Detection of Potential Zoonotic Agents Isolated in Italian Shelters and the Assessment of Animal Welfare Correlation with Antimicrobial Resistance in Escherichia coli Strains
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animal Welfare
4.2. Animals and Samples
4.3. Bacterial Isolation and Identification
4.4. Detection of Capnocytophaga Canimorsus/Cynodegmi
4.5. Detection of E. coli O:157 in Rectal Swabs Samples
4.6. Characterization of E. coli Isolates
4.7. Antimicrobial Susceptibility
4.8. Statistics Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Strategic Priorities on Antimicrobial Resistance Preserving Antimicrobials for Today and Tomorrow May 2022; ISBN: 9789240041387. Antimicrobial Resistance (who.int). Available online: https://www.who.int/publications/i/item/9789240041387 (accessed on 2 May 2023).
- Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, S.; Rivera-Hernandez, T.; Curren, B.F.; Harbison-Price, N.; De Oliveira, D.M.P.; Jespersen, M.G.; Davies, M.R.; Walker, M.J. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat. Rev. Microbiol. 2023, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- World Organization Animal Healt (WOAH). What We Do “Glabal Initiative” Atimicrobial Resistance. 2023. Antimicrobial Resistance—WOAH—World Organisation for Animal Health. Available online: https://www.woah.org/ (accessed on 2 May 2023).
- Note, A.B. Antimicrobial Resistance in the EU/EEA: A One Health Response. 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/antimicrobial-resistance-policy-brief-2022.pdf (accessed on 2 May 2023).
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Hackmann, C.; Gastmeier, P.; Schwarz, S.; Lübke-Becker, A.; Bischoff, P.; Leistner, R. Pet husbandry as a risk factor for colonization or infection with MDR organisms: A systematic meta-analysis. J. Antimicrob. Chemother. 2021, 76, 1392–1405. [Google Scholar] [CrossRef] [PubMed]
- Argudín, M.A.; Deplano, A.; Meghraoui, A.; Dodémont, M.; Heinrichs, A.; Denis, O.; Nonhoff, C.; Roisin, S. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antibiotics 2017, 6, 12. [Google Scholar] [CrossRef]
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; Van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M.; et al. Public health risk of antimicrobial resistance transfer from companion animals. J. Antimicrob. Chemother. 2017, 72, 957–968. [Google Scholar] [CrossRef]
- Schmidt, V.M.; Pinchbeck, G.; McIntyre, K.M.; Nuttall, T.; McEwan, N.; Dawson, S.; Williams, N.J. Routine antibiotic therapy in dogs increases the detection of antimicrobial-resistant faecal Escherichia coli. J. Antimicrob. Chemother. 2018, 73, 3305–3316. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Muisa-Zikali, N.; Teta, C.; Musvuugwa, T.; Rzymski, P.; Abia, A.L.K. Insects, Rodents, and Pets as Reservoirs, Vectors, and Sentinels of Antimicrobial Resistance. Antibiotics 2021, 10, 68. [Google Scholar] [CrossRef]
- Umeda, K.; Hase, A.; Matsuo, M.; Horimoto, T.; Ogasawara, J. Prevalence and genetic characterization of cephalosporin-resistant Enterobacteriaceae among dogs and cats in an animal shelter. J. Med. Microbiol. 2019, 68, 339–345. [Google Scholar] [CrossRef]
- Lloyd, D.H. Reservoirs of Antimicrobial Resistance in Pet Animals. Clin. Infect. Dis. 2007, 45 (Suppl. S2), S148–S152. [Google Scholar] [CrossRef] [PubMed]
- Donati, V.; Feltrin, F.; Hendriksen, R.S.; Svendsen, C.A.; Cordaro, G.; García-Fernández, A.; Lorenzetti, S.; Lorenzetti, R.; Battisti, A.; Franco, A. Extended-spectrum-beta-lactamases, AmpCbeta-lactamases and plasmid mediated quinolone resistance in Klebsiella spp. from companion animals in Italy. PLoS ONE 2014, 9, e90564. [Google Scholar] [CrossRef]
- Vercelli, C.; Della Ricca, M.; Re, M.; Gambino, G.; Re, G. Antibiotic Stewardship for Canine and Feline Acute Urinary Tract Infection: An Observational Study in a Small Animal Hospital in Northwest Italy. Antibiotics 2021, 10, 562. [Google Scholar] [CrossRef] [PubMed]
- Iseppi, R.; Di Cerbo, A.; Messi, P.; Sabia, C. Antibiotic Resistance and Virulence Traits in Vancomycin-Resistant Enterococci (VRE) and Extended-Spectrum β-Lactamase/AmpC-producing (ESBL/AmpC) Enterobacteriaceae from Humans and Pets. Antibiotics 2020, 9, 152. [Google Scholar] [CrossRef] [PubMed]
- Roscetto, E.; Varriale, C.; Galdiero, U.; Esposito, C.; Catania, M.R. Extended-Spectrum Beta-Lactamase-Producing and Carbapenem-Resistant Enterobacterales in Companion and Animal-Assisted Interventions Dogs. Int. J. Environ. Res. Public Health 2021, 18, 12952. [Google Scholar] [CrossRef]
- Smoglica, C.; Evangelisti, G.; Fani, C.; Marsilio, F.; Trotta, M.; Messina, F.; Di Francesco, C.E. Antimicrobial Resistance Profile of Bacterial Isolates from Urinary Tract Infections in Companion Animals in Central Italy. Antibiotics 2022, 11, 1363. [Google Scholar] [CrossRef]
- Guardabassi, L.; Schwarz, S.; Lloyd, D.H. Pet animals as reservoirs of antimicrobial-resistant bacteria: Review. J. Antimicrob. Chemother. 2004, 54, 321–332. [Google Scholar] [CrossRef]
- Rossi, M.; Hänninen, M.; Revez, J.; Hannula, M.; Zanoni, R. Occurrence and species level diagnostics of Campylobacter spp., enteric Helicobacter spp. and Anaerobiospirillum spp. in healthy and diarrheic dogs and cats. Vet. Microbiol. 2008, 129, 304–314. [Google Scholar] [CrossRef]
- Elnageh, H.R.; Hiblu, M.; Abassi, M.S.; Abouzeed, Y.M.; Ahmed, M.O. Prevalence and antimicrobial resistance of Salmonella serotypes isolated from cats and dogs in Tripoli, Libya. Vet. Ital. 2021, 57, 111–118. [Google Scholar]
- Chaban, B.; Ngeleka, M.; Hill, J.E. Detection and quantification of 14 Campylobacter species in pet dogs reveals an increase in species richness in feces of diarrheic animals. BMC Microbiol. 2010, 10, 73. [Google Scholar] [CrossRef]
- Guest, C.M.; Stephen, J.M.; Price, C.J. Prevalence of Campylobacter and four endoparasites in dog populations associated with Hearing Dogs. J. Small Anim. Pract. 2007, 48, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Usmael, B.; Abraha, B.; Alemu, S.; Mummed, B.; Hiko, A.; Abdurehman, A. Isolation, antimicrobial susceptibility patterns, and risk factors assessment of non-typhoidal Salmonella from apparently healthy and diarrheic dogs. BMC Vet. Res. 2022, 18, 37. [Google Scholar] [CrossRef] [PubMed]
- Gondrosen, B.; Knævelsrud, T.; Dommarsnes, K. Isolation of Thermophilic Campylobacters from Norwegian Dogs and Cats. Acta Vet. Scand. 1985, 26, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Hald, B.; Pedersen, K.; Waino, M.; Jorgensen, J.C.; Madsen, M. Longitudinal study of the excretion patterns of thermophilic Campylobacter spp. in young pet dogs in Denmark. J. Clin. Microbiol. 2004, 42, 2003–2012. [Google Scholar] [CrossRef]
- Bataller, E.; Garcia-Romero, E.; Llobat, L.; Lizana, V.; Jimenez-Trigos, E. Dogs as source of Salmonella spp. in apparently healthy dogs in the Valencia Region. Could it be related with intestinal lactic acid bacteria? BMC Vet. Res. 2020, 16, 268. [Google Scholar] [CrossRef] [PubMed]
- Damborg, P.; Olsen, K.E.; Moller Nielsen, E.; Guardabassi, L. Occurrence of Campylobacter jejuni in pets living with human patients infected with C. jejuni. J. Clin. Microbiol. 2004, 42, 1363–1364. [Google Scholar] [CrossRef]
- Morse, E.V.; Duncan, M.A.; Estep, D.A.; Riggs, W.A.; Blackburn, B.O. Canine salmonellosis: A review and report of dog to child transmission of Salmonella enteritidis. Am. J. Public Health 1976, 66, 82–83. [Google Scholar] [CrossRef]
- Wolfs, T.F.W.; Duim, B.; Geelen, S.P.M.; Rigter, A.; Thomson-Carter, F.; Fleer, A.; Wagenaar, J.A. Neonatal Sepsis by Campylobacter jejuni: Genetically Proven Transmission from a Household Puppy. Clin. Infect. Dis. 2001, 32, e97–e99. [Google Scholar] [CrossRef]
- Reimschuessel, R.; Grabenstein, M.; Guag, J.; Nemser, S.M.; Song, K.; Qiu, J.; Clothier, K.A.; Byrne, B.A.; Marks, S.L.; Cadmus, K.; et al. Multilaboratory Survey to Evaluate Salmonella Prevalence in Diarrheic and Nondiarrheic Dogs and Cats in the United States between 2012 and 2014. J. Clin. Microbiol. 2017, 55, 1350–1368. [Google Scholar] [CrossRef]
- Rzewuska, M.; Czopowicz, M.; Kizerwetter-Świda, M.; Chrobak, D.; Błaszczak, B.; Binek, M. Multidrug Resistance in Escherichia coli Strains Isolated from Infections in Dogs and Cats in Poland (2007–2013). Sci. World J. 2015, 2015, 408205. [Google Scholar] [CrossRef]
- Takagi, H.; Yamane, K.; Matsui, M.; Suzuki, S.; Ito, K. Pathotypes and Drug Susceptibility of Escherichia coli Isolated from Companion Dogs in Japan. Jpn. J. Infect. Dis. 2020, 73, 253–255. [Google Scholar] [CrossRef]
- De Graef, E.; Decostere, A.; Devriese, L.; Haesebrouck, F. Antibiotic Resistance among Fecal Indicator Bacteria from Healthy Individually Owned and Kennel Dogs. Microb. Drug Resist. 2004, 10, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, L.; Buldain, D.; Gortari Castillo, L.; Buchamer, A.; Chirino-Trejo, M.; Mestorino, N. Pet and Stray Dogs as Reservoirs of Antimicrobial-Resistant Escherichia coli. Int. J. Microbiol. 2021, 2021, 6664557. [Google Scholar] [CrossRef]
- Steneroden, K.K.; Hill, A.E.; Salman, M.D. Zoonotic Disease Awareness in Animal Shelter Workers and Volunteers and the Effect of Training. Zoonoses Public Health 2011, 58, 449–453. [Google Scholar] [CrossRef]
- World Organization Animal Health (WOAH). Terrestrial Animal Health Code Chap. 7.7 on Dog Population Management. Available online: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/?id=169&L=1&htmfile=chapitre_aw_stray_dog.htm (accessed on 4 May 2023).
- Barnard, S.; Pedernera, C.; Candeloro, L.; Ferri, N.; Velarde, A.; Dalla Villa, P.F. Development of a new welfare assessment protocol for practical application in long-term dog shelters. Vet. Rec. 2016, 178, 18. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.; Mills, D. The effect of the kennel environment on canine welfare: A critical review of experimental studies. Anim. Welf. 2007, 16, 435–447. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J. 2023, 21, e07867. [Google Scholar]
- Joosten, P.; Ceccarelli, D.; Odent, E.; Sarrazin, S.; Graveland, H.; Van Gompel, L.; Battisti, A.; Caprioli, A.; Franco, A.; Wagenaar, J.A.; et al. Antimicrobial Usage and Resistance in Companion Animals: A Cross-Sectional Study in Three European Countries. Antibiotics 2020, 9, 87. [Google Scholar] [CrossRef]
- Sales of Veterinary Antimicrobial Agents in 31 Countries in 2021 Trends from 2010 to 2021 Twelfth ESVAC Report. EMA/795956/2022. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2021-trends-2010-2021-twelfth-esvac_en.pdf (accessed on 2 May 2023).
- Caruso, G. Antibiotic Resistance in Escherichia coli from Farm Livestock and Related Analytical Methods: A Review. J. AOAC Int. 2018, 101, 916–922. [Google Scholar] [CrossRef]
- Iannino, F.; Salucci, S.; Di Donato, G.; Badagliacca, P.; Vincifori, G.; Di Giannatale, E. Campylobacter and antimicrobial resistance in dogs and humans: “One health” in practice. Vet. Ital. 2019, 55, 203–220. [Google Scholar]
- Hanselman, B.A.; Kruth, S.A.; Rousseau, J.; Weese, J.S. Coagulase positive staphylococcal colonization of humans and their household pets. Can. Vet. J. 2009, 50, 954–958. [Google Scholar]
- Walther, B.; Hermes, J.; Cuny, C.; Wieler, L.H.; Vincze, S.; Abou Elnaga, Y.; Stamm, I.; Kopp, P.A.; Kohn, B.; Witte, W.; et al. Sharing more than frienship-nasal colonization with coagulase-positive staphylococci (CPS) and co-habitation aspects of dogs and their owners. PLoS ONE. 2012, 7, e35197. [Google Scholar] [CrossRef] [PubMed]
- Piccinelli, G.; Caccuri, F.; De Peri, E.; Tironi, A.; Odolini, S.; Notarangelo, L.D.; Gargiulo, F.; Castelli, F.; Latronico, N.; Facchetti, F.; et al. Fulminant septic shock caused by Capnocythophaga canimorsus in Italy: Case report. Int. J. Infect. Dis. 2018, 72, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Zajkowska, J.; Kròl, M.; Falkowski, D.; Syed, N.; Kamienska, A. Capnocythophaga canimorsus- an underestimated danger after dog or cat bite- review of literature. Przegl. Epidemiol. 2016, 70, 289–295. [Google Scholar] [PubMed]
- Suzuki, M.; Kimura, M.; Imaoka, K.; Yamada, A. Prevalence of Capnocythophaga canimorsus and Capnocytophaga cynodegmi in dogs and cats determined by using a newly established species-specific PCR. Vet. Microbiol. 2010, 144, 172–176. [Google Scholar] [CrossRef]
- Shaheen, B.; Boothe, D.; Oyarzabal, O.; Smaha, T. Antimicrobial Resistance Profiles and Clonal Relatedness of Canine and Feline Escherichia coli Pathogens Expressing Multidrug Resistance in the United States. J. Vet. Intern. Med. 2010, 24, 323–330. [Google Scholar] [CrossRef]
- Harada, K.; Niina, A.; Nakai, Y.; Kataoka, Y.; Takahashi, T. Prevalence of antimicrobial resistance in relation to virulence genes and phylogenetic origins among urogenital Escherichia coli isolates from dogs and cats in Japan. Am. J. Vet. Res. 2012, 73, 409–417. [Google Scholar] [CrossRef]
- Algammal, A.M.; El-Tarabili, R.M.; Alfifi, K.J.; Al-Otaibi, A.S.; Hashem, M.E.A.; El-Maghraby, M.M.; Mahmoud, A.E. Virulence determinant and antimicrobial resistance traits of Emerging MDR Shiga toxigenic E. coli in diarrheic dogs. AMB Express 2022, 12, 34. [Google Scholar] [CrossRef]
- Dazio, V.; Nigg, A.; Schmidt, J.S.; Brilhante, M.; Campos-Madueno, E.I.; Mauri, N.; Kuster, S.P.; Brawand, S.G.; Willi, B.; Endimiani, A.; et al. Duration of carriage of multidrug-resistant bacteria in dogs and cats in veterinary care and co-carriage with their owners. One Health 2021, 13, 100322. [Google Scholar] [CrossRef]
- De Massis, F.; Arena, L.; Berteselli, G.V.; Ferri, N.; Lombardo, F.; Messori, S.; Dalla Villa, P. Protocollo di Valutazione del Benessere dei cani Alloggiati in Canile. Shelter Quality Protocol 2nd ed. 2014. Available online: https://www.izs.it/IZS/Engine/RAServeFile.php/f/pdf_pubblicazioni/ProtocolloShelterQuality_IT_maggio2018.pdf (accessed on 2 May 2023).
- De Massis, F.A.L.; Berteselli, G.V.; Ferri, N.; Lombardo, F.; Messari, S.; Dalla Villa, P. Protocollo di Valutazione del Benessere dei cani Alloggiati in Canile. 2014. Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”. Available online: www.izs.itProtocolloShelterQuality_IT_maggio2018.pdf (accessed on 2 May 2023).
- Dell, R.B.; Holleran, S.; Ramarkrishanan, R. Sample size determination. ILAR J. 2002, 43, 207–213. [Google Scholar] [CrossRef]
- ISO 10272 Part 1 and Part 2: 2006; Microbiology of Food and Animal Feeding Stuffs-Horizontal Method for Detection and Enumeration of Campylobacter spp. International Organization for Standardization: Geneva, Switzerland, 2022.
- Wang, G.; Clark, C.G.; Taylor, T.M.; Pucknell, C.; Barton, C.; Price, L.; Woodward, D.L.; Rodgers, F.G. Colony multiplex PCR assay for identification and differentiation of Campylobacter jejuni, C. coli, C. lari, C. upsaliensis, and C. fetus subsp. fetus. J. Clin. Microbiol. 2002, 40, 4744–4747. [Google Scholar] [CrossRef]
- Di Giannatale, E.; Calistri, P.; Di Donato, G.; Decastelli, L.; Goffredo, E.; Adriano, D.; Mancini, M.E.; Galleggiante, A.; Neri, D.; Antoci, S.; et al. Thermotolerant Campylobacter spp. in chicken and bovine meat in Italy: Prevalence, level of contamination and molecular characterization of isolates. PLoS ONE. 2019, 14, e0225957. [Google Scholar] [CrossRef] [PubMed]
- ISO 6579: 2017; Microbiology of Food and Animal Feeding Stuffs-Horizontal Method for the Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2022.
- Ehrmann, E.; Jolivet-Gougeon, A.; Bonnaure-Mallet, M.; Fosse, T. Antibiotic content of selective culture media for isolation of Capnocytiphaga species from oral polymicrobial samples. Lett. Appl. Microbiol. 2013, 57, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Capnocytophaga, S.C.H. Bergery’s Manual Trust; Bergery’ s Manual of Systematic Bacteriology 2010; Springer Science & Business Media: New York, NY, USA, 2010; Volume 39, pp. 168–176. [Google Scholar]
- World Organization for Animal Health (WOAH). Verocytotoxigenic E. coli (VTEC). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; Chapter 3.9.10; World Organization for Animal Health: Paris, France, 2018. [Google Scholar]
- Commission, E. Commision Implementing Decision (EU) 2020/1729 of 17 November 2020 on the Monitoring and Reporting of Antimicrobial Resistance in Zoonotic and Commensal Bacteria and Repealing Implementing Decision 2013/652/EU.2020. Official J of the EU. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2020.387.01.0008.01.ENG (accessed on 2 May 2023).
- Clinical and Laboratory Standard Institute. CLSI M100-ED 31; 2021 Performance Standards for Antimicrobial Susceptibility Testing, 31 ed. Updated 2021. Available online: https://clsi.org/media/z2uhcbmv/m100ed31_sample.pdf (accessed on 2 May 2023).
- Agresti, A. Categorial Data Analysis, 3rd ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- The Data Analysis for This Paper Was Generated Using the XIStat 2022.2.1. Copyright Addinsoft 1995–2022. Available online: https://www.xlstat.com/en/?creative=451050327509&keyword=xlstat%20price&matchtype=b&network=g&device=c&gclid=EAIaIQobChMI2IfJi4bg_gIVsb-WCh2tCAiIEAAYASAAEgLpq_D_BwE (accessed on 2 May 2023).
- Gelmann, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesan Data Analysis, 3rd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2013. [Google Scholar]
- Dalla Villa, P.; Messori, S.; Possenti, L.; Barnard, S.; Cianella, M.; Di Francesco, C. Pet population management and public health: A web service-based tool for the improvement of dog traceability. Prev. Vet. Med. 2013, 109, 349–353. [Google Scholar] [CrossRef] [PubMed]
Nasopharyngeal Swabs | Rectal Swabs | Oral Swabs | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Shelters | Total n. | S. pseudointermedius | P. multocida | S. aureus | Total n. | Campylobacter spp. | E. coli | Salmonella enterica | Total n. | Capnocytophaga spp. |
A | 20 | 0 | 0 | 2 | 17 | 1 | 2 | 0 | 20 | 14 |
B | 18 | 0 | 0 | 0 | 10 | 1 | 3 | 0 | 19 | 14 |
C | 17 | 0 | 0 | 1 | 14 | 0 | 1 | 0 | 18 | 14 |
D | 16 | 0 | 0 | 0 | 16 | 0 | 4 | 0 | 15 | 14 |
E | 20 | 5 | 1 | 1 | 20 | 2 | 6 | 0 | 20 | 20 |
F | 20 | 1 | 0 | 0 | 11 | 0 | 4 | 1 | 20 | 20 |
G | 18 | 0 | 0 | 0 | 16 | 0 | 6 | 0 | 20 | 20 |
H | 20 | 0 | 0 | 0 | 9 | 0 | 5 | 0 | 20 | 18 |
I | 18 | 0 | 0 | 2 | 15 | 3 | ND 1 | 0 | 20 | 20 |
J | 20 | 0 | 0 | 1 | 16 | 0 | 2 | 0 | 20 | 17 |
K | 20 | 0 | 0 | 0 | 8 | 0 | 3 | 0 | 20 | 18 |
L | 19 | 0 | 0 | 0 | 12 | 2 | 3 | 0 | 20 | 17 |
M | 20 | 1 | 0 | 1 | 13 | 3 | 5 | 0 | ND 1 | ND 1 |
N | 19 | 2 | 0 | 1 | 11 | 0 | 4 | 0 | 20 | 20 |
O | 18 | 0 | 0 | 1 | 15 | 0 | 6 | 0 | 20 | 20 |
Total | 283 | 9 | 1 | 9 | 203 | 12 | 54 | 2 | 272 | 246 |
Shelters | MDR | Total | Percentage Number of MDR Strains |
---|---|---|---|
A | TMP-AZY-SUL 1 | 1 | 1.85 |
B | AMP-MEM-SUL-TET | 1 | 1.85 |
D | AMP-CIP-TMP-NAL-SUL-TET | 1 | 1.85 |
F | AMP-CTX-CAZ-CIP-NAL | 1 | 1.85 |
G | AMP-CIP-TMP-NAL-SUL-TET | 2 | 3.7 |
H | AMP-CIP-NAL-SUL | 1 | 1.85 |
H | AMP-CIP-TMP-NAL-SUL-TET | 1 | 1.85 |
H | AMP-CIP-NAL-SUL-TET | 1 | 1.85 |
K | AMP-TMP-SUL-TET | 1 | 1.85 |
L | AMP-CIP-TMP-SUL-TET | 1 | 1.85 |
N | AMP-CTX-CAZ-CIP-TMP-NAL-SUL-TET | 1 | 1.85 |
N | AMP-CTX-CAZ-CIP-NAL | 1 | 1.85 |
O | AMP-CTX-CAZ-CIP-NAL-TET | 1 | 1.85 |
NO MDR | 40 | 74.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocco, A.; Alessiani, A.; Salini, R.; Iapaolo, F.; Averaimo, D.; Pompilii, C.; Foschi, G.; Bellucci, F.; Iannino, F.; Dalla Villa, P.; et al. Detection of Potential Zoonotic Agents Isolated in Italian Shelters and the Assessment of Animal Welfare Correlation with Antimicrobial Resistance in Escherichia coli Strains. Antibiotics 2023, 12, 863. https://doi.org/10.3390/antibiotics12050863
Cocco A, Alessiani A, Salini R, Iapaolo F, Averaimo D, Pompilii C, Foschi G, Bellucci F, Iannino F, Dalla Villa P, et al. Detection of Potential Zoonotic Agents Isolated in Italian Shelters and the Assessment of Animal Welfare Correlation with Antimicrobial Resistance in Escherichia coli Strains. Antibiotics. 2023; 12(5):863. https://doi.org/10.3390/antibiotics12050863
Chicago/Turabian StyleCocco, Antonio, Alessandra Alessiani, Romolo Salini, Federica Iapaolo, Daniela Averaimo, Cinzia Pompilii, Giovanni Foschi, Fabio Bellucci, Filomena Iannino, Paolo Dalla Villa, and et al. 2023. "Detection of Potential Zoonotic Agents Isolated in Italian Shelters and the Assessment of Animal Welfare Correlation with Antimicrobial Resistance in Escherichia coli Strains" Antibiotics 12, no. 5: 863. https://doi.org/10.3390/antibiotics12050863
APA StyleCocco, A., Alessiani, A., Salini, R., Iapaolo, F., Averaimo, D., Pompilii, C., Foschi, G., Bellucci, F., Iannino, F., Dalla Villa, P., Janowicz, A., & Caporale, M. (2023). Detection of Potential Zoonotic Agents Isolated in Italian Shelters and the Assessment of Animal Welfare Correlation with Antimicrobial Resistance in Escherichia coli Strains. Antibiotics, 12(5), 863. https://doi.org/10.3390/antibiotics12050863