In Vitro Activity of Cefiderocol against Clinical Gram-Negative Isolates Originating from Germany in 2016/17
Abstract
:1. Introduction
2. Results
2.1. Random Sample of Clinical Isolates (Set I)
2.2. Challenge Organisms (Set II)
2.3. Resistant Isolates (Set I and II)
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.1.1. Random Sample of Clinical Isolates (Set I)
4.1.2. Challenge Organisms (Set II)
4.2. Species Identification
4.3. Antimicrobial Susceptibility Testing
4.4. Molecular Analysis of CID-Resistant Isolates
4.5. Statistical Evaluation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- World Health Organization (WHO). Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline; WHO: Geneva, Switzerland, 2019.
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; Salamat, M.K.F.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef]
- Spellberg, B. The future of antibiotics. Crit. Care 2014, 18, 228. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. In Cad. De Pesqui.; 2017. Available online: http://remed.org/wp-content/uploads/2017/03/lobal-priority-list-of-antibiotic-resistant-bacteria-2017.pdf (accessed on 1 March 2023).
- Cojutti, P.; Sartor, A.; Righi, E.; Scarparo, C.; Bassetti, M.; Pea, F. Population Pharmacokinetics of High-Dose Continuous-Infusion Meropenem and Considerations for Use in the Treatment of Infections Due to KPC-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2017, 61, e00794-17. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. The “Old” and the “New” Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front. Public Health 2019, 7, 151. [Google Scholar] [CrossRef] [PubMed]
- Wi, Y.M.; Greenwood-Quaintance, K.E.; Schuetz, A.N.; Ko, K.S.; Peck, K.R.; Song, J.-H.; Patel, R. Activity of Ceftolozane-Tazobactam against Carbapenem-Resistant, Non-Carbapenemase-Producing Pseudomonas aeruginosa and Associated Resistance Mechanisms. Antimicrob. Agents Chemother. 2018, 62, e01970-17. [Google Scholar] [CrossRef] [PubMed]
- Kresken, M.; Körber-Irrgang, B.; Korte-Berwanger, M.; Pfennigwerth, N.; Gatermann, S.G.; Seifert, H. Dissemination of carbapenem-resistant Pseudomonas aeruginosa isolates and their susceptibilities to ceftolozane-tazobactam in Germany. Int. J. Antimicrob. Agents 2020, 55, 105959. [Google Scholar] [CrossRef]
- Kohira, N.; West, J.; Ito, A.; Ito-Horiyama, T.; Nakamura, R.; Sato, T.; Rittenhouse, S.; Tsuji, M.; Yamano, Y. In Vitro Antimicrobial Activity of a Siderophore Cephalosporin, S-649266, against Enterobacteriaceae Clinical Isolates, Including Carbapenem-Resistant Strains. Antimicrob. Agents Chemother. 2016, 60, 729–734. [Google Scholar] [CrossRef]
- Ito, A.; Nishikawa, T.; Matsumoto, S.; Yoshizawa, H.; Sato, T.; Nakamura, R.; Tsuji, M.; Yamano, Y. Siderophore Cephalosporin Cefiderocol Utilizes Ferric Iron Transporter Systems for Antibacterial Activity against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2016, 60, 7396–7401. [Google Scholar] [CrossRef]
- Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of the Siderophore Cephalosporin, Cefiderocol, against a Recent Collection of Clinically Relevant Gram-Negative Bacilli from North America and Europe, Including Carbapenem-Nonsusceptible Isolates (SIDERO-WT-2014 Study). Antimicrob. Agents Chemother. 2017, 61, e00093-17. [Google Scholar] [CrossRef]
- Sato, T.; Yamawaki, K. Cefiderocol: Discovery, Chemistry, and In Vivo Profiles of a Novel Siderophore Cephalosporin. Clin. Infect. Dis. 2019, 69, S538–S543. [Google Scholar] [CrossRef] [PubMed]
- Ito-Horiyama, T.; Ishii, Y.; Ito, A.; Sato, T.; Nakamura, R.; Fukuhara, N.; Tsuji, M.; Yamano, Y.; Yamaguchi, K.; Tateda, K. Stability of Novel Siderophore Cephalosporin S-649266 against Clinically Relevant Carbapenemases. Antimicrob. Agents Chemother. 2016, 60, 4384–4386. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Kieffer, N.; Nordmann, P. Stability of cefiderocol against clinically significant broad-spectrum oxacillinases. Int. J. Antimicrob. Agents 2018, 52, 866–867. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Nishikawa, T.; Ota, M.; Ito-Horiyama, T.; Ishibashi, N.; Sato, T.; Tsuji, M.; Yamano, Y. Stability and low induction propensity of cefiderocol against chromosomal AmpC β-lactamases of Pseudomonas aeruginosa and Enterobacter cloacae. J. Antimicrob. Chemother. 2019, 74, 539. [Google Scholar] [CrossRef] [PubMed]
- European Medicine Company. Fetroja. 2020. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/fetcroja#overview-section (accessed on 3 March 2023).
- Food and Drug Administration. FETROJA (Cefiderocol) for Injection, for Intravenous Use. 2020. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209445s002lbl.pdf (accessed on 3 March 2023).
- Kresken, M.; Korte-Berwanger, M.; Gatermann, S.G.; Pfeifer, Y.; Pfennigwerth, N.; Seifert, H.; Werner, G. In vitro activity of cefiderocol against aerobic Gram-negative bacterial pathogens from Germany. Int. J. Antimicrob. Agents 2020, 56, 106128. [Google Scholar] [CrossRef]
- Çıkman, A.; Parlak, M.; Bayram, Y.; Güdücüoğlu, H.; Berktaş, M. Antibiotics resistance of Stenotrophomonas maltophilia strains isolated from various clinical specimens. Afr. Health Sci. 2016, 16, 149–152. [Google Scholar] [CrossRef]
- Shortridge, D.; Streit, J.M.; Mendes, R.; Castanheira, M. In Vitro Activity of Cefiderocol against U.S. and European Gram-Negative Clinical Isolates Collected in 2020 as Part of the SENTRY Antimicrobial Surveillance Program. Microbiol. Spectr. 2022, 10, e02712-21. [Google Scholar] [CrossRef]
- Naas, T.; Lina, G.; Henriksen, A.S.; Longshaw, C.; Jehl, F. In vitro activity of cefiderocol and comparators against isolates of Gram-negative pathogens from a range of infection sources: SIDERO-WT-2014–2018 studies in France. JAC-Antimicrob. Resist. 2021, 3, dlab081. [Google Scholar] [CrossRef]
- Delgado-Valverde, M.; Conejo, M.D.C.; Serrano, L.; Fernández-Cuenca, F.; Pascual, Á. Activity of cefiderocol against high-risk clones of multidrug-resistant Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 2020, 75, 1840–1849. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Hackel, M.A.; Takemura, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In Vitro Susceptibility of Gram-Negative Pathogens to Cefiderocol in Five Consecutive Annual Multinational SIDERO-WT Surveillance Studies, 2014 to 2019. Antimicrob. Agents Chemother. 2022, 66, e01990-21. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, S.; Sadouki, Z.; Vickers, A.; Livermore, D.M.; Woodford, N. In Vitro Activity of Cefiderocol, a Siderophore Cephalosporin, against Multidrug-Resistant Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2020, 64, e01582-20. [Google Scholar] [CrossRef] [PubMed]
- Lan, P.; Lu, Y.; Chen, Z.; Wu, X.; Hua, X.; Jiang, Y.; Zhou, J.; Yu, Y. Emergence of High-Level Cefiderocol Resistance in Carbapenem-Resistant Klebsiella pneumoniae from Bloodstream Infections in Patients with Hematologic Malignancies in China. Microbiol. Spectr. 2022, 10, e00084-22. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Shields, R.K.; Doi, Y.; Takemura, M.; Echols, R.; Matsunaga, Y.; Yamano, Y. Mechanisms of Reduced Susceptibility to Cefiderocol Among Isolates from the CREDIBLE-CR and APEKS-NP Clinical Trials. Microb. Drug Resist. 2022, 28, 398–407. [Google Scholar] [CrossRef]
- Yamano, Y.; Ishibashi, N.; Kuroiwa, M.; Takemura, M.; Sheng, W.-H.; Hsueh, P.-R. Characterisation of cefiderocol-non-susceptible Acinetobacter baumannii isolates from Taiwan. J. Glob. Antimicrob. Resist. 2021, 28, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Luscher, A.; Moynié, L.; Auguste, P.S.; Bumann, D.; Mazza, L.; Pletzer, D.; Naismith, J.H.; Köhler, T. TonB-Dependent Receptor Repertoire of Pseudomonas aeruginosa for Uptake of Siderophore-Drug Conjugates. Antimicrob. Agents Chemother. 2018, 62, e00097-18. [Google Scholar] [CrossRef] [PubMed]
- Higgins, P.G.; Pérez-Llarena, F.J.; Zander, E.; Fernández, A.; Bou, G.; Seifert, H. OXA-235, a Novel Class D β-Lactamase Involved in Resistance to Carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2013, 57, 2121–2126. [Google Scholar] [CrossRef]
- Pfennigwerth, N.; Gatermann, S.G.; Körber-Irrgang, B.; Hönings, R. Phenotypic Detection and Differentiation of Carbapenemase Classes Including OXA-48-Like Enzymes in Enterobacterales and Pseudomonas aeruginosa by a Highly Specialized Micronaut-S Microdilution Assay. J. Clin. Microbiol. 2020, 58, e00171-20. [Google Scholar] [CrossRef]
- ISO 20776-1: 2019. Clinical Laboratory Testing and In Vitro Diagnostic Test Systems—Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices–Part 1: Reference Method for Testing the In Vitro Activity of Antimicrobial Agents against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. Available online: https://www.iso.org/standard/70464.html (accessed on 3 March 2023).
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.0 (Published on 1 January 2023). Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_13.0_Breakpoint_Tables.pdf (accessed on 2 January 2023).
Species | n | MIC (mg/L) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | ≥64 | ||
Random sample of isolates (set I, n = 195) | |||||||||||||
E. coli | 52 | 14 | 12 | 10 | 5 | 9 | 2 | ||||||
K. pneumoniae | 34 | 10 | 7 | 6 | 3 | 7 | 1 | ||||||
E. cloacae complex | 25 | 1 | 1 | 3 | 2 | 13 | 3 | 1 | 1 | ||||
P. aeruginosa | 58 | 4 | 25 | 17 | 1 | 6 | 3 | 1 | 1 | ||||
A. baumannii | 9 | 5 | 1 | 3 | |||||||||
S. maltophilia | 17 | 2 | 9 | 3 | 2 | 1 | |||||||
Subtotal | 195 | 31 | 59 | 40 | 11 | 40 | 8 | 3 | 2 | 1 | |||
Sample of resistant isolates (set II, n = 106) 1 | |||||||||||||
E. coli | 22 | 2 | 3 | 2 | 11 | 4 | |||||||
K. pneumoniae | 15 | 1 | 1 | 4 | 2 | 4 | 3 | ||||||
E. cloacae complex | 16 | 2 | 1 | 9 | 1 | 3 | |||||||
P. aeruginosa | 39 | 2 | 7 | 6 | 5 | 9 | 9 | 1 | 1 | ||||
A. baumannii | 14 | 6 | 1 | 1 | 4 | 1 | 1 | ||||||
Subtotal | 106 | 6 | 22 | 15 | 9 | 41 | 17 | 2 | 3 | 1 | 1 | ||
Total | 301 | 36 | 76 | 55 | 20 | 77 | 25 | 5 | 5 | 1 | 1 | 1 |
Random Sample of Isolates (Set I, n = 195) | Sample of Resistant Isolates (Set II, n = 106) 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Antibacterial Agent | MIC50 (mg/L) | MIC90 (mg/L) | Number (%) of Isolates | Antibacterial Agent | MIC50 (mg/L) | MIC90 (mg/L) | Number (%) of Isolates | ||
S | R | S | R | ||||||
Enterobacterales (n = 111) 2 | Enterobacterales (n = 53) 3 | ||||||||
CID | 0.12 | 0.5 | 109 (98.2) | 2 (1.8) | CID | 0.5 | 1 | 50 (94.3) | 3 (5.7) |
CTT | ≤0.25 | 1 | 103 (92.8) | 8 (7.2) | CTT | 0.5 | ≥16 | 41 (77.4) | 12 (22.6) |
CTV | ≤0.12 | 0.5 | 110 (99.1) | 1 (0.9) | CTV | 0.25 | 1 | 52 (98.1) | 1 (1.9) |
IMR | 0.12 | 0.25 | 110 (99.1) | 1 (0.9) | IMR | 0.12 | 0.5 | 52 (98.1) | 1 (1.9) |
MEV | ≤0.06 | ≤0.06 | 110 (99.1) | 1 (0.9) | MEV | ≤0.06 | 0.12 | 53 (100) | 0 (0) |
P. aeruginosa (n = 58) | P. aeruginosa (n = 39) | ||||||||
CID | 0.06 | 0.5 | 57 (98.3) | 1 (1.7) | CID | 0.5 | 1 | 38 (97.4) | 1 (2.6) |
CTT | 1 | 4 | 53 (91.4) | 5 (8.6) | CTT | 2 | ≥16 | 24 (61.5) | 15 (38.5) |
CTV | 2 | 8 | 55 (94.8) | 3 (5.2) | CTV | 8 | ≥16 | 20 (51.3) | 19 (48.7) |
IMR | 0.5 | 2 | 56 (96.6) | 2 (3.4) | IMR | 4 | ≥16 | 18 (46.2) | 21 (53.8) |
MEV | 1 | ≥16 | 52 (89.7) | 6 (10.3) | MEV | ≥16 | ≥16 | 14 (35.9) | 25 (64.1) |
A. baumannii (n = 9) | A. baumannii (n = 14) | ||||||||
CID | 0.06 | 0.5 | No EUCAST breakpoints | CID | 0.12 | 2 | No EUCAST breakpoints | ||
CTT | 2 | ≥16 | No EUCAST breakpoints | CTT | ≥16 | ≥16 | No EUCAST breakpoints | ||
CTV | ≥16 | ≥16 | No EUCAST breakpoints | CTV | ≥16 | ≥16 | No EUCAST breakpoints | ||
IMR | 0.5 | ≥16 | 7 (77.8) | 2 (22.2) | IMR | ≥16 | ≥16 | 1 (7.1) | 13 (92.9) |
MEV | 0.5 | ≥16 | No EUCAST breakpoints | MEV | ≥16 | ≥16 | No EUCAST breakpoints | ||
S. maltophilia (n = 17) | |||||||||
CID | 0.06 | 0.5 | No EUCAST breakpoints | ||||||
CTT | ≥16 | ≥16 | No EUCAST breakpoints | ||||||
CTV | ≥16 | ≥16 | No EUCAST breakpoints | ||||||
IMR | ≥16 | ≥16 | No EUCAST breakpoints | ||||||
MEV | ≥16 | ≥16 | No EUCAST breakpoints |
Bacterial Group | MIC (mg/L) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | ≥64 | |
ESBL-producing Enterobacterales (n = 47) 1 | ||||||||||||
CID | 3 | 4 | 6 | 4 | 21 | 7 | 1 | 1 | ||||
CTT | 2 | 25 | 9 | 4 | 2 | 5 | ||||||
CTV | 14 | 20 | 9 | 3 | 1 | |||||||
IMR | 32 | 11 | 2 | 1 | 1 | |||||||
MEV | 42 | 3 | 1 | 1 | ||||||||
Carbapenemase-producing isolates (n = 30) 2 | ||||||||||||
CID | 1 | 6 | 1 | 2 | 12 | 4 | 2 | 1 | 1 | |||
CTT | 2 | 1 | 27 | |||||||||
CTV | 1 | 1 | 28 | |||||||||
IMR | 1 | 2 | 27 | |||||||||
MEV | 1 | 1 | 1 | 27 | ||||||||
Colistin-resistant isolates (n = 37) 3 | ||||||||||||
CID | 1 | 86 | 9 | 4 | 11 | 2 | 1 | 1 | ||||
CTT | 13 | 12 | 8 | 1 | 1 | 1 | 1 | |||||
CTV | 8 | 8 | 4 | 5 | 8 | 2 | 1 | 1 | ||||
IMR | 9 | 12 | 10 | 3 | 2 | 1 | ||||||
MEV | 22 | 2 | 2 | 7 | 1 | 2 | 1 |
Species | CTX-M-Group | ESBL Type | MIC (mg/L) | |||||||||||
≤0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | ≥64 | |||
E. cloacae complex | - | SHV-12 (n = 2) | 1 | 1 | ||||||||||
E. coli | 1/2 | CTX-M-1 (n = 7) | 2 | 3 | 2 | |||||||||
CTX-M-15 (n = 14) | 1 | 1 | 9 | 3 | ||||||||||
CTX-M-55 (n = 1) | 1 | |||||||||||||
9 | CTX-M-14 (n = 2) | 1 | 1 | |||||||||||
CTX-M-27 (n = 4) | 4 | |||||||||||||
1/2 + 9 | CTX-M-15 + CTX-M-27 (n = 1) | 1 | ||||||||||||
Total (n = 29) | 2 | 4 | 3 | 1 | 14 | 5 | ||||||||
Species | CTX-M-Group | ESBL Type | MIC (mg/L) | |||||||||||
≤0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | ≥64 | |||
K. pneumoniae | 1/2 | CTX-M-3 + SHV-11 (n = 1) | 1 | |||||||||||
CTX-M-15 (n = 4) | 1 | 1 | 1 | 1 | ||||||||||
CTX-M-15 + SHV-11 (n = 4) | 1 | 1 | 1 | 1 | ||||||||||
CTX-M-15 + SHV-28 (n = 4) | 1 | 3 | ||||||||||||
CTX-M-15 + SHV-40 (n = 1) | 1 | |||||||||||||
CTX-M-15 + SHV-76 (n = 1) | 1 | |||||||||||||
CTX-M-15 + SHV-201 (n = 1) | 1 | |||||||||||||
Total (n = 16) | 1 | 3 | 3 | 7 | 2 | |||||||||
Ambler Class | Type of Carbapenemase | MIC (mg/L) | ||||||||||||
≤0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | ≥64 | |||
A. baumannii | B | NDM-1 (n = 1) | 1 | |||||||||||
D | OXA-23 (n = 13) | 4 | 1 | 1 | 6 | 1 | ||||||||
OXA-58 (n = 1) | 1 | |||||||||||||
E. cloacae complex | D | OXA-48 (n = 1) | 1 | |||||||||||
K. pneumoniae | B | VIM-1 (n = 2) | 1 | 1 | ||||||||||
P. aeruginosa | B | GIM-1 (n = 2) | 1 | 1 | ||||||||||
IMP-7 (n = 2) | 1 | 1 | ||||||||||||
IMP-13 (n = 1) | 1 | |||||||||||||
NDM-1 (n = 1) | 1 | |||||||||||||
VIM-1 (n = 2) | 1 | 1 | ||||||||||||
VIM-2 (n = 3) | 2 | 1 | ||||||||||||
VIM-5 (n = 1) | 1 | |||||||||||||
Total (n = 30) | 1 | 6 | 1 | 2 | 12 | 4 | 2 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wohlfarth, E.; Kresken, M.; Deuchert, F.; Gatermann, S.G.; Pfeifer, Y.; Pfennigwerth, N.; Seifert, H.; Higgins, P.G.; Werner, G.; Study Group ‘Antimicrobial Resistance‘ of the Paul Ehrlich Society for Infection Therapy. In Vitro Activity of Cefiderocol against Clinical Gram-Negative Isolates Originating from Germany in 2016/17. Antibiotics 2023, 12, 864. https://doi.org/10.3390/antibiotics12050864
Wohlfarth E, Kresken M, Deuchert F, Gatermann SG, Pfeifer Y, Pfennigwerth N, Seifert H, Higgins PG, Werner G, Study Group ‘Antimicrobial Resistance‘ of the Paul Ehrlich Society for Infection Therapy. In Vitro Activity of Cefiderocol against Clinical Gram-Negative Isolates Originating from Germany in 2016/17. Antibiotics. 2023; 12(5):864. https://doi.org/10.3390/antibiotics12050864
Chicago/Turabian StyleWohlfarth, Esther, Michael Kresken, Fabian Deuchert, Sören G. Gatermann, Yvonne Pfeifer, Niels Pfennigwerth, Harald Seifert, Paul G. Higgins, Guido Werner, and Study Group ‘Antimicrobial Resistance‘ of the Paul Ehrlich Society for Infection Therapy. 2023. "In Vitro Activity of Cefiderocol against Clinical Gram-Negative Isolates Originating from Germany in 2016/17" Antibiotics 12, no. 5: 864. https://doi.org/10.3390/antibiotics12050864
APA StyleWohlfarth, E., Kresken, M., Deuchert, F., Gatermann, S. G., Pfeifer, Y., Pfennigwerth, N., Seifert, H., Higgins, P. G., Werner, G., & Study Group ‘Antimicrobial Resistance‘ of the Paul Ehrlich Society for Infection Therapy. (2023). In Vitro Activity of Cefiderocol against Clinical Gram-Negative Isolates Originating from Germany in 2016/17. Antibiotics, 12(5), 864. https://doi.org/10.3390/antibiotics12050864