Inverse Association between the Existence of CRISPR/Cas Systems with Antibiotic Resistance, Extended Spectrum β-Lactamase and Carbapenemase Production in Multidrug, Extensive Drug and Pandrug-Resistant Klebsiella pneumoniae
Abstract
:1. Introduction
2. Results
2.1. Susceptibility to Antimicrobial Agents
2.2. Distribution of CRISPR/Cas System Elements among K. pneumoniae Isolates
2.3. The Frequency of the CRISPR/Cas System in Nosocomial Isolates of K. pneumoniae and its Association with Antimicrobial Resistance
2.4. Association between Drug Resistance and Prevalence of the CRISPR/Cas System
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Study Design and Patients
4.3. Isolation and Identification of K. pneumoniae Isolates
4.4. Antibiotic Susceptibility Testing (AST)
4.5. Phenotypic Tests for Detecting ESBL Production
4.6. Phenotypic Tests for Detecting Metallo-Beta-Lactamases (MBL)
4.7. Detection of CRISPR/Cas Genes
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A. Antibiotic resistance: One health one world outlook. Front. Cell. Infect. Microbiol. 2021, 1153, 771510. [Google Scholar] [CrossRef] [PubMed]
- Sleiman, A.; Awada, B.; Mocadie, M.; Sherri, N.; Haraoui, L.-P.; Baby, V.; Araj, G.F.; Kanj, S.S.; Rizk, N.; Matar, G.M. An unequivocal superbug: PDR Klebsiella pneumoniae with an arsenal of resistance and virulence factor genes. J. Infect. Dev. Ctries. 2021, 15, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Al-Kubaisy, S.H.; Hussein, R.A.; Al-Ouqaili, M. Molecular Screening of Ambler class C and extended-spectrum β-lactamases in multi-drug resistant Pseudomonas aeruginosa and selected species of Enterobacteriaceae. Int. J. Pharm. Res. 2020, 12, 3605–3613. [Google Scholar]
- Kamruzzaman, M.; Iredell, J.R. CRISPR-Cas system in antibiotic resistance plasmids in Klebsiella pneumoniae. Front. Microbiol. 2020, 10, 2934. [Google Scholar] [CrossRef] [PubMed]
- Nwobodo, D.C.; Ugwu, M.C.; Oliseloke Anie, C.; Al-Ouqaili, M.T.; Ikem, J.C.; Chigozie, U.V.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef]
- Oliveira, R.; Castro, J.; Silva, S.; Oliveira, H.; Saavedra, M.J.; Azevedo, N.F.; Almeida, C. Exploring the antibiotic resistance profile of clinical Klebsiella pneumoniae isolates in Portugal. Antibiotics 2022, 11, 1613. [Google Scholar] [CrossRef]
- De Angelis, G.; Del Giacomo, P.; Posteraro, B.; Sanguinetti, M.; Tumbarello, M. Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in Enterobacteriaceae. Int. J. Mol. Sci. 2020, 21, 5090. [Google Scholar] [CrossRef]
- Khalaf, E.A.; Al-Ouqaili, M.T.S. Molecular detection and sequencing of SHV gene encoding for extended-spectrum β-lactamases produced by multidrug resistance some of the Gram-negative bacteria. Int. J. Green Pharm. 2018, 12, S910–S918. [Google Scholar]
- Wang, G.; Song, G.; Xu, Y. Association of CRISPR/Cas system with the drug resistance in Klebsiella pneumoniae. Infect. Drug Resist. 2020, 13, 1929–1935. [Google Scholar] [CrossRef]
- Wu, Y.; Battalapalli, D.; Hakeem, M.J.; Selamneni, V.; Zhang, P.; Draz, M.S.; Ruan, Z. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J. Nanobiotechnol. 2021, 19, 401. [Google Scholar] [CrossRef]
- Gholizadeh, P.; Köse, Ş.; Dao, S.; Ganbarov, K.; Tanomand, A.; Dal, T.; Aghazadeh, M.; Ghotaslou, R.; Rezaee, M.A.; Yousefi, B. How CRISPR-Cas system could be used to combat antimicrobial resistance. Infect. Drug Resist. 2020, 13, 1111–1121. [Google Scholar] [CrossRef]
- Touchon, M.; Charpentier, S.; Pognard, D.; Picard, B.; Arlet, G.; Rocha, E.P.; Denamur, E.; Branger, C. Antibiotic resistance plasmids spread among natural isolates of Escherichia coli in spite of CRISPR elements. Microbiology 2012, 158, 2997–3004. [Google Scholar] [CrossRef]
- Shabbir, M.A.; Wu, Q.; Shabbir, M.Z.; Sajid, A.; Ahmed, S.; Sattar, A.; Tang, Y.; Li, J.; Maan, M.K.; Hao, H. The CRISPR-cas system promotes antimicrobial resistance in Campylobacter jejuni. Future Microbiol. 2018, 13, 1757–1774. [Google Scholar] [CrossRef]
- Alduhaidhawi, A.H.M.; AlHuchaimi, S.N.; Al-Mayah, T.A.; Al-Ouqaili, M.T.; Alkafaas, S.S.; Muthupandian, S.; Saki, M. Prevalence of CRISPR-Cas Systems and Their Possible Association with Antibiotic Resistance in Enterococcus faecalis and Enterococcus faecium Collected from Hospital Wastewater. Infect. Drug Resist. 2022, 15, 1143. [Google Scholar] [CrossRef]
- Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar]
- Kim, J.-S.; Cho, D.-H.; Park, M.; Chung, W.-J.; Shin, D.; Ko, K.S.; Kweon, D.-H. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. J. Microbiol. Biotechnol. 2016, 26, 394–401. [Google Scholar] [CrossRef]
- Serefhanoglu, K.; Turan, H.; Timurkaynak, F.E.; Arslan, H. Bloodstream infections caused by ESBL-producing E. coli and K. pneumoniae: Risk factors for multidrug-resistance. Braz. J. Infect. Dis. 2009, 13, 403–407. [Google Scholar] [CrossRef]
- Chaves, J.; Ladona, M.G.; Segura, C.; Coira, A.; Reig, R.; Ampurdanés, C. SHV-1 β-lactamase is mainly a chromosomally encoded species-specific enzyme in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 2856–2861. [Google Scholar] [CrossRef]
- Ejaz, H.; Mahmood, S.; Zafar, A.; Javed, M.M. Detection of extended-spectrum β-lactamases in Klebsiella pneumoniae: Comparison of phenotypic characterization methods. Pak. J. Med. Sci. 2013, 29, 768. [Google Scholar] [CrossRef]
- Al-Ouqaili, M.T.; Khalaf, E.A.; Al-Kubaisy, S.H. DNA Sequence Analysis of BlaVEB Gene Encoding Multi-drug Resistant and Extended-spectrum β-lactamases Producer Isolates of and. Open Microbiol. J. 2020, 14, 40–47. [Google Scholar] [CrossRef]
- Ullah, F.; Malik, S.A.; Ahmed, J. Antimicrobial susceptibility pattern and ESBL prevalence in Klebsiella pneumoniae from urinary tract infections in the North-West of Pakistan. Afr. J. Microbiol. Res. 2009, 3, 676–680. [Google Scholar]
- Jomehzadeh, N.; Ahmadi, K.; Shaabaninejad, H.; Eslami, G. Plasmid-mediated AmpC β-Lactamase gene analysis in Klebsiella pneumoniae clinical isolates. Biomed. Biotechnol. Res. J. 2022, 6, 582. [Google Scholar] [CrossRef]
- Jomehzadeh, N.; Ahmadi, K.; Bahmanshiri, M.A. Investigation of plasmid-mediated quinolone resistance genes among clinical isolates of Klebsiella pneumoniae in southwest Iran. J. Clin. Lab. Anal. 2022, 36, e24342. [Google Scholar] [CrossRef] [PubMed]
- Alhamdany, M. Antibiotic susceptibility of bacteria isolated from patients with diabetes mellitus and recurrent urinary tract infections in Babylon Province, Iraq. Med. J. Babylon 2018, 15, 63–68. [Google Scholar] [CrossRef]
- Bikard, D.; Hatoum-Aslan, A.; Mucida, D.; Marraffini, L.A. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 2012, 12, 177–186. [Google Scholar] [CrossRef]
- Citorik, R.J.; Mimee, M.; Lu, T.K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 2014, 32, 1141–1145. [Google Scholar] [CrossRef]
- Pursey, E.; Sünderhauf, D.; Gaze, W.H.; Westra, E.R.; van Houte, S. CRISPR-Cas antimicrobials: Challenges and future prospects. PLoS Pathog. 2018, 14, e1006990. [Google Scholar] [CrossRef]
- Makarova, K.S.; Haft, D.H.; Barrangou, R.; Brouns, S.J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F.J.; Wolf, Y.I.; Yakunin, A.F. Evolution and classification of the CRISPR–Cas systems. Nat. Rev. Microbiol. 2011, 9, 467–477. [Google Scholar] [CrossRef]
- Kuno, S.; Yoshida, T.; Kaneko, T.; Sako, Y. Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures. Appl. Environ. Microbiol. 2012, 78, 5353–5360. [Google Scholar] [CrossRef]
- Bondy-Denomy, J.; Davidson, A.R. To acquire or resist: The complex biological effects of CRISPR–Cas systems. Trends Microbiol. 2014, 22, 218–225. [Google Scholar] [CrossRef]
- Rüden, H.; Gastmeier, P.; Daschner, F.; Schumacher, M. Nosocomial and community-acquired infections in Germany. Summary of the results of the First National Prevalence Study (NIDEP). Infection 1997, 25, 199–202. [Google Scholar] [CrossRef]
- Diekema, D.; Beekmann, S.; Chapin, K.; Morel, K.; Munson, E.; Doern, G. Epidemiology and outcome of nosocomial and community-onset bloodstream infection. J. Clin. Microbiol. 2003, 41, 3655–3660. [Google Scholar] [CrossRef]
- Sader, H.S.; Jones, R.N.; Gales, A.C.; Silva, J.B.; Pignatari, A.C. SENTRY antimicrobial surveillance program report: Latin American and Brazilian results for 1997 through 2001. Braz. J. Infect. Dis. 2004, 8, 25–79. [Google Scholar] [CrossRef]
- Balkhy, H.H.; Cunningham, G.; Chew, F.K.; Francis, C.; Al Nakhli, D.J.; Almuneef, M.A.; Memish, Z.A. Hospital-and community-acquired infections: A point prevalence and risk factors survey in a tertiary care center in Saudi Arabia. Int. J. Infect. Dis. 2006, 10, 326–333. [Google Scholar] [CrossRef]
- Garbati, M.A.; Al Godhair, A.I. The Growing Resistance of Klebsiella pneumoniae; the Need to Expand Our Antibiogram: Case Report and Review of the Literature. Afr. J. Infect. Dis. 2013, 7, 8–10. [Google Scholar]
- Djordjevic, Z.; Jankovic, S.; Gajovic, O.; Djonovic, N.; Folic, N.; Bukumiric, Z. Hospital infections in a neurological intensive care unit: Incidence, causative agents and risk factors. J. Infect. Dev. Ctries. 2012, 6, 798–805. [Google Scholar] [CrossRef]
- El Fertas-Aissani, R.; Messai, Y.; Alouache, S.; Bakour, R. Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol. Biol. 2013, 61, 209–216. [Google Scholar] [CrossRef]
- Baquero, F.; Tedim, A.P.; Coque, T.M. Antibiotic resistance shaping multi-level population biology of bacteria. Front. Microbiol. 2013, 4, 15. [Google Scholar] [CrossRef]
- Barrangou, R.; Horvath, P. CRISPR: New horizons in phage resistance and strain identification. Annu. Rev. Food Sci. Technol. 2012, 3, 143–162. [Google Scholar] [CrossRef]
- Horvath, P.; Coûté-Monvoisin, A.-C.; Romero, D.A.; Boyaval, P.; Fremaux, C.; Barrangou, R. Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int. J. Food Microbiol. 2009, 131, 62–70. [Google Scholar] [CrossRef]
- Li, H.-Y.; Kao, C.-Y.; Lin, W.-H.; Zheng, P.-X.; Yan, J.-J.; Wang, M.-C.; Teng, C.-H.; Tseng, C.-C.; Wu, J.-J. Characterization of CRISPR-Cas systems in clinical Klebsiella pneumoniae isolates uncovers its potential association with antibiotic susceptibility. Front. Microbiol. 2018, 9, 1595. [Google Scholar] [CrossRef] [PubMed]
- Al-Qaysi, A.K.; Al-Ouqaili, M.T.; Al-Meani, S.A. Ciprofloxacin- and gentamicin-mediated inhibition of Pseudomonas aeruginosa biofilms is enhanced when combined the volatile oil from Eucalyptus camaldulensis. Syst. Rev. Pharm. 2020, 11, 98–105. [Google Scholar]
- Zhou, Y.; Zhou, W.; Zhou, J.; Yan, J.; Xu, D.; Zheng, X.; Zong, S.; Jiang, P.; Tian, S.; Han, J. The Clustered Regularly Interspaced Short Palindromic Repeats-Associated System and Its Relationship with Mobile Genetic Elements in Klebsiella. Front. Microbiol. 2021, 12, 4297. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-L.; Pan, Y.-J.; Hsieh, P.-F.; Hsu, C.-R.; Wu, M.-C.; Wang, J.-T. Imipenem represses CRISPR-Cas interference of DNA acquisition through H-NS stimulation in Klebsiella pneumoniae. Sci. Rep. 2016, 6, 31644. [Google Scholar] [CrossRef] [PubMed]
- Ostria-Hernández, M.L.; Sánchez-Vallejo, C.J.; Ibarra, J.A.; Castro-Escarpulli, G. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae. BMC Res. Notes 2015, 8, 332. [Google Scholar] [CrossRef]
- Mackow, N.A.; Shen, J.; Adnan, M.; Khan, A.S.; Fries, B.C.; Diago-Navarro, E. CRISPR-Cas influences the acquisition of antibiotic resistance in Klebsiella pneumoniae. PLoS ONE 2019, 14, e0225131. [Google Scholar] [CrossRef]
- Pinilla-Redondo, R.; Russel, J.; Mayo-Muñoz, D.; Shah, S.A.; Garrett, R.A.; Nesme, J.; Madsen, J.S.; Fineran, P.C.; Sørensen, S.J. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res. 2022, 50, 4315–4328. [Google Scholar] [CrossRef]
- Leboffe, M.; Pierce, B. Photographic Atlas for the Microbiology Laboratory, 4th ed.; Morton Publishing Company: Englewood, CO, USA, 2011. [Google Scholar]
- Saki, M.; Amin, M.; Savari, M.; Hashemzadeh, M.; Seyedian, S.S. Beta-lactamase determinants and molecular typing of carbapenem-resistant classic and hypervirulent Klebsiella pneumoniae clinical isolates from southwest of Iran. Front. Microbiol. 2022, 13, 1029686. [Google Scholar] [CrossRef]
- Kurumisawa, T.; Kawai, K.; Shinozuka, Y. Verification of a simplified disk diffusion method for antimicrobial susceptibility testing of bovine mastitis isolates. Jpn. J. Vet. Res. 2021, 69, 135–143. [Google Scholar]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 10.0; European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2020. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Alharbi, N.S.; Khaled, J.M.; Kadaikunnan, S.; Alobaidi, A.S.; Sharafaddin, A.H.; Alyahya, S.A.; Almanaa, T.N.; Alsughayier, M.A.; Shehu, M.R. Prevalence of Escherichia coli strains resistance to antibiotics in wound infections and raw milk. Saudi J. Biol. Sci. 2019, 26, 1557–1562. [Google Scholar] [CrossRef]
- Upadhyay, S.; Sen, M.R.; Bhattacharjee, A. Presence of different beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa expressing AmpC beta-lactamase enzyme. J. Infect. Dev. Ctries. 2010, 4, 239–242. [Google Scholar] [CrossRef]
- Shaikh, S.; Fatima, J.; Shakil, S.; Rizvi, S.M.D.; Kamal, M.A. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J. Biol. Sci. 2015, 22, 90–101. [Google Scholar] [CrossRef]
- Hussein, R.A.; Al-Ouqaili, M.T.; Majeed, Y.H. Detection of Helicobacter pylori infection by invasive and non-invasive techniques in patients with gastrointestinal diseases from Iraq: A validation study. PLoS ONE 2021, 16, e0256393. [Google Scholar] [CrossRef]
Profile | CRISPR1 | CRISPR2 | CRISPR3 | Cas 1 | Cas 3 | No. of Strains |
---|---|---|---|---|---|---|
1 | 19 | |||||
2 | 10 | |||||
3 | 7 | |||||
4 | 4 | |||||
5 | 2 | |||||
6 | 6 | |||||
7 | 16 | |||||
8 | 4 | |||||
9 | 3 | |||||
10 | 1 | |||||
11 | 1 | |||||
12 | 1 | |||||
13 | 1 | |||||
14 | 1 | |||||
15 | 1 | |||||
16 | 2 | |||||
17 | 2 | |||||
18 | 1 | |||||
19 | 1 | |||||
20 | 2 | |||||
21 | 3 | |||||
22 | 9 | |||||
23 | 3 |
MDR/XDR/PDR | Number of Strains | CRISPR/Cas-Positive No. (%) | CRISPR/Cas-Negative No. (%) |
---|---|---|---|
Non-MDR | 14 (14%) | 8 (57.14) | 6 (42.86) |
MDR 1 | 71 (71%) | 20 (28.17) | 51 (71.83) |
XDR 2 | 11 (11%) | 2 (18.18) | 9 (81.82) |
PDR 2 | 4 (4%) | 2 (50) | 2 (50) |
CR 3 | 15 | 4 | 11 |
Gene | Primer Sequence (5′ → 3′) | PCR Product Size (bp) |
---|---|---|
Cas 1 | F-GCTGTTTGTCAAAGTTACCCGCGAACTC | 208 |
R-GTTTTGATCGCCTCATGAGTCACAGTTG | ||
Cas 3 | F-TGGCCGACATTTGATTCAGC | 620 |
R-CCATGCTTAACATTCATCAC | ||
CRISPR 1 | F-CAGTTCCTGCAACCTGGCCT | Variable |
R-CTGGCAGCAGGTGATACAGC | ||
CRISPR 2 | F-GTAGCGAAACCCTGATCAAGCG | Variable |
R-GCGCTACGTTCTGGGGATG | ||
CRISPR 3 | F-GACGCTGGTGCGATTCTTGAG | Variable |
R-CGCAGTATTCCTCAACCGCCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jwair, N.A.; Al-Ouqaili, M.T.S.; Al-Marzooq, F. Inverse Association between the Existence of CRISPR/Cas Systems with Antibiotic Resistance, Extended Spectrum β-Lactamase and Carbapenemase Production in Multidrug, Extensive Drug and Pandrug-Resistant Klebsiella pneumoniae. Antibiotics 2023, 12, 980. https://doi.org/10.3390/antibiotics12060980
Jwair NA, Al-Ouqaili MTS, Al-Marzooq F. Inverse Association between the Existence of CRISPR/Cas Systems with Antibiotic Resistance, Extended Spectrum β-Lactamase and Carbapenemase Production in Multidrug, Extensive Drug and Pandrug-Resistant Klebsiella pneumoniae. Antibiotics. 2023; 12(6):980. https://doi.org/10.3390/antibiotics12060980
Chicago/Turabian StyleJwair, Noor A., Mushtak T. S. Al-Ouqaili, and Farah Al-Marzooq. 2023. "Inverse Association between the Existence of CRISPR/Cas Systems with Antibiotic Resistance, Extended Spectrum β-Lactamase and Carbapenemase Production in Multidrug, Extensive Drug and Pandrug-Resistant Klebsiella pneumoniae" Antibiotics 12, no. 6: 980. https://doi.org/10.3390/antibiotics12060980
APA StyleJwair, N. A., Al-Ouqaili, M. T. S., & Al-Marzooq, F. (2023). Inverse Association between the Existence of CRISPR/Cas Systems with Antibiotic Resistance, Extended Spectrum β-Lactamase and Carbapenemase Production in Multidrug, Extensive Drug and Pandrug-Resistant Klebsiella pneumoniae. Antibiotics, 12(6), 980. https://doi.org/10.3390/antibiotics12060980