The Plasmidomic Landscape of Clinical Methicillin-Resistant Staphylococcus aureus Isolates from Malaysia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Detection and Distribution of Plasmids in the Malaysian MRSA Isolates
2.2. Distribution of Plasmid Replicon Types
2.3. Conjugative Plasmids, MOB-Typing, and Mobility Potential of the Malaysian MRSA Plasmids
2.4. Plasmid-Borne Resistance Genes
2.4.1. Inducible versus Constitutive MLSB Resistance
2.4.2. Other Antimicrobial Resistance Genes
2.4.3. Heavy Metal and Biocide Resistance Genes
2.5. Other Unique Plasmids and Plasmids of Interest
2.5.1. The Multidrug Resistant pSauR165-1 Plasmid
2.5.2. The pMW2 Family of Resistance Plasmids
2.6. Limitations of the Study
3. Materials and Methods
3.1. Bacterial Isolates
3.2. Validation of MRSA Isolates and Determination of Their Antimicrobial Susceptibility Profiles
3.3. Genomic DNA Extraction
3.4. Whole Genome Sequencing, De Novo Assembly, and Assembly Evaluation
3.5. Plasmid Sequence Identification, Replicon Typing and Annotation
3.6. Bioinformatic Analysis of the Identified Plasmids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ryu, S.; Song, P.I.; Seo, C.H.; Cheong, H.; Park, Y. Colonization and Infection of the Skin by S. aureus: Immune System Evasion and the Response to Cationic Antimicrobial Peptides. Int. J. Mol. Sci. 2014, 15, 8753–8772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dweba, C.C.; Zishiri, O.T.; El Zowalaty, M.E. Methicillin-Resistant Staphylococcus aureus: Livestock-Associated, Antimicrobial, and Heavy Metal Resistance. Infect. Drug Resist. 2018, 11, 2497–2509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Che Hamzah, A.M.; Yeo, C.C.; Puah, S.M.; Chua, K.H.; Rahman, N.I.A.; Abdullah, F.H.; Othman, N.; Chew, C.H. Tigecycline and Inducible Clindamycin Resistance in Clinical Isolates of Methicillin-Resistant Staphylococcus aureus from Terengganu, Malaysia. J. Med. Microbiol. 2019, 68, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- LaBreck, P.T.; Li, Z.; Gibbons, K.P.; Merrell, D.S. Conjugative and Replicative Biology of the Staphylococcus aureus Antimicrobial Resistance Plasmid, PC02. Plasmid 2019, 102, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Jean, S.S.; Hsueh, P.R. High Burden of Antimicrobial Resistance in Asia. Int. J. Antimicrob. Agents 2011, 37, 291–295. [Google Scholar] [CrossRef]
- Chuang, Y.Y.; Huang, Y.C. Molecular Epidemiology of Community-Associated Meticillin-Resistant Staphylococcus aureus in Asia. Lancet Infect. Dis. 2013, 13, 698–708. [Google Scholar] [CrossRef]
- Lim, W.W.; Wu, P.; Bond, H.S.; Wong, J.Y.; Ni, K.; Seto, W.H.; Jit, M.; Cowling, B.J. Determinants of Methicillin-Resistant Staphylococcus aureus (MRSA) Prevalence in the Asia-Pacific Region: A Systematic Review and Meta-Analysis. J. Glob. Antimicrob. Resist. 2019, 16, 17–27. [Google Scholar] [CrossRef]
- Chen, C.-J.; Huang, Y.-C. New Epidemiology of Staphylococcus aureus Infection in Asia. Clin. Microbiol. Infect. 2014, 20, 605–623. [Google Scholar] [CrossRef] [Green Version]
- Hsu, L.Y.; Harris, S.R.; Chlebowicz, M.A.; Lindsay, J.A.; Koh, T.H.; Krishnan, P.; Tan, T.Y.; Hon, P.Y.; Grubb, W.B.; Bentley, S.D.; et al. Evolutionary Dynamics of Methicillin-Resistant Staphylococcus aureus within a Healthcare System. Genome Biol. 2015, 16, 81. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Andersen, P.S.; Stegger, M.; Sieber, R.N.; Ingmer, H.; Staubrand, N.; Dalsgaard, A.; Leisner, J.J. Antimicrobial Resistance and Virulence Gene Profiles of Methicillin-Resistant and -Susceptible Staphylococcus aureus from Food Products in Denmark. Front. Microbiol. 2019, 10, 2681. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Farook, N.A.; Argimón, S.; Abdul Samat, M.N.; Salleh, S.A.; Sulaiman, S.; Tan, T.L.; Periyasamy, P.; Lau, C.L.; Ismail, Z.; Muhammad Azami, N.A.; et al. Diversity and Dissemination of Methicillin-Resistant Staphylococcus aureus (MRSA) Genotypes in Southeast Asia. Trop. Med. Infect. Dis. 2022, 7, 438. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health Malaysia. National Antibiotic Resistance Surveillance Report 2021. Available online: https://Myohar.Moh.Gov.My/Reports-Human-Health/ (accessed on 1 December 2022).
- Che Hamzah, A.M.; Yeo, C.C.; Puah, S.M.; Chua, K.H.; Chew, C.H. Staphylococcus aureus Infections in Malaysia: A Review of Antimicrobial Resistance and Characteristics of the Clinical Isolates, 1990–2017. Antibiotics 2019, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Al-Talib, H.; Samsudin, S.; Adnan, A.; Murugaiah, C. Genetic Diversity among Methicillin-Resistant Staphylococcus aureus in Malaysia (2002–2020). Trop. Med. Infect. Dis. 2022, 7, 360. [Google Scholar] [CrossRef] [PubMed]
- Malachowa, N.; Deleo, F.R. Mobile Genetic Elements of Staphylococcus aureus. Cell. Mol. Life Sci. 2010, 67, 3057–3071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helinski, D.R. A Brief History of Plasmids. Available online: https://logicmag.io/security/a-brief-history-of-the-gig/%0A (accessed on 1 December 2022).
- Mayer, L.W. Use of Plasmid Profiles in Epidemiologic Surveillance of Disease Outbreaks and in Tracing the Transmission of Antibiotic Resistance. Clin. Microbiol. Rev. 1988, 1, 228–243. [Google Scholar] [CrossRef]
- Orlek, A.; Stoesser, N.; Anjum, M.F.; Doumith, M.; Ellington, M.J.; Peto, T.; Crook, D.; Woodford, N.; Sarah Walker, A.; Phan, H.; et al. Plasmid Classification in an Era of Whole-Genome Sequencing: Application in Studies of Antibiotic Resistance Epidemiology. Front. Microbiol. 2017, 8, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, S.; Bosio, M.; Gross, C.; Bezdan, D.; Gutierrez, J.; Oberhettinger, P.; Liese, J.; Vogel, W.; Dörfel, D.; Berger, L.; et al. Tracking of Antibiotic Resistance Transfer and Rapid Plasmid Evolution in a Hospital Setting by Nanopore Sequencing. mSphere 2020, 5, e00525-20. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, J.P.; Kwong, S.M.; Murphy, R.J.T.; Yui Eto, K.; Price, K.J.; Nguyen, Q.T.; O’Brien, F.G.; Grubb, W.B.; Coombs, G.W.; Firth, N. An Updated View of Plasmid Conjugation and Mobilization in Staphylococcus. Mob. Genet. Elem. 2016, 6, e1208317. [Google Scholar] [CrossRef] [Green Version]
- Rossi, C.C.; Pereira, M.F.; Giambiagi-Demarval, M. Underrated Staphylococcus Species and Their Role in Antimicrobial Resistance Spreading. Genet. Mol. Biol. 2020, 43, e20190065. [Google Scholar] [CrossRef] [Green Version]
- Firth, N.; Jensen, S.O.; Kwong, S.M.; Skurray, R.A.; Ramsay, J.P. Staphylococcal Plasmids, Transposable and Integrative Elements. Microbiol. Spectr. 2018, 6, 1–26. [Google Scholar] [CrossRef]
- MacLean, R.C.; San Millan, A. Microbial Evolution: Towards Resolving the Plasmid Paradox. Curr. Biol. 2015, 25, R764–R767. [Google Scholar] [CrossRef] [Green Version]
- Michaelis, C.; Grohmann, E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics 2023, 12, 328. [Google Scholar] [CrossRef]
- O’Brien, F.G.; Yui Eto, K.; Murphy, R.J.T.; Fairhurst, H.M.; Coombs, G.W.; Grubb, W.B.; Ramsay, J.P. Origin-of-Transfer Sequences Facilitate Mobilisation of Non-Conjugative Antimicrobial-Resistance Plasmids in Staphylococcus aureus. Nucleic Acids Res. 2015, 43, 7971–7983. [Google Scholar] [CrossRef] [Green Version]
- Yui Eto, K.; Kwong, S.M.; LaBreck, P.T.; Crow, J.E.; Traore, D.A.K.; Parahitiyawa, N.; Fairhurst, H.M.; Merrell, D.S.; Firth, N.; Bond, C.S.; et al. Evolving Origin-of-Transfer Sequences on Staphylococcal Conjugative and Mobilizable Plasmids—Who’s Mimicking Whom? Nucleic Acids Res. 2021, 49, 5177–5188. [Google Scholar] [CrossRef]
- Pollet, R.M.; Ingle, J.D.; Hymes, J.P.; Eakes, T.C.; Eto, K.Y.; Kwong, S.M.; Ramsay, J.P.; Firth, N.; Redinbo, M.R. Processing of Nonconjugative Resistance Plasmids by Conjugation Nicking Enzyme of Staphylococci. J. Bacteriol. 2016, 198, 888–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsay, J.P.; Firth, N. Diverse Mobilization Strategies Facilitate Transfer of Non-Conjugative Mobile Genetic Elements. Curr. Opin. Microbiol. 2017, 38, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Giulieri, S.G.; Tong, S.Y.C.; Williamson, D.A. Using Genomics to Understand Meticillin-and Vancomycin-Resistant Staphylococcus aureus Infections. Microb. Genom. 2020, 6, e000324. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Baker, M.; Hu, Y.; Xu, J.; Yang, D.; Maciel-Guerra, A.; Xue, N.; Li, H.; Yan, S.; Li, M.; et al. Whole-Genome Sequencing and Machine Learning Analysis of Staphylococcus aureus from Multiple Heterogeneous Sources in China Reveals Common Genetic Traits of Antimicrobial Resistance. mSystems 2021, 6, e01185-20. [Google Scholar] [CrossRef] [PubMed]
- Kuntová, L.; Pantůček, R.; Rájová, J.; Růžičková, V.; Petráš, P.; Mašlaňová, I.; Doškař, J. Characteristics and Distribution of Plasmids in a Clonally Diverse Set of Methicillin-Resistant Staphylococcus aureus Strains. Arch. Microbiol. 2012, 194, 607–614. [Google Scholar] [CrossRef]
- Costa, S.S.; Palma, C.; Kadlec, K.; Fessler, A.T.; Viveiros, M.; Melo-Cristino, J.; Schwarz, S.; Couto, I. Plasmid-Borne Antimicrobial Resistance of Staphylococcus aureus Isolated in a Hospital in Lisbon, Portugal. Microb. Drug Resist. 2016, 22, 617–626. [Google Scholar] [CrossRef]
- Mora-Hernández, Y.; Vera Murguía, E.; Stinenbosch, J.; Hernández Jauregui, P.; van Dijl, J.M.; Buist, G. Molecular Typing and Antimicrobial Resistance Profiling of 33 Mastitis-Related Staphylococcus aureus Isolates from Cows in the Comarca Lagunera Region of Mexico. Sci. Rep. 2021, 11, 6912. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, L.; Ip, M.; Sun, M.; Sun, J.; Huang, G.; Wang, C.; Deng, L.; Zheng, Y.; Fu, Z.; et al. Molecular and Clinical Characteristics of Clonal Complex 59 Methicillin-Resistant Staphylococcus aureus Infections in Mainland China. PLoS ONE 2013, 8, e70602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Pendleton, S.J.; Deck, J.; Singh, R.; Gilbert, J.; Johnson, T.J.; Sanad, Y.M.; Nayak, R.; Foley, S.L. Impact of Co-Carriage of IncA/C Plasmids with Additional Plasmids on the Transfer of Antimicrobial Resistance in Salmonella enterica Isolates. Int. J. Food Microbiol. 2018, 271, 77–84. [Google Scholar] [CrossRef]
- Ombui, J.N.; Kimotho, A.M.; Nduhiu, J.G. Antimicrobial Resistance Patterns and Plasmid Profiles of Staphylococcus aureus Isolated from Milk and Meat. East Afr. Med. J. 2000, 77, 463–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neyaz, L.; Rajagopal, N.; Wells, H.; Fakhr, M.K. Molecular Characterization of Staphylococcus aureus Plasmids Associated with Strains Isolated from Various Retail Meats. Front. Microbiol. 2020, 11, 223. [Google Scholar] [CrossRef] [Green Version]
- Coimbra-e-Souza, V.; Rossi, C.C.; Jesus-de Freitas, L.J.; Brito, M.A.V.P.; Laport, M.S.; Giambiagi-de Marval, M. Short Communication: Diversity of Species and Transmission of Antimicrobial Resistance among Staphylococcus spp. Isolated from Goat Milk. J. Dairy Sci. 2019, 102, 5518–5524. [Google Scholar] [CrossRef]
- Horne, T.; Orr, V.T.; Hall, J.P. How Do Interactions between Mobile Genetic Elements Affect Horizontal Gene Transfer? Curr. Opin. Microbiol. 2023, 73, 102282. [Google Scholar] [CrossRef]
- Acman, M.; van Dorp, L.; Santini, J.M.; Balloux, F. Large-Scale Network Analysis Captures Biological Features of Bacterial Plasmids. Nat. Commun. 2020, 11, 2452. [Google Scholar] [CrossRef] [PubMed]
- Kwong, S.M.; Ramsay, J.P.; Jensen, S.O.; Firth, N. Replication of Staphylococcal Resistance Plasmids. Front. Microbiol. 2017, 8, 2279. [Google Scholar] [CrossRef] [Green Version]
- Jensen, L.B.; Garcia-Migura, L.; Valenzuela, A.J.S.; Løhr, M.; Hasman, H.; Aarestrup, F.M. A Classification System for Plasmids from Enterococci and Other Gram-Positive Bacteria. J. Microbiol. Methods 2010, 80, 25–43. [Google Scholar] [CrossRef]
- Lozano, C.; García-Migura, L.; Aspiroz, C.; Zarazaga, M.; Torres, C.; Aarestrup, F.M. Expansion of a Plasmid Classification System for Gram-Positive Bacteria and Determination of the Diversity of Plasmids in Staphylococcus aureus Strains of Human, Animal, and Food Origins. Appl. Environ. Microbiol. 2012, 78, 5948–5955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carattoli, A.; Zankari, E.; Garciá-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In Silico Detection and Typing of Plasmids Using Plasmidfinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Hasman, H. PlasmidFinder and In Silico PMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). Methods Mol. Biol. 2020, 2075, 285–294. [Google Scholar] [CrossRef]
- McMillan, E.A.; Gupta, S.K.; Williams, L.E.; Jové, T.; Hiott, L.M.; Woodley, T.A.; Barrett, J.B.; Jackson, C.R.; Wasilenko, J.L.; Simmons, M.; et al. Antimicrobial Resistance Genes, Cassettes, and Plasmids Present in Salmonella enterica Associated with United States Food Animals. Front. Microbiol. 2019, 10, 832. [Google Scholar] [CrossRef] [Green Version]
- Douarre, P.E.; Mallet, L.; Radomski, N.; Felten, A.; Mistou, M.Y. Analysis of COMPASS, a New Comprehensive Plasmid Database Revealed Prevalence of Multireplicon and Extensive Diversity of IncF Plasmids. Front. Microbiol. 2020, 11, 483. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, K.L.; Liebana, E.; Villa, L.; Batchelor, M.; Threlfall, E.J.; Carattoli, A. Replicon Typing of Plasmids Carrying CTX-M or CMY β-Lactamases Circulating among Salmonella and Escherichia coli Isolates. Antimicrob. Agents Chemother. 2006, 50, 3203–3206. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Van Alen, S.; Idelevich, E.A.; Schleimer, N.; Seggewiß, J.; Mellmann, A.; Kaspar, U.; Peters, G. Plasmid-Encoded Transferable MecB-Mediated Methicillin Resistance in Staphylococcus aureus. Emerg. Infect. Dis. 2018, 24, 242–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bukowski, M.; Piwowarczyk, R.; Madry, A.; Zagorski-Przybylo, R.; Hydzik, M.; Wladyka, B. Prevalence of Antibiotic and Heavy Metal Resistance Determinants and Virulence-Related Genetic Elements in Plasmids of Staphylococcus aureus. Front. Microbiol. 2019, 10, 805. [Google Scholar] [CrossRef] [PubMed]
- Gerken, T.J.; Roberts, M.C.; Dykema, P.; Melly, G.; Lucas, D.; De Los Santos, V.; Gonzalez, J.; Butaye, P.; Wiegner, T.N. Environmental Surveillance and Characterization of Antibiotic Resistant Staphylococcus aureus at Coastal Beaches and Rivers on the Island of Hawai’i. Antibiotics 2021, 10, 980. [Google Scholar] [CrossRef]
- Garcillán-Barcia, M.P.; Pluta, R.; Lorenzo-Díaz, F.; Bravo, A.; Espinosa, M. The Facts and Family Secrets of Plasmids That Replicate via the Rolling Circle Mechanism. Microbiol. Mol. Biol. Rev. 2022, 86, e00222-20. [Google Scholar] [CrossRef]
- Asante, J.; Hetsa, B.A.; Amoako, D.G.; Abia, A.L.K.; Bester, L.A.; Essack, S.Y. Genomic Analysis of Antibiotic-Resistant Staphylococcus epidermidis Isolates from Clinical Sources in the Kwazulu-Natal Province, South Africa. Front. Microbiol. 2021, 12, 656306. [Google Scholar] [CrossRef]
- Wardal, E.; Gawryszewska, I.; Hryniewicz, W.; Sadowy, E. Abundance and Diversity of Plasmid-Associated Genes among Clinical Isolates of Enterococcus faecalis. Plasmid 2013, 70, 329–342. [Google Scholar] [CrossRef]
- Iordanescu, S. Relationships between Cotransducible Plasmids in Staphylococcus aureus. J. Bacteriol. 1977, 129, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, S.; San Millán, Á.; Toll-Riera, M.; Connolly, J.; Flor-Duro, A.; Chen, J.; Ubeda, C.; MacLean, R.C.; Penadés, J.R. Staphylococcal Phages and Pathogenicity Islands Drive Plasmid Evolution. Nat. Commun. 2021, 12, 5845. [Google Scholar] [CrossRef] [PubMed]
- Botka, T.; Du, X.; Winstel, V.; Larsen, J.; Rosenstein, R.; Peschel, A. Staphylococcus epidermidis Phages Transduce Antimicrobial Resistance Plasmids and Mobilize Chromosomal Islands. mSphere 2021, 6, e00223-21. [Google Scholar] [CrossRef]
- Apisiridej, S.; Leelaporn, A.; Scaramuzzi, C.D.; Skurray, R.A.; Firth, N. Molecular Analysis of a Mobilizable Theta-Mode Trimethoprim Resistance Plasmid from Coagulase-Negative Staphylococci. Plasmid 1997, 38, 13–24. [Google Scholar] [CrossRef]
- Lanza, V.F.; Tedim, A.P.; Martínez, J.L.; Baquero, F.; Coque, T.M. The Plasmidome of Firmicutes: Impact on the Emergence and the Spread of Resistance to Antimicrobials. Microbiol. Spectr. 2015, 3, PLAS-0039-2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shearer, J.E.S.; Wireman, J.; Hostetler, J.; Forberger, H.; Borman, J.; Gill, J.; Sanchez, S.; Mankin, A.; Lamarre, J.; Lindsay, J.A.; et al. Major Families of Multiresistant Plasmids from Geographically and Epidemiologically Diverse Staphylococci. G3 Genes Genomes Genet. 2011, 1, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Loeffler, A.; Mccarthy, A.; Lloyd, D.H.; Musilová, E.; Pfeiffer, D.U.; Lindsay, J.A. Whole-Genome Comparison of Meticillin-Resistant Staphylococcus aureus CC22 SCCmecIV from People and Their in-Contact Pets. Vet. Dermatol. 2013, 24, 538-e128. [Google Scholar] [CrossRef]
- Strasheim, W.; Perovic, O.; Singh-Moodley, A.; Kwanda, S.; Ismail, A.; Lowe, M. Ward-Specific Clustering of Methicillin-Resistant Staphylococcus aureus Spa-Type T037 and T045 in Two Hospitals in South Africa: 2013 to 2017. PLoS ONE 2021, 16, e0253883. [Google Scholar] [CrossRef] [PubMed]
- Haim, M.S.; Zaheer, R.; Bharat, A.; Di Gregorio, S.; Di Conza, J.; Galanternik, L.; Lubovich, S.; Golding, G.R.; Graham, M.R.; Van Domselaar, G.; et al. Comparative Genomics of ST5 and ST30 Methicillin-Resistant Staphylococcus aureus Sequential Isolates Recovered from Paediatric Patients with Cystic Fibrosis. Microb. Genom. 2021, 7, 510. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.A.; Thomas, J.; Grossman, A.D. The Bacillus subtilis Conjugative Transposon ICEBs1 Mobilizes Plasmids Lacking Dedicated Mobilization Functions. J. Bacteriol. 2012, 194, 3165–3172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soler, N.; Robert, E.; Chauvot De Beauchêne, I.; Monteiro, P.; Libante, V.; Maigret, B.; Staub, J.; Ritchie, D.W.; Guédon, G.; Payot, S.; et al. Characterization of a Relaxase Belonging to the MOBT Family, a Widespread Family in Firmicutes Mediating the Transfer of ICEs. Mob. DNA 2019, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Tenover, F.C.; McDougal, L.K.; Goering, R.V.; Killgore, G.; Projan, S.J.; Patel, J.B.; Dunman, P.M. Characterization of a Strain of Community-Associated Methicillin-Resistant Staphylococcus aureus Widely Disseminated in the United States. J. Clin. Microbiol. 2006, 44, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Sabat, A.J.; Hermelijn, S.M.; Akkerboom, V.; Juliana, A.; Degener, J.E.; Grundmann, H.; Friedrich, A.W. Complete-Genome Sequencing Elucidates Outbreak Dynamics of CA-MRSA USA300 (ST8-Spa T008) in an Academic Hospital of Paramaribo, Republic of Suriname. Sci. Rep. 2017, 7, 41050. [Google Scholar] [CrossRef] [Green Version]
- Copin, R.; Shopsin, B.; Torres, V.J. After the Deluge: Mining Staphylococcus aureus Genomic Data for Clinical Associations and Host Pathogen Interactions. Curr. Opin. Microbiol. 2018, 41, 43–50. [Google Scholar] [CrossRef]
- Ares-Arroyo, M.; Coluzzi, C.; Rocha, E.P.C. Towards Solving the Conundrum of Plasmid Mobility: Networks of Functional Dependencies Shape Plasmid Transfer. bioRxiv 2022. [Google Scholar] [CrossRef]
- McCarthy, A.J.; Lindsay, J.A. The Distribution of Plasmids That Carry Virulence and Resistance Genes in Staphylococcus aureus Is Lineage Associated. BMC Microbiol. 2012, 12, 104. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, F.G.; Ramsay, J.P.; Monecke, S.; Coombs, G.W.; Robinson, O.J.; Htet, Z.; Alshaikh, F.A.M.; Grubb, W.B. Staphylococcus aureus Plasmids without Mobilization Genes Are Mobilized by a Novel Conjugative Plasmid from Community Isolates. J. Antimicrob. Chemother. 2015, 70, 649–652. [Google Scholar] [CrossRef] [Green Version]
- Weaver, K.E.; Kwong, S.M.; Firth, N.; Francia, M.V. The RepA_N Replicons of Gram-Positive Bacteria: A Family of Broadly Distributed but Narrow Host Range Plasmids. Plasmid 2009, 61, 94–109. [Google Scholar] [CrossRef] [Green Version]
- Kwong, S.M.; Jensen, S.O.; Firth, N. Prevalence of Fst-like Toxin—Antitoxin Systems. Microbiology 2010, 156, 975–977. [Google Scholar] [CrossRef] [Green Version]
- Goeders, N.; Chai, R.; Chen, B.; Day, A.; Salmond, G.P.C. Structure, Evolution, and Functions of Bacterial Type III Toxin-Antitoxin Systems. Toxins 2016, 8, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, G.; Yadav, M.; Ghosh, C.; Rathore, J.S. Bacterial Toxin-Antitoxin Modules: Classification, Functions, and Association with Persistence. Curr. Res. Microb. Sci. 2021, 2, 100047. [Google Scholar] [CrossRef]
- Hayes, F. Toxins-Antitoxins: Plasmid Maintenance, Programmed Cell Death, and Cell Cycle Arrest. Science 2003, 301, 1496–1499. [Google Scholar] [CrossRef] [PubMed]
- Harms, A.; Brodersen, D.E.; Mitarai, N.; Gerdes, K. Toxins, Targets, and Triggers: An Overview of Toxin-Antitoxin Biology. Mol. Cell 2018, 70, 768–784. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.T.; Espinosa, M.; Yeo, C.C. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Front. Mol. Biosci. 2016, 3, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, L.; Jensen, S.O.; Ky Tonthat, N.; Berg, T.; Kwong, S.M.; Guan, F.H.X.; Brown, M.H.; Skurray, R.A.; Firth, N.; Schumacher, M.A. The Staphylococcus aureus PSK41 Plasmid-Encoded ArtA Protein Is a Master Regulator of Plasmid Transmission Genes and Contains a RHH Motif Used in Alternate DNA-Binding Modes. Nucleic Acids Res. 2009, 37, 6970–6983. [Google Scholar] [CrossRef] [Green Version]
- Karki, A.B.; Neyaz, L.; Fakhr, M.K. Comparative Genomics of Plasmid-Bearing Staphylococcus aureus Strains Isolated from Various Retail Meats. Front. Microbiol. 2020, 11, 574923. [Google Scholar] [CrossRef]
- Wan, T.W.; Liu, Y.J.; Wang, Y.T.; Lin, Y.T.; Hsu, J.C.; Tsai, J.C.; Chiu, H.C.; Hsueh, P.R.; Hung, W.C.; Teng, L.J. Potentially Conjugative Plasmids Harboring Tn6636, a Multidrug-Resistant and Composite Mobile Element, in Staphylococcus aureus. J. Microbiol. Immunol. Infect. 2021, 55, 225–233. [Google Scholar] [CrossRef]
- Miklasińska-Majdanik, M. Mechanisms of Resistance to Macrolide Antibiotics among Staphylococcus aureus. Antibiotics 2021, 10, 1406. [Google Scholar] [CrossRef]
- Jensen, L.B.; Frimodt-Møller, N.; Aarestrup, F.M. Presence of erm Gene Classes in Gram-Positive Bacteria of Animal and Human Origin in Denmark. FEMS Microbiol. Lett. 1999, 170, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, F.J.; Sadurski, R.; Kray, A.; Boos, M.; Geisel, R.; Koöhrer, K.; Verhoef, J.; Fluit, A.C. Prevalence of Macrolide-Resistance Genes in Staphylococcus aureus and Enterococcus faecium Isolates from 24 European University Hospitals. J. Antimicrob. Chemother. 2000, 45, 891–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.A.; Nawaz, M.S.; Khan, S.A.; Steele, R. Detection and Characterization of Erythromycin-Resistant Methylase Genes in Gram-Positive Bacteria Isolated from Poultry Litter. Appl. Microbiol. Biotechnol. 2002, 59, 377–381. [Google Scholar] [CrossRef]
- Gherardi, G.; De Florio, L.; Lorino, G.; Fico, L.; Dicuonzo, G. Macrolide Resistance Genotypes and Phenotypes among Erythromycin-Resistant Clinical Isolates of Staphylococcus aureus and Coagulase-Negative Staphylococci, Italy. FEMS Immunol. Med. Microbiol. 2009, 55, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.B.; Seo, K.W.; Jeon, H.Y.; Lim, S.K.; Sung, H.W.; Lee, Y.J. Molecular Characterization of Erythromycin and Tetracycline-Resistant Enterococcus faecalis Isolated from Retail Chicken Meats. Poult. Sci. 2019, 98, 977–983. [Google Scholar] [CrossRef]
- Subramaniam, S.L.; Ramu, H.; Mankin, A.S. Inducible Resistance to Macrolide Antibiotics. In Antibiotic Discovery and Development; Dougherty, T.J., Pucci, M.J., Eds.; Springer: New York, NY, USA, 2011; pp. 455–484. ISBN 9781461414001. [Google Scholar]
- Chew, C.H.; Yeo, C.C.; Mardziah, A.; Hamzah, C.; Al-trad, E.I.; Jones, S.U.; Chua, K.H.; Puah, S.M. Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus Associated with Hospitalized Newborn Infants. Diagnostics 2023, 13, 1050. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Feng, W.; Zhang, Z.; Xue, H.; Zhao, X. Macrolide-Lincosamide-Streptogramin Resistance Phenotypes and Genotypes of Coagulase-Positive Staphylococcus aureus and Coagulase-Negative Staphylococcal Isolates from Bovine Mastitis. BMC Vet. Res. 2015, 11, 168. [Google Scholar] [CrossRef] [Green Version]
- Mišić, M.; Čukić, J.; Vidanović, D.; Šekler, M.; Matić, S.; Vukašinović, M.; Baskić, D. Prevalence of Genotypes That Determine Resistance of Staphylococci to Macrolides and Lincosamides in Serbia. Front. Public Health 2017, 5, 200. [Google Scholar] [CrossRef] [Green Version]
- Suhaili, Z.; Rafee, P.A.; Mat Azis, N.; Yeo, C.C.; Nordin, S.A.; Abdul Rahim, A.R.; Al-Obaidi, M.M.J.; Mohd Desa, M.N. Characterization of Resistance to Selected Antibiotics and Panton-Valentine Leukocidin-Positive Staphylococcus aureus in a Healthy Student Population at a Malaysian University. Germs 2018, 8, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Weisblum, B. Insights into Erythromycin Action from Studies of Its Activity as Inducer of Resistance. Antimicrob. Agents Chemother. 1995, 39, 797–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lüthje, P.; Schwarz, S. Molecular Analysis of Constitutively Expressed Erm(C) Genes Selected in Vitro in the Presence of the Non-Inducers Pirlimycin, Spiramycin and Tylosin. J. Antimicrob. Chemother. 2007, 59, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Rosato, A.; Vicarini, H.; Leclercq, R. Inducible or Constitutive Expression of Resistance in Clinical Isolates of Streptococci and Enterococci Cross-Resistant to Erythromycin and Lincomycin. J. Antimicrob. Chemother. 1999, 43, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Sundlov, J.A.; Gulick, A.M. Insights into Resistance against Lincosamide Antibiotics. Structure 2009, 17, 1549–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Deng, X.; Liang, Y.; Zhang, L.; Zhao, G.P.; Zhou, Y. The Draft Genomes and Investigation of Serotype Distribution, Antimicrobial Resistance of Group B Streptococcus Strains Isolated from Urine in Suzhou, China. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 28. [Google Scholar] [CrossRef]
- Roberts, M.C. Tetracycline Resistance Determinants: Mechanisms of Action, Regulation of Expression, Genetic Mobility, and Distribution. FEMS Microbiol. Rev. 1996, 19, 1–24. [Google Scholar] [CrossRef]
- Warsa, U.C.; Nonoyama, M.; Ida, T.; Okamoto, R.; Okubo, T.; Shimauchi, C.; Kuga, A.; Inoue, M. Detection of Tet(K) and Tet(M) in Staphylococcus aureus of Asian Countries by the Polymerase Chain Reaction. J. Antibiot. 1996, 49, 1127–1132. [Google Scholar] [CrossRef] [Green Version]
- Bhambri, S.; Kim, G. Use of Oral Doxycycline for Community-Acquired Methicillin-Resistant Staphylococcus aureus (CA-MRSA) Infections. J. Clin. Aesthet. Dermatol. 2009, 2, 45–50. [Google Scholar]
- McDougal, L.K.; Fosheim, G.E.; Nicholson, A.; Bulens, S.N.; Limbago, B.M.; Shearer, J.E.S.; Summers, A.O.; Patel, J.B. Emergence of Resistance among USA300 Methicillin-Resistant Staphylococcus aureus Isolates Causing Invasive Disease in the United States. Antimicrob. Agents Chemother. 2010, 54, 3804–3811. [Google Scholar] [CrossRef] [Green Version]
- Bismuth, R.; Zilhao, R.; Sakamoto, H.; Guesdon, J.L.; Courvalin, P. Gene Heterogeneity for Tetracycline Resistance in Staphylococcus Spp. Antimicrob. Agents Chemother. 1990, 34, 1611–1614. [Google Scholar] [CrossRef] [Green Version]
- Werckenthin, C.; Schwarz, S.; Roberts, M.C. Integration of PT181-like Tetracycline Resistance Plasmids into Large Staphylococcal Plasmids Involves IS257. Antimicrob. Agents Chemother. 1996, 40, 2542–2544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trzcinski, K.; Cooper, B.S.; Hryniewicz, W.; Dowson, C.G. Expression of Resistance to Tetracyclines in Strains of Methicillin-Resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2000, 45, 763–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Águila-Arcos, S.; Álvarez-Rodríguez, I.; Garaiyurrebaso, O.; Garbisu, C.; Grohmann, E.; Alkorta, I. Biofilm-Forming Clinical Staphylococcus Isolates Harbor Horizontal Transfer and Antibiotic Resistance Genes. Front. Microbiol. 2017, 8, 2018. [Google Scholar] [CrossRef]
- Neoh, H.M.; Mohamed-Hussein, Z.A.; Tan, X.E.; Abd Rahman, R.M.F.B.R.; Hussin, S.; Zin, N.M.; Jamal, R. Draft Genome Sequences of Four Nosocomial Methicillin-Resistant Staphylococcus aureus (MRSA) Strains (PPUKM-261-2009, PPUKM-332-2009, PPUKM-377-2009, and PPUKM-775-2009) Representative of Dominant MRSA Pulsotypes Circulating in a Malaysian University Teac. Genome Announc. 2013, 1, 4–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, J.E.; Christensen, H.; Aarestrup, F.M. Diversity and Evolution of BlaZ from Staphylococcus aureus and Coagulase-Negative Staphylococci. J. Antimicrob. Chemother. 2006, 57, 450–460. [Google Scholar] [CrossRef]
- Pérez-Roth, E.; Kwong, S.M.; Alcoba-Florez, J.; Firth, N.; Méndez-Álvarez, S. Complete Nucleotide Sequence and Comparative Analysis of PPR9, a 41.7-Kilobase Conjugative Staphylococcal Multiresistance Plasmid Conferring High-Level Mupirocin Resistance. Antimicrob. Agents Chemother. 2010, 54, 2252–2257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argudín, M.A.; Hoefer, A.; Butaye, P. Heavy Metal Resistance in Bacteria from Animals. Res. Vet. Sci. 2019, 122, 132–147. [Google Scholar] [CrossRef]
- Parsons, C.; Lee, S.; Kathariou, S. Dissemination and Conservation of Cadmium and Arsenic Resistance Determinants in Listeria and Other Gram-Positive Bacteria. Mol. Microbiol. 2020, 113, 560–569. [Google Scholar] [CrossRef] [Green Version]
- Kaur, I.; Purves, J.; Harwood, M.; Ketley, J.M.; Andrew, P.W.; Waldron, K.J.; Morrissey, J.A. Role of Horizontally Transferred Copper Resistance Genes in Staphylococcus aureus and Listeria monocytogenes. Microbiology 2022, 168, 1162. [Google Scholar] [CrossRef]
- Pain, M.; Hjerde, E.; Klingenberg, C.; Cavanagh, J.P. Comparative Genomic Analysis of Staphylococcus haemolyticus Reveals Key to Hospital Adaptation and Pathogenicity. Front. Microbiol. 2019, 10, 2096. [Google Scholar] [CrossRef]
- Gaupp, R.; Ledala, N.; Somerville, G.A. Staphylococcal Response to Oxidative Stress. Front. Cell. Infect. Microbiol. 2012, 2, 33. [Google Scholar] [CrossRef] [Green Version]
- Chudobova, D.; Dostalova, S.; Ruttkay-Nedecky, B.; Guran, R.; Rodrigo, M.A.M.; Tmejova, K.; Krizkova, S.; Zitka, O.; Adam, V.; Kizek, R. The Effect of Metal Ions on Staphylococcus aureus Revealed by Biochemical and Mass Spectrometric Analyses. Microbiol. Res. 2015, 170, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Crupper, S.S.; Worrell, V.; Stewart, G.C.; Iandolo, J.J. Cloning and Expression of CadD, a New Cadmium Resistance Gene of Staphylococcus aureus. J. Bacteriol. 1999, 181, 4071–4075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, R.D.; Silver, S. Cadmium and Manganese Transport in Staphylococcus aureus Membrane Vesicles. J. Bacteriol. 1982, 150, 973–976. [Google Scholar] [CrossRef] [Green Version]
- Pal, C.; Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Co-Occurrence of Resistance Genes to Antibiotics, Biocides and Metals Reveals Novel Insights into Their Co-Selection Potential. BMC Genom. 2015, 16, 964. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Wang, H.; Zhu, F.; Jiang, S.; Sun, L.; Zhao, F.; Yu, Y.; Chen, Y. Characterization of an ST5-SCCmec II-T311 Methicillin-Resistant Staphylococcus aureus Strain with a Widespread cfr-Positive Plasmid. J. Infect. Chemother. 2020, 26, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.; Liu, M.C.; Chow, K.; Tse, C.W.; Lo, W.; Mak, S.; Lo, W. Emergence of IleS2-Carrying, Multidrug-Resistant Plasmids in Staphylococcus lugdunensis. Antimicrob. Agents Chemother. 2016, 60, 6411–6414. [Google Scholar] [CrossRef] [Green Version]
- Horinouchi, S.; Weisblum, B. Nucleotide Sequence and Functional Map of pC194, a Plasmid That Specifies Inducible Chloramphenicol Resistance. J. Bacteriol. 1982, 150, 815–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.A.; Novick, R.P. Complete Nucleotide Sequence of pT181, a Tetracycline-Resistance Plasmid from Staphylococcus aureus. Plasmid 1983, 10, 251–259. [Google Scholar] [CrossRef]
- Novick, R.P. Staphylococcal Plasmids and Their Replication. Annu. Rev. Microbiol. 1989, 43, 537–565. [Google Scholar] [CrossRef] [PubMed]
- Yui Eto, K.; Firth, N.; Davis, A.M.; Kwong, S.M.; Krysiak, M.; Lee, Y.T.; O’Brien, F.G.; Grubb, W.B.; Coombs, G.W.; Bond, C.S.; et al. Evolution of a 72-Kilobase Cointegrant, Conjugative Multiresistance Plasmid in Community-Associated Methicillin-Resistant Staphylococcus aureus Isolates from the Early 1990s. Antimicrob. Agents Chemother. 2019, 63, e01560-19. [Google Scholar] [CrossRef] [Green Version]
- Rowland, S.-J.; Dyke, K.G.H. Tn552, a Novel Transposable Element from Staphylococcus aureus. Mol. Microbiol. 1990, 4, 961–975. [Google Scholar] [CrossRef] [PubMed]
- Baba, T.; Takeuchi, F.; Kuroda, M.; Yuzawa, H.; Aoki, K.I.; Oguchi, A.; Nagai, Y.; Iwama, N.; Asano, K.; Naimi, T.; et al. Genome and Virulence Determinants of High Virulence Community-Acquired MRSA. Lancet 2002, 359, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Alattraqchi, A.G.; Mohd Rani, F.; Rahman, N.I.A.; Ismail, S.; Cleary, D.W.; Clarke, S.C.; Yeo, C.C. Complete Genome Sequencing of Acinetobacter baumannii AC1633 and Acinetobacter nosocomialis AC1530 Unveils a Large Multidrug-Resistant Plasmid Encoding the NDM-1 and OXA-58 Carbapenemases. mSphere 2021, 6, e01076-20. [Google Scholar] [CrossRef] [PubMed]
- Gomi, R.; Wyres, K.L.; Holt, K.E. Detection of Plasmid Contigs in Draft Genome Assemblies Using Customized Kraken Databases. Microb. Genom. 2021, 7, 550. [Google Scholar] [CrossRef]
- Al-Trad, E.I.; Mardziah, A.; Hamzah, C.; Puah, S.M.; Chua, K.H.; Hanifah, M.Z.; Ayub, Q.; Palittapongarnpim, P.; Kwong, S.M.; Chew, C.H.; et al. Complete Genome Sequence and Analysis of a ST573 Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus SauR3 Clinical Isolate from Terengganu, Malaysia. Pathogens 2023, 12, 502. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 10.0. 2020. Available online: http://www.eucast.org (accessed on 1 January 2021).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.J.; Wattam, A.R.; Aziz, R.K.; Brettin, T.; Butler, R.; Butler, R.M.; Chlenski, P.; Conrad, N.; Dickerman, A.; Dietrich, E.M.; et al. The PATRIC Bioinformatics Resource Center: Expanding Data and Analysis Capabilities. Nucleic Acids Res. 2020, 48, D606–D612. [Google Scholar] [CrossRef] [Green Version]
- Kudirkiene, E.; Andoh, L.A.; Ahmed, S.; Herrero-Fresno, A.; Dalsgaard, A.; Obiri-Danso, K.; Olsen, J.E. The Use of a Combined Bioinformatics Approach to Locate Antibiotic Resistance Genes on Plasmids from Whole Genome Sequences of Salmonella Enterica Serovars from Humans in Ghana. Front. Microbiol. 2018, 9, 1010. [Google Scholar] [CrossRef]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A Modular and Extensible Implementation of the RAST Algorithm for Building Custom Annotation Pipelines and Annotating Batches of Genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef] [Green Version]
- Garcillán-Barcia, M.P.; Redondo-Salvo, S.; Vielva, L.; de la Cruz, F. MOBscan: Automated Annotation of MOB Relaxases. Methods Mol. Biol. 2020, 2075, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Eddy, S.R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 2011, 7, e1002195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Zankari, E.; Allesøe, R.; Joensen, K.G.; Cavaco, L.M.; Lund, O.; Aarestrup, F.M. PointFinder: A Novel Web Tool for WGS-Based Detection of Antimicrobial Resistance Associated with Chromosomal Point Mutations in Bacterial Pathogens. J. Antimicrob. Chemother. 2017, 72, 2764–2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for Predictions of Phenotypes from Genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Pal, C.; Bengtsson-Palme, J.; Rensing, C.; Kristiansson, E.; Larsson, D.G.J. BacMet: Antibacterial Biocide and Metal Resistance Genes Database. Nucleic Acids Res. 2014, 42, 737–743. [Google Scholar] [CrossRef] [Green Version]
- Joensen, K.G.; Scheutz, F.; Lund, O.; Hasman, H.; Kaas, R.S.; Nielsen, E.M.; Aarestrup, F.M. Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia coli. J. Clin. Microbiol. 2014, 52, 1501–1510. [Google Scholar] [CrossRef] [Green Version]
- Malberg Tetzschner, A.M.; Johnson, J.R.; Johnston, B.D.; Lund, O.; Scheutz, F. In Silico Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2020, 58, e01269-20. [Google Scholar] [CrossRef] [PubMed]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The Reference Centre for Bacterial Insertion Sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, D.; Liu, L.; Tai, C.; Deng, Z.; Rajakumar, K.; Ou, H.Y. SecReT4: A Web-Based Bacterial Type IV Secretion System Resource. Nucleic Acids Res. 2013, 41, 660–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cury, J.; Abby, S.S.; Doppelt-Azeroual, O.; Néron, B.; Rocha, E.P.C. Identifying Conjugative Plasmids and Integrative Conjugative Elements with CONJscan. Methods Mol. Biol. 2020, 2075, 265–283. [Google Scholar] [CrossRef] [PubMed]
- Sevin, E.W.; Barloy-Hubler, F. RASTA-Bacteria: A Web-Based Tool for Identifying Toxin-Antitoxin Loci in Prokaryotes. Genome Biol. 2007, 8, R155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Wei, Y.; Shen, Y.; Li, X.; Zhou, H.; Tai, C.; Deng, Z.; Ou, H.-Y. TADB 2.0: An Updated Database of Bacterial Type II Toxin-Antitoxin Loci. Nucleic Acids Res. 2018, 46, D749–D753. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Trad, E.I.; Chew, C.H.; Che Hamzah, A.M.; Suhaili, Z.; Rahman, N.I.A.; Ismail, S.; Puah, S.M.; Chua, K.H.; Kwong, S.M.; Yeo, C.C. The Plasmidomic Landscape of Clinical Methicillin-Resistant Staphylococcus aureus Isolates from Malaysia. Antibiotics 2023, 12, 733. https://doi.org/10.3390/antibiotics12040733
Al-Trad EI, Chew CH, Che Hamzah AM, Suhaili Z, Rahman NIA, Ismail S, Puah SM, Chua KH, Kwong SM, Yeo CC. The Plasmidomic Landscape of Clinical Methicillin-Resistant Staphylococcus aureus Isolates from Malaysia. Antibiotics. 2023; 12(4):733. https://doi.org/10.3390/antibiotics12040733
Chicago/Turabian StyleAl-Trad, Esra’a I., Ching Hoong Chew, Ainal Mardziah Che Hamzah, Zarizal Suhaili, Nor Iza A. Rahman, Salwani Ismail, Suat Moi Puah, Kek Heng Chua, Stephen M. Kwong, and Chew Chieng Yeo. 2023. "The Plasmidomic Landscape of Clinical Methicillin-Resistant Staphylococcus aureus Isolates from Malaysia" Antibiotics 12, no. 4: 733. https://doi.org/10.3390/antibiotics12040733
APA StyleAl-Trad, E. I., Chew, C. H., Che Hamzah, A. M., Suhaili, Z., Rahman, N. I. A., Ismail, S., Puah, S. M., Chua, K. H., Kwong, S. M., & Yeo, C. C. (2023). The Plasmidomic Landscape of Clinical Methicillin-Resistant Staphylococcus aureus Isolates from Malaysia. Antibiotics, 12(4), 733. https://doi.org/10.3390/antibiotics12040733