Rweyemamu, M.; Chakraborty, T.; Mshana, S.E. Multiple ESBL-Producing Escherichia coli Sequence Types Carrying Quinolone and Aminoglycoside Resistance Genes Circulating in Companion and Domestic Farm Animals in Mwanza, Tanzania, Harbor Commonly Occurring Plasmids. Front. Microbiol. 2016, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Yang, Y.; Wang, M.; Wang, A.; Lu, Q.; Xu, X.; Wang, C.; Liu, L.; Deng, Q.; Shen, X. The Prevalence of Plasmid-Mediated Quinolone Resistance Determinants among Clinical Isolates of ESBL or AmpC-Producing Escherichia coli from Chinese Pediatric Patients. Microbiol. Immunol. 2010, 54, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barguigua, A.; El Otmani, F.; Talmi, M.; Zerouali, K.; Timinouni, M. Prevalence and Types of Extended Spectrum β-Lactamases among Urinary Escherichia coli Isolates in Moroccan Community. Microb. Pathog. 2013, 61, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Belmahdi, M.; Bakour, S.; Al Bayssari, C.; Touati, A.; Rolain, J.-M. Molecular Characterisation of Extended-Spectrum β-Lactamase-and Plasmid AmpC-Producing Escherichia coli Strains Isolated from Broilers in Béjaïa, Algeria. J. Glob. Antimicrob. Resist. 2016, 6, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-K.; Lee, H.-S.; Nam, H.-M.; Jung, S.-C.; Bae, Y. CTX-M-Type β-Lactamase in Escherichia coli Isolated from Sick Animals in Korea. Microb. Drug Resist. 2009, 15, 139–142. [Google Scholar] [CrossRef]
- Choi, M.J.; Lim, S.K.; Jung, S.C.; Ko, K.S. Comparisons of CTX-M-Producing Escherichia coli Isolates from Humans and Animals in South Korea. J. Bacteriol. Virol. 2014, 44, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.R.; Noh, S.M.; Jung, W.K.; Shin, S.; Park, Y.K.; Moon, D.C.; Lim, S.-K.; Park, Y.H.; Park, K.T. Characterization of Extended-Spectrum β-Lactamase-Producing and AmpC β-Lactamase-Producing Enterobacterales Isolated from Companion Animals in Korea. Antibiotics 2021, 10, 249. [Google Scholar] [CrossRef]
- Hong, J.S.; Song, W.; Park, H.-M.; Oh, J.-Y.; Chae, J.-C.; Shin, S.; Jeong, S.H. Clonal Spread of Extended-Spectrum Cephalosporin-Resistant Enterobacteriaceae between Companion Animals and Humans in South Korea. Front. Microbiol. 2019, 10, 1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.-J.; Moon, D.C.; Mechesso, A.F.; Kang, H.Y.; Kim, M.H.; Choi, J.-H.; Kim, S.-J.; Yoon, S.-S.; Lim, S.-K. Resistance Profiling and Molecular Characterization of Extended-Spectrum/Plasmid-Mediated Ampc β-Lactamase-Producing Escherichia coli Isolated from Healthy Broiler Chickens in South Korea. Microorganisms 2020, 8, 1434. [Google Scholar] [CrossRef] [PubMed]
- Chan, O.S.K.; Baranger-Ete, M.; Lam, W.W.T.; Wu, P.; Yeung, M.; Lee, E.; Bond, H.; Swan, O.; Tun, H.M. A Retrospective Study of Antimicrobial Resistant Bacteria Associated with Feline and Canine Urinary Tract Infection in Hong Kong SAR, China-A Case Study on Implication of First-Line Antibiotics Use. Antibiotics 2022, 11, 1140. [Google Scholar] [CrossRef]
- Saputra, S.; Jordan, D.; Mitchell, T.; San Wong, H.; Abraham, R.J.; Kidsley, A.; Turnidge, J.; Trott, D.J.; Abraham, S. Antimicrobial Resistance in Clinical Escherichia coli Isolated from Companion Animals in Australia. Vet. Microbiol. 2017, 211, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, J.D.; Mavrides, D.E.; Graham, P.A.; McHugh, T.D. Results of Urinary Bacterial Cultures and Antibiotic Susceptibility Testing of Dogs and Cats in the UK. J. Small Anim. Pract. 2021, 62, 1085–1091. [Google Scholar] [CrossRef]
- Rzewuska, M.; Czopowicz, M.; Kizerwetter-Świda, M.; Chrobak, D.; Błaszczak, B.; Binek, M. Multidrug Resistance in Escherichia coli Strains Isolated from Infections in Dogs and Cats in Poland (2007–2013). Sci. World J. 2015, 2015, 408205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marco-Fuertes, A.; Marin, C.; Lorenzo-Rebenaque, L.; Vega, S.; Montoro-Dasi, L. Antimicrobial Resistance in Companion Animals: A New Challenge for the One Health Approach in the European Union. Vet. Sci. 2022, 9, 208. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Yokota, S.; Ichihashi, R.; Miyauchi, T.; Okubo, T.; Usui, M.; Fujii, N.; Tamura, Y. Isolation of Escherichia coli Strains with AcrAB–TolC Efflux Pump-Associated Intermediate Interpretation or Resistance to Fluoroquinolone, Chloramphenicol, and Aminopenicillin from Dogs Admitted to a University Veterinary Hospital. J. Vet. Med. Sci. 2014, 76, 937–945. [Google Scholar] [CrossRef] [Green Version]
- Bourély, C.; Cazeau, G.; Jarrige, N.; Leblond, A.; Madec, J.Y.; Haenni, M.; Gay, E. Antimicrobial Resistance Patterns of Bacteria Isolated from Dogs with Otitis. Epidemiol. Infect. 2019, 147, e121. [Google Scholar] [CrossRef] [Green Version]
- Qekwana, D.N.; Phophi, L.; Naidoo, V.; Oguttu, J.W.; Odoi, A. Antimicrobial Resistance among Escherichia coli Isolates from Dogs Presented with Urinary Tract Infections at a Veterinary Teaching Hospital in South Africa. BMC Vet. Res. 2018, 14, 228. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.; Albarracin, B.; Altier, C.; Gröhn, Y.T.; Cazer, C. Antimicrobial Resistance Trends among Canine Escherichia coli Isolated at a New York Veterinary Diagnostic Laboratory between 2007 and 2020. Prev. Vet. Med. 2022, 208, 105767. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, H.; Li, Y.; Hao, C. Association between Virulence Profile and Fluoroquinolone Resistance in Escherichia coli Isolated from Dogs and Cats in China. J. Infect. Dev. Ctries. 2017, 11, 306–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umeda, K.; Hase, A.; Fukuda, A.; Matsuo, M.; Horimoto, T.; Ogasawara, J. Prevalence and Mechanisms of Fluoroquinolone-Resistant Escherichia coli among Sheltered Companion Animals. Access Microbiol. 2020, 2, e000077. [Google Scholar] [CrossRef] [PubMed]
- Vingopoulou, E.I.; Delis, G.A.; Batzias, G.C.; Kaltsogianni, F.; Koutinas, A.; Kristo, I.; Pournaras, S.; Saridomichelakis, M.N.; Siarkou, V.I. Prevalence and Mechanisms of Resistance to Fluoroquinolones in Pseudomonas aeruginosa and Escherichia coli Isolates Recovered from Dogs Suffering from Otitis in Greece. Vet. Microbiol. 2018, 213, 102–107. [Google Scholar] [CrossRef]
- Morgan-Linnell, S.K.; Becnel Boyd, L.; Steffen, D.; Zechiedrich, L. Mechanisms Accounting for Fluoroquinolone Resistance in Escherichia coli Clinical Isolates. Antimicrob. Agents Chemother. 2009, 53, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Tamang, M.D.; Nam, H.-M.; Jang, G.-C.; Kim, S.-R.; Chae, M.H.; Jung, S.-C.; Byun, J.-W.; Park, Y.H.; Lim, S.-K. Molecular Characterization of Extended-Spectrum-β-Lactamase-Producing and Plasmid-Mediated AmpC β-Lactamase-Producing Escherichia coli Isolated from Stray Dogs in South Korea. Antimicrob. Agents Chemother. 2012, 56, 2705–2712. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.J.; Kim, S.S.; Mollenkopf, D.F.; Mathys, D.A.; Schuenemann, G.M.; Daniels, J.B.; Wittum, T.E. Antimicrobial-resistant Enterobacteriaceae Recovered from Companion Animal and Livestock Environments. Zoonoses Public Health 2018, 65, 519–527. [Google Scholar] [CrossRef]
- Shaheen, B.W.; Nayak, R.; Foley, S.L.; Boothe, D.M. Chromosomal and Plasmid-Mediated Fluoroquinolone Resistance Mechanisms among Broad-Spectrum-Cephalosporin-Resistant Escherichia coli Isolates Recovered from Companion Animals in the USA. J. Antimicrob. Chemother. 2013, 68, 1019–1024. [Google Scholar] [CrossRef] [Green Version]
- Asensio, A.; Alvarez-Espejo, T.; Fernandez-Crehuet, J.; Ramos, A.; Vaque-Rafart, J.; Bishopberger, C.; Navarrete, M.J.H.; Calbo-Torrecillas, F.; Campayo, J.; Canton, R.T. Trends in yearly prevalence of third-generation cephalosporin and fluoroquinolone resistant Enterobacteriaceae infections and antimicrobial use in Spanish hospitals, Spain, 1999 to 2010. Eurosurveillance 2011, 16, 19983. [Google Scholar] [CrossRef] [Green Version]
- Pai, H.; Seo, M.-R.; Choi, T.Y. Association of QnrB Determinants and Production of Extended-Spectrum β-Lactamases or Plasmid-Mediated AmpC β-Lactamases in Clinical Isolates of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2007, 51, 366–368. [Google Scholar] [CrossRef] [Green Version]
- Woodford, N.; Reddy, S.; Fagan, E.J.; Hill, R.L.R.; Hopkins, K.L.; Kaufmann, M.E.; Kistler, J.; Palepou, M.-F.I.; Pike, R.; Ward, M.E.; et al. Wide Geographic Spread of Diverse Acquired AmpC β-Lactamases among Escherichia coli and Klebsiella Spp. in the UK and Ireland. J. Antimicrob. Chemother. 2006, 59, 102–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donati, V.; Feltrin, F.; Hendriksen, R.S.; Svendsen, C.A.; Cordaro, G.; García-Fernández, A.; Lorenzetti, S.; Lorenzetti, R.; Battisti, A.; Franco, A. Extended-Spectrum-Beta-Lactamases, AmpC Beta-Lactamases and Plasmid Mediated Quinolone Resistance in Klebsiella Spp. from Companion Animals in Italy. PLoS ONE 2014, 9, e90564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-G.; Jeong, S.H.; Lee, H.; Kim, C.K.; Lee, Y.; Koh, E.; Chong, Y.; Lee, K. Spread of CTX-M–Type Extended-Spectrum β-Lactamases among Bloodstream Isolates of Escherichia coli and Klebsiella pneumoniae from a Korean Hospital. Diagn. Microbiol. Infect. Dis. 2009, 63, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, K.A.; Paulton, R.J.L. Clinical Prevalence and Antimicrobial Susceptibility of Staphylococcus aureus and Staph. intermedius in Dogs. J. Appl. Microbiol. 2002, 93, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Chaslus-Dancla, E. Use of Antimicrobials in Veterinary Medicine and Mechanisms of Resistance. Vet. Res. 2001, 32, 201–225. [Google Scholar] [CrossRef] [Green Version]
- Gaire, T.N.; Scott, H.M.; Sellers, L.; Nagaraja, T.G.; Volkova, V.V. Age Dependence of Antimicrobial Resistance among Fecal Bacteria in Animals: A Scoping Review. Front. Vet. Sci. 2021, 7, 622495. [Google Scholar] [CrossRef]
- Yoo, J.S.; Byeon, J.; Yang, J.; Yoo, J.I.; Chung, G.T.; Lee, Y.S. High Prevalence of Extended-Spectrum β-Lactamases and Plasmid-Mediated AmpC β-Lactamases in Enterobacteriaceae Isolated from Long-Term Care Facilities in Korea. Diagn. Microbiol. Infect. Dis. 2010, 67, 261–265. [Google Scholar] [CrossRef]
- Röderova, M.; Halova, D.; Papousek, I.; Dolejska, M.; Masarikova, M.; Hanulik, V.; Pudova, V.; Broz, P.; Htoutou-Sedlakova, M.; Sauer, P.; et al. Characteristics of Quinolone Resistance in Escherichia coli Isolates from Humans, Animals, and the Environment in the Czech Republic. Front. Microbiol. 2017, 7, 2147. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, K.L.; Davies, R.H.; Threlfall, E.J. Mechanisms of Quinolone Resistance in Escherichia coli and Salmonella: Recent Developments. Int. J. Antimicrob. Agents 2005, 25, 358–373. [Google Scholar] [CrossRef]
- Gibson, J.S.; Cobbold, R.N.; Kyaw-Tanner, M.T.; Heisig, P.; Trott, D.J. Fluoroquinolone Resistance Mechanisms in Multidrug-Resistant Escherichia coli Isolated from Extraintestinal Infections in Dogs. Vet. Microbiol. 2010, 146, 161–166. [Google Scholar] [CrossRef]
- Yang, T.; Zeng, Z.; Rao, L.; Chen, X.; He, D.; Lv, L.; Wang, J.; Zeng, L.; Feng, M.; Liu, J.-H. The Association between Occurrence of Plasmid-Mediated Quinolone Resistance and Ciprofloxacin Resistance in Escherichia coli Isolates of Different Origins. Vet. Microbiol. 2014, 170, 89–96. [Google Scholar] [CrossRef]
- de Jong, A.; Muggeo, A.; El Garch, F.; Moyaert, H.; de Champs, C.; Guillard, T. Characterization of Quinolone Resistance Mechanisms in Enterobacteriaceae Isolated from Companion Animals in Europe (ComPath II Study). Vet. Microbiol. 2018, 216, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Benaicha, H.; Barrijal, S.; Ezzakkioui, F.; Elmalki, F. Prevalence of PMQR Genes in E. coli and Klebsiella Spp. Isolated from North-West of Morocco. J. Glob. Antimicrob. Resist. 2017, 10, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Pasom, W.; Chanawong, A.; Lulitanond, A.; Wilailuckana, C.; Kenprom, S.; Puang-Ngern, P. Plasmid-Mediated Quinolone Resistance Genes, Aac (6′)-Ib-Cr, QnrS, QnrB, and QnrA, in Urinary Isolates of Escherichia coli and Klebsiella pneumoniae at a Teaching Hospital, Thailand. Jpn. J. Infect. Dis. 2013, 66, 428–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulin-Schouleur, M.; Schouler, C.; Tailliez, P.; Kao, M.-R.; Brée, A.; Germon, P.; Oswald, E.; Mainil, J.; Blanco, M.; Blanco, J. Common Virulence Factors and Genetic Relationships between O18: K1: H7 Escherichia coli Isolates of Human and Avian Origin. J. Clin. Microbiol. 2006, 44, 3484–3492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.-W.; Huang, H.H.; Chang, S.-M.; Scaria, J.; Chiu, Y.-L.; Chen, C.-M.; Ko, W.-C.; Wang, J.-L. Antibiotic-Resistant Escherichia coli and Sequence Type 131 in Fecal Colonization in Dogs in Taiwan. Microorganisms 2020, 8, 1439. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Choi, H.J.; Choi, J.Y.; Song, M.; Song, Y.; Kim, S.-W.; Chang, H.-H.; Jung, S.-I.; Kim, Y.-S.; Ki, H.K.; et al. Dissemination of ST131 and ST393 Community-Onset, Ciprofloxacin-Resistant Escherichia Coli Clones Causing Urinary Tract Infections in Korea. J. Infect. 2010, 60, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Cerquetti, M.; Giufrè, M.; García-Fernández, A.; Accogli, M.; Fortini, D.; Luzzi, I.; Carattoli, A. Ciprofloxacin-Resistant, CTX-M-15-Producing Escherichia coli ST131 Clone in Extraintestinal Infections in Italy. Clin. Microbiol. Infect. 2010, 16, 1555–1558. [Google Scholar] [CrossRef] [Green Version]
- Coque, T.M.; Novais, Â.; Carattoli, A.; Poirel, L.; Pitout, J.; Peixe, L.; Baquero, F.; Cantón, R.; Nordmann, P. Dissemination of Clonally Related Escherichia coli Strains Expressing Extended-Spectrum β-Lactamase CTX-M-15. Emerg. Infect. Dis. 2008, 14, 195–200. [Google Scholar] [CrossRef]
- Hong, J.S.; Song, W.; Park, H.-M.; Oh, J.-Y.; Chae, J.-C.; Jeong, S.; Jeong, S.H. Molecular Characterization of Fecal Extended-Spectrum β-Lactamase-and AmpC β-Lactamase-Producing Escherichia coli from Healthy Companion Animals and Cohabiting Humans in South Korea. Front. Microbiol. 2020, 11, 674. [Google Scholar] [CrossRef] [Green Version]
- Moon, D.-C.; Choi, J.-H.; Boby, N.; Kang, H.-Y.; Kim, S.-J.; Song, H.-J.; Park, H.-S.; Gil, M.-C.; Yoon, S.-S.; Lim, S.-K. Bacterial Prevalence in Skin, Urine, Diarrheal Stool, and Respiratory Samples from Dogs. Microorganisms 2022, 10, 1668. [Google Scholar] [CrossRef]
- Moon, D.C.; Choi, J.-H.; Boby, N.; Kim, S.-J.; Song, H.-J.; Park, H.-S.; Gil, M.-C.; Yoon, S.-S.; Lim, S.-K. Prevalence of Bacterial Species in Skin, Urine, Diarrheal Stool, and Respiratory Samples in Cats. Pathogens 2022, 11, 324. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; CLSI Supplement VET08; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Sorlozano, A.; Gutierrez, J.; Jimenez, A.; de Dios Luna, J.; Martínez, J.L. Contribution of a New Mutation in ParE to Quinolone Resistance in Extended-Spectrum-β-Lactamase-Producing Escherichia coli Isolates. J. Clin. Microbiol. 2007, 45, 2740–2742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tartof, S.Y.; Solberg, O.D.; Manges, A.R.; Riley, L.W. Analysis of a Uropathogenic Escherichia coli Clonal Group by Multilocus Sequence Typing. J. Clin. Microbiol. 2005, 43, 5860–5864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saitz, W.; Montero, D.A.; Pardo, M.; Araya, D.; De la Fuente, M.; Hermoso, M.A.; Farfán, M.J.; Ginard, D.; Rosselló-Móra, R.; Rasko, D.A. Characterization of Adherent-Invasive Escherichia coli (AIEC) Outer Membrane Proteins Provides Potential Molecular Markers to Screen Putative AIEC Strains. Int. J. Mol. Sci. 2022, 23, 9005. [Google Scholar] [CrossRef]
- Batchelor, M.; Threlfall, E.J.; Liebana, E. Cephalosporin Resistance among Animal-Associated Enterobacteria: A Current Perspective. Expert Rev. Anti. Infect. Ther. 2005, 3, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Tamang, M.D.; Nam, H.-M.; Gurung, M.; Jang, G.-C.; Kim, S.-R.; Jung, S.-C.; Park, Y.H.; Lim, S.-K. Molecular Characterization of CTX-M β-Lactamase and Associated Addiction Systems in Escherichia coli Circulating among Cattle, Farm Workers, and the Farm Environment. Appl. Environ. Microbiol. 2013, 79, 3898–3905. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Pérez, F.J.; Hanson, N.D. Detection of Plasmid-Mediated AmpC β-Lactamase Genes in Clinical Isolates by Using Multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef] [Green Version]
- Tamang, M.D.; Seol, S.Y.; Oh, J.-Y.; Kang, H.Y.; Lee, J.C.; Lee, Y.C.; Cho, D.T.; Kim, J. Plasmid-Mediated Quinolone Resistance Determinants QnrA, QnrB, and QnrS among Clinical Isolates of Enterobacteriaceae in a Korean Hospital. Antimicrob. Agents Chemother. 2008, 52, 4159–4162. [Google Scholar] [CrossRef] [Green Version]
- Jacoby, G.A. AmpC β-Lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Bae, I.K.; Jeong, S.H.; Chang, C.L.; Lee, C.H.; Lee, K. Characterization of IncF Plasmids Carrying the Bla CTX-M-14 Gene in Clinical Isolates of Escherichia coli from Korea. J. Antimicrob. Chemother. 2011, 66, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Everett, M.J.; Jin, Y.F.; Ricci, V.; Piddock, L.J. Contributions of Individual Mechanisms to Fluoroquinolone Resistance in 36 Escherichia coli Strains Isolated from Humans and Animals. Antimicrob. Agents Chemother. 1996, 40, 2380–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Animals | Samples | No. of E. coli Isolates | Resistance % (No. of Isolates) | p-Value | ||
---|---|---|---|---|---|---|
Cefovecin | Enrofloxacin | Cefovecin and Enrofloxacin | ||||
Dogs | Diarrhea | 446 | 17.9 (80) a,A | 22.2 (99) a,A | 11.2 (50) a,A | 0.192 |
Skin/ear | 91 | 24.2 (22) b,A | 34.1 (31) b,A | 18.7 (17) b,A | 0.210 | |
Urine | 64 | 25.0 (16) b,A | 23.4 (15) a,A | 10.9 (7) a,A | 0.403 | |
Genital | 94 | 8.5 (8) c,A | 14.9 (14) c,A | 5.3 (5) c,A | 0.421 | |
Subtotal | 695 | 18.1 (126) A | 22.9 (159) A | 11.4 (79) A | 0.542 | |
Cats | Diarrhea | 128 | 12.5 (16) a,B | 14.1 (18) a,B | 8.6 (11) a,A | 0.999 |
Skin/ear | 4 | 25.0 (1) b,A | 0 (0) b,B | 0 (0) b,B | ̶ | |
Urine | 4 | 0 (0) c,B | 0 (0) b,B | 0 (0) b,B | ̶ | |
Genital | 5 | 0 (0) c,B | 0 (0) b,B | 0 (0) b,B | ̶ | |
Subtotal | 141 | 12.1 (17) B | 12.8 (18) B | 7.8 (11) A | 0.829 | |
Total | 836 | 17.1 (143) | 21.2 (177) | 10.8 (90) | 0.562 |
Animals | Ages (Year) | Resistance % (No. of Isolates) | ||
---|---|---|---|---|
Cefovecin | Enrofloxacin | Cefovecin and Enrofloxacin | ||
Dogs | <1 (n = 69) | 17.4 (12) a,A | 26.1 (18) a,A | 14.5 (10) a,A |
1–5 (n = 242) | 14.0 (34) a,A | 14.0 (34) b,A | 6.2 (15) b,A | |
6–10 (n = 164) | 16.5 (27) a,A | 22.6 (37) a,A | 11.6 (19) a,A | |
11–15 (n = 130) | 28.5 (37) b,A | 43.1 (56) c,A | 23.1 (30) c,A | |
>15 (n = 22) | 9.1 (2) c,A | 13.6 (3) b,A | 4.5 (1) b,A | |
Unknown (n = 68) | 20.6 (14) | 19.1 (13) | 5.9 (4) | |
Subtotal (n = 695) | 18.1 (126) A | 23.2 (161) A | 11.4 (79) A | |
Cats | <1 (n = 51) | 7.8 (4) a,B | 7.8 (4) a,B | 2.0 (1) a,B |
1–5 (n = 61) | 14.8 (9) b,A | 16.4 (10) b,A | 9.8 (6) b,A | |
6–10 (n = 8) | 0 (0) c,B | 0 (0) c,B | 0 (0) c,B | |
11–15 (n = 2) | 50.0 (1) d,B | 50.0 (1) d,B | 50.0 (1) d,B | |
>15 (n = 1) | 0 (0) c,B | 0 (0) c,B | 0 (0) c,B | |
Unknown (n = 18) | 16.7 (3) | 16.7 (3) | 16.7 (3) | |
Subtotal (n = 141) | 12.1 (17) B | 12.8 (18) B | 7.8 (11) A | |
Total (n = 836) | 17.1 (143) | 21.4 (179) | 10.8 (90) |
ESBL/AmpC Gene | % (No.) of Isolates | ||||||
---|---|---|---|---|---|---|---|
Dogs | Cats | Total (n = 89) | |||||
Diarrhea (n = 50) | Skin/Ear (n = 16) | Urine (n = 7) | Genital (n = 5) | Subtotal (n = 78) | Diarrhea (n = 11) | ||
blaCTX-M-3 + blaCMY-2 | 0 (0) | 0 (0) | 14.3 (1) | 0 (0) | 1.3 (1) | 0 (0) | 1.1 (1) |
blaCTX-M-15 | 20.0 (10) | 31.3 (5) | 0 (0) | 20.0 (1) | 20.5 (16) | 9.1 (1) | 19.1 (17) |
blaCTX-M-15 + blaCMY-2 | 4.0 (2) | 0 (0) | 0 (0) | 0 (0) | 2.6 (2) | 0 (0) | 2.2 (2) |
blaCTX-M-55 | 4.0 (2) | 0 (0) | 14.3 (1) | 0 (0) | 3.8 (3) | 0 (0) | 3.4 (3) |
blaCTX-M-55 + blaCMY-2 | 2.0 (1) | 0 (0) | 14.3 (1) | 0 (0) | 2.6 (2) | 0 (0) | 2.2 (2) |
blaCTX-M-14 | 20.0 (10) | 43.8 (7) | 0 (0) | 0 (0) | 21.8 (17) | 36.4 (4) | 23.6 (21) |
blaCTX-M-14 + blaCMY-2 | 2.0 (1) | 0 (0) | 0 (0) | 0 (0) | 1.3 (1) | 0 (0) | 1.1 (1) |
blaCTX-M-65 | 10.0 (5) | 2.0 (2) | 0 (0) | 20.0 (1) | 10.3 (8) | 9.1 (1) | 10.1 (9) |
blaCMY-2 | 38.0 (19) | 6.3 (1) | 57.1 (4) | 60.0 (3) | 34.6 (27) | 45.5 (5) | 36.0 (32) |
blaCMY-2 + blaDHA | 0 (0) | 6.3 (1) | 0 (0) | 0 (0) | 1.3 (1) | 0 (0) | 1.1 (1) |
Point Mutations within the QRDR | PMQR | No. of Isolates | Minimum Inhibition Concentration50 (MIC50) (mg/L) | |||||
---|---|---|---|---|---|---|---|---|
gyrA | parC | ENR | MAR | CIP | NAL | OFL | ||
Dog isolates (n = 78) | ||||||||
S83L | S80I | qnrS + aac(6’)-Ib-cr | 1 | 32 | 16 | 32 | 256 | 16 |
S83L, D87G | E84K | – | 1 | 32 | 16 | 16 | 256 | 16 |
S83L, D87Y | S80I | – | 18 | 64 | 32 | 32 | 256 | 32 |
S83L, D87N | S80I | – | 34 | 64 | 32 | 32 | 256 | 32 |
qnrB | 1 | 32 | 16 | 16 | 256 | 16 | ||
qnrS | 3 | 32 | 16 | 8 | 256 | 32 | ||
aac(6’)-Ib-cr | 2 | 64 | 16 | 32 | 256 | 32 | ||
S83L, D87N | S80I, E84G | – | 2 | 32 | 16 | 16 | 256 | 16 |
S80I, E84V | – | 13 | 64 | 32 | 32 | 256 | 32 | |
aac(6’)-Ib-cr | 3 | 64 | 16 | 64 | 256 | 16 | ||
Cat isolates (n = 11) | ||||||||
S83L | S80I | qnrS | 1 | 64 | 32 | 32 | 256 | 32 |
S83L, D87N | S80I | – | 7 | 64 | 16 | 32 | 256 | 32 |
qnrS | 1 | 64 | 32 | 32 | 256 | 32 | ||
S83L, D87Y | S80I | – | 2 | 32 | 16 | 16 | 256 | 16 |
ST Type | No. of Isolates | Province | Hospital | Resistance Gene | |
---|---|---|---|---|---|
Dog | Cat | ||||
131 | 16 | 0 | Seoul (n = 6), Busan (n = 4), Daegu (n = 3), Incheon (n = 1), Ulsan (n = 1), Gwangju (n = 1) | H-2 (n = 1), H-4 (n = 2), H-5 (n = 1), H-7 (n = 2), H-10 (n = 1), H-11 (n = 1), H-18 (n = 1), H-24 (n = 1), H-25 (n = 3), H-26 (n = 1), H-28 (n = 1), H-30 (n = 1) | blaCTX-M-14 (n = 5), blaCTX-M-15 (n = 5), blaCTX-M-65 (n = 4), blaCMY-2 (n = 2) |
405 | 8 | 3 | Seoul (n = 8), Incheon (n = 2), Daegu (n = 1) | H-4 (n = 1), H-12 (n = 2), H-13 (n = 2), H-22 (n = 2), H-33 (n = 2), H-15 (n = 1), H-25 (n = 1) | blaCMY-2 (n = 9), blaCTX-M-3 + blaCMY-2 (n = 1), blaCTX-M-15 (n = 1) |
457 | 8 | 1 | Seoul (n = 5), Incheon (n = 3), Gwangju (n = 1) | H-30 (n = 2), H-13 (n = 1), H-17 (n = 1), H-18 (n = 1), H-19 (n = 1), H-27 (n = 1), H-32 (n = 1), Unknown (n = 1) | blaCMY-2 (n = 5), blaCTX-M-15 (n = 3), blaCTX-M-15 + blaCMY-2 (n = 1) |
38 | 7 | 1 | Seoul (n = 3), Ulsan (n = 2), Daejeon (n = 1), Busan (n = 1), Gwangju (n = 1) | H-1 (n = 1), H-6 (n = 1), H-7 (n = 1), H-22 (n = 1), H-25 (n = 2), H-28 (n = 1), H-29 (n = 1) | blaCTX-M-14 (n = 6), blaCTX-M-15 (n = 2) |
648 | 5 | 3 | Seoul (n = 7), Busan (n = 1) | H-13 (n = 2), H-11 (n = 1), H-16 (n = 1), H-20 (n = 1), H-23 (n = 1), H-24 (n = 1), H-25 (n = 1) | blaCTX-M-14 (n = 4), blaCMY-2 (n = 3), blaCTX-M-15 (n = 1) |
155 | 5 | 0 | Seoul (n = 4), Gwangju (n = 1) | H-2 (n = 1), H-12 (n = 1), H-16 (n = 1), H-20 (n = 1), H-34 (n = 1) | blaCMY-2 (n = 3), blaCTX-M-14 (n = 1), blaCTX-M-15 (n = 1) |
2003 | 5 | 0 | Seoul (n = 2), Daegu (n = 1), Busan (n = 1), Gwangju (n = 1) | H-3 (n = 1), H-8 (n = 1), H-14 (n = 1), H-25 (n = 1), Unknown (n = 1) | blaCMY-2 (n = 2), blaCTX-M-14 (n = 1), blaCTX-M-14 + blaCMY-2 (n = 1), blaCTX-M-55 (n = 1) |
410 | 4 | 0 | Seoul (n = 4) | H-21 (n = 2), H-19 (n = 1), H-20 (n = 1) | blaCMY-2 (n = 4) |
224 | 3 | 0 | Seoul (n = 2), Gwangju (n = 1) | H-25 (n = 2), H-1 (n = 1) | blaCMY-2 (n = 2), blaCTX-M-65 (n = 1) |
1193 | 3 | 0 | Seoul (n = 1), Daejeon (n = 1), Ulsan (n = 1) | H-6 (n = 1), H-13 (n = 1), H-28 (n = 1) | blaCTX-M-55 (n = 2), blaCTX-M-14 (n = 1) |
354 | 1 | 1 | Seoul (n = 1), Busan (n = 1) | H-9 (n = 1), H-23 (n = 1) | blaCTX-M-15 (n = 1), blaCMY-2 (n = 1) |
744 | 2 | 0 | Incheon (n = 2) | H-31 (n = 1), H-32 (n = 1) | blaCTX-M-65 (n = 2) |
34 | 0 | 1 | Seoul (n = 1) | H-17 (n = 1) | blaCTX-M 14 (n = 1) |
69 | 1 | 0 | Seoul (n = 1) | H-13 (n = 1) | blaCTX-M 14 (n = 1) |
105 | 1 | 0 | Seoul (n = 1) | H-23 (n = 1) | blaCTX-M-15 + blaCMY-2 (n = 1) |
162 | 1 | 0 | Seoul (n = 1) | H-25 (n = 1) | blaCTX-M-65 (n = 1) |
372 | 1 | 0 | Incheon (n = 1) | H-33 (n = 1) | blaCTX-M-15 (n = 1) |
450 | 1 | 0 | Seoul (n = 1) | H-22 (n = 1) | blaCTX-M-55 + blaCMY-2 (n = 1) |
1011 | 1 | 0 | Seoul (n = 1) | H-15 (n = 1) | blaCMY-2 (n = 1) |
1196 | 1 | 0 | Seoul (n = 1) | H-12 (n = 1) | blaCMY-2 (n = 1) |
2159 | 0 | 1 | Ulsan(n = 1) | H-28 (n = 1) | blaCTX-M-65 (n = 1) |
2245 | 1 | 0 | Seoul (n = 1) | H-15 (n = 1) | blaCTX-M-55 + blaCMY-2 (n = 1) |
4516 | 1 | 0 | Seoul (n = 1) | H-13 (n = 1) | blaCTX-M-14 (n = 1) |
5150 | 1 | 0 | Gwangju (n = 1) | H-1 (n = 1) | blaCTM-M-15 (n = 1) |
5869 | 1 | 0 | Gwangju (n = 1) | H-1 (n = 1) | blaCTX-M-15 (n = 1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.-H.; Ali, M.S.; Moon, B.-Y.; Kang, H.-Y.; Kim, S.-J.; Song, H.-J.; Mechesso, A.F.; Moon, D.-C.; Lim, S.-K. Prevalence and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Dogs and Cats in South Korea. Antibiotics 2023, 12, 745. https://doi.org/10.3390/antibiotics12040745
Choi J-H, Ali MS, Moon B-Y, Kang H-Y, Kim S-J, Song H-J, Mechesso AF, Moon D-C, Lim S-K. Prevalence and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Dogs and Cats in South Korea. Antibiotics. 2023; 12(4):745. https://doi.org/10.3390/antibiotics12040745
Chicago/Turabian StyleChoi, Ji-Hyun, Md. Sekendar Ali, Bo-Youn Moon, Hee-Young Kang, Su-Jeong Kim, Hyun-Ju Song, Abraham Fikru Mechesso, Dong-Chan Moon, and Suk-Kyung Lim. 2023. "Prevalence and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Dogs and Cats in South Korea" Antibiotics 12, no. 4: 745. https://doi.org/10.3390/antibiotics12040745
APA StyleChoi, J. -H., Ali, M. S., Moon, B. -Y., Kang, H. -Y., Kim, S. -J., Song, H. -J., Mechesso, A. F., Moon, D. -C., & Lim, S. -K. (2023). Prevalence and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Dogs and Cats in South Korea. Antibiotics, 12(4), 745. https://doi.org/10.3390/antibiotics12040745