Antibiotic Therapy for Pulmonary Exacerbations in Cystic Fibrosis—A Single-Centre Prospective Observational Study
Abstract
:1. Introduction
2. Results
2.1. Study Cohort
2.2. Baseline Data/Demographical Data, BEx Treatment, and Sputum Microbiology
2.3. Outcome Data
2.3.1. Pulmonary Function Tests
2.3.2. Modified Fuchs BEx Score
2.3.3. C-Reactive Protein
2.3.4. Correlation Analysis of CFQ-R and ΔFEV1
2.3.5. Assessment of Response to Therapy
3. Discussion
4. Materials and Methods
4.1. Study Design and Patient Selection
- No history of lung transplantation;
- ≥6 years or ≤75 years;
- acute BEx (defined by ≥2/6 positive items in the modified Fuchs score published by Bilton et al. [17]);
- ability to perform lung function and home spirometry;
- being capable of giving consent;
- subject (or legal guardian) has given written consent to participate in the study.
- History of lung transplantation;
- <6 years or >75 years;
- no acute BEx (defined by ≥2/6 positive items in the modified Fuchs score published by Bilton et al. [17]);
- non-ability to perform lung function and home spirometry;
- being capable of giving consent;
- subject (or legal guardian) has not given written consent to participate in the study.
- Change in sputum volume or color;
- increased cough;
- increased malaise, fatigue, or lethargy;
- anorexia or weight loss;
- decrease in FEV1 by 10% or more/radiographic changes;
- increased dyspnea.
4.2. Data Collection and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, J.; Garratt, A.; Hill, A. Worldwide rates of diagnosis and effective treatment for cystic fibrosis. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2022, 21, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.M. The prevalence of cystic fibrosis in the European Union. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2008, 7, 450–453. [Google Scholar] [CrossRef] [Green Version]
- Ni, Q.; Chen, X.; Zhang, P.; Yang, L.; Lu, Y.; Xiao, F.; Wu, B.; Wang, H.; Zhou, W.; Dong, X. Systematic estimation of cystic fibrosis prevalence in Chinese and genetic spectrum comparison to Caucasians. Orphanet J. Rare Dis. 2022, 17, 129. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.C.; Mall, M.A.; Gutierrez, H.; Macek, M.; Madge, S.; Davies, J.C.; Burgel, P.-R.; Tullis, E.; Castaños, C.; Castellani, C.; et al. The future of cystic fibrosis care: A global perspective. Lancet Respir. Med. 2020, 8, 65–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsey, B.W.; Davies, J.; McElvaney, N.G.; Tullis, E.; Bell, S.C.; Dřevínek, P.; Griese, M.; McKone, E.F.; Wainwright, C.E.; Konstan, M.W.; et al. A CFTR Potentiator in Patients with Cystic Fibrosis and the G551D Mutation. N. Engl. J. Med. 2011, 365, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- Boyle, M.P.; Bell, S.C.; Konstan, M.W.; McColley, S.A.; Rowe, S.M.; Rietschel, E.; Huang, X.; Waltz, D.; Patel, N.R.; Rodman, D. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: A phase 2 randomised controlled trial. Lancet Respir. Med. 2014, 2, 527–538. [Google Scholar] [CrossRef]
- Keating, D.; Marigowda, G.; Burr, L.; Daines, C.; Mall, M.A.; McKone, E.F.; Ramsey, B.W.; Rowe, S.M.; Sass, L.A.; Tullis, E.; et al. VX-445-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles. N. Engl. J. Med. 2018, 379, 1612–1620. [Google Scholar] [CrossRef]
- Costa, E.; Girotti, S.; Pauro, F.; Leufkens, H.G.M.; Cipolli, M. The impact of FDA and EMA regulatory decision-making process on the access to CFTR modulators for the treatment of cystic fibrosis. Orphanet J. Rare Dis. 2022, 17, 188. [Google Scholar] [CrossRef]
- Middleton, P.G.; Mall, M.A.; Drevinek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef]
- Kirwan, L.; Fletcher, G.; Harrington, M.; Jeleniewska, P.; Zhou, S.; Casserly, B.; Gallagher, C.G.; Greally, P.; Gunaratnam, C.; Herzig, M.; et al. Longitudinal Trends in Real-World Outcomes after Initiation of Ivacaftor. A Cohort Study from the Cystic Fibrosis Registry of Ireland. Ann. Am. Thorac. Soc. 2019, 16, 209–216. [Google Scholar] [CrossRef]
- Goss, C.H. Acute Pulmonary Exacerbations in Cystic Fibrosis. Semin. Respir. Crit. Care Med. 2019, 40, 792–803. [Google Scholar] [CrossRef]
- Elberse, J.; Laan, D.; de Cock Buning, T.; Teunissen, T.; Broerse, J.; de Boer, W. Patient involvement in agenda setting for respiratory research in The Netherlands. Eur. Respir. J. 2012, 40, 508–510. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, C.; Eschenhagen, P.; Bouchara, J.P. Emerging Fungal Threats in Cystic Fibrosis. Mycopathologia 2021, 186, 639–653. [Google Scholar] [CrossRef]
- Lackner, M.; Rossler, A.; Volland, A.; Stadtmuller, M.N.; Mullauer, B.; Banki, Z.; Strohle, J.; Luttick, A.; Fenner, J.; Sarg, B.; et al. N-chlorotaurine is highly active against respiratory viruses including SARS-CoV-2 (COVID-19) in vitro. Emerg. Microbes Infect. 2022, 11, 1293–1307. [Google Scholar] [CrossRef]
- Gruber, M.; Moser, I.; Nagl, M.; Lackner, M. Bactericidal and Fungicidal Activity of N-Chlorotaurine Is Enhanced in Cystic Fibrosis Sputum Medium. Antimicrob. Agents Chemother. 2017, 61, e02527-16. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, H.J.; Borowitz, D.S.; Christiansen, D.H.; Morris, E.M.; Nash, M.L.; Ramsey, B.W.; Rosenstein, B.J.; Smith, A.L.; Wohl, M.E. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. N. Engl. J. Med. 1994, 331, 637–642. [Google Scholar] [CrossRef]
- Bilton, D.; Canny, G.; Conway, S.; Dumcius, S.; Hjelte, L.; Proesmans, M.; Tümmler, B.; Vavrova, V.; De Boeck, K. Pulmonary exacerbation: Towards a definition for use in clinical trials. Report from the EuroCareCF Working Group on outcome parameters in clinical trials. J. Cyst. Fibros. 2011, 10, S79–S81. [Google Scholar] [CrossRef] [Green Version]
- VanDevanter, D.R.; Hamblett, N.M.; Simon, N.; McIntosh, J.; Konstan, M.W. Evaluating assumptions of definition-based pulmonary exacerbation endpoints in cystic fibrosis clinical trials. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2021, 20, 39–45. [Google Scholar] [CrossRef]
- Carter, S.C.; McKone, E.F. CF pulmonary exacerbations-Steps in the right direction. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2021, 20, 3–4. [Google Scholar] [CrossRef]
- Stanford, G.E.; Dave, K.; Simmonds, N.J. Pulmonary Exacerbations in Adults With Cystic Fibrosis: A Grown-up Issue in a Changing Cystic Fibrosis Landscape. Chest 2021, 159, 93–102. [Google Scholar] [CrossRef]
- Bouzek, D.C.; Ren, C.L.; Thompson, M.; Slaven, J.E.; Sanders, D.B. Evaluating FEV1 decline in diagnosis and management of pulmonary exacerbations in children with cystic fibrosis. Pediatr. Pulmonol. 2022, 57, 1709–1716. [Google Scholar] [CrossRef]
- Carter, S.C.; Franciosi, A.N.; O’Shea, K.M.; O’Carroll, O.M.; Sharma, A.; Bell, A.; Keogan, B.; O’Reilly, P.; Coughlan, S.; Law, S.M.; et al. Acute Pulmonary Exacerbation Phenotypes in Patients with Cystic Fibrosis. Ann. Am. Thorac. Soc. 2022, 19, 1818–1826. [Google Scholar] [CrossRef] [PubMed]
- Flight, W.G.; Bright-Thomas, R.J.; Tilston, P.; Mutton, K.J.; Guiver, M.; Morris, J.; Webb, A.K.; Jones, A.M. Incidence and clinical impact of respiratory viruses in adults with cystic fibrosis. Thorax 2014, 69, 247–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, N.E.; Beckett, V.V.; Jain, R.; Sanders, D.B.; Nick, J.A.; Heltshe, S.L.; Dasenbrook, E.C.; VanDevanter, D.R.; Solomon, G.M.; Goss, C.H.; et al. Standardized Treatment of Pulmonary Exacerbations (STOP) study: Physician treatment practices and outcomes for individuals with cystic fibrosis with pulmonary Exacerbations. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2017, 16, 600–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goss, C.H.; Heltshe, S.L.; West, N.E.; Skalland, M.; Sanders, D.B.; Jain, R.; Barto, T.L.; Fogarty, B.; Marshall, B.C.; VanDevanter, D.R.; et al. A Randomized Clinical Trial of Antimicrobial Duration for Cystic Fibrosis Pulmonary Exacerbation Treatment. Am. J. Respir. Crit. Care Med. 2021, 204, 1295–1305. [Google Scholar] [CrossRef]
- Nicholson, T.T.; Smith, A.; McKone, E.F.; Gallagher, C.G. Duration of intravenous antibiotic treatment for acute exacerbations of cystic fibrosis: A systematic review. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2022, 21, 562–573. [Google Scholar] [CrossRef]
- VanDevanter, D.R.; Heltshe, S.L.; Skalland, M.; West, N.E.; Sanders, D.B.; Goss, C.H.; Flume, P.A. C-reactive protein (CRP) as a biomarker of pulmonary exacerbation presentation and treatment response. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2022, 21, 588–593. [Google Scholar] [CrossRef]
- VanDevanter, D.R.; Heltshe, S.L.; Spahr, J.; Beckett, V.V.; Daines, C.L.; Dasenbrook, E.C.; Gibson, R.L.; Raksha, J.; Sanders, D.B.; Goss, C.H.; et al. Rationalizing endpoints for prospective studies of pulmonary exacerbation treatment response in cystic fibrosis. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2017, 16, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Shoki, A.H.; Mayer-Hamblett, N.; Wilcox, P.G.; Sin, D.D.; Quon, B.S. Systematic review of blood biomarkers in cystic fibrosis pulmonary exacerbations. Chest 2013, 144, 1659–1670. [Google Scholar] [CrossRef]
- Quittner, A.L.; Modi, A.C.; Wainwright, C.; Otto, K.; Kirihara, J.; Montgomery, A.B. Determination of the minimal clinically important difference scores for the Cystic Fibrosis Questionnaire-Revised respiratory symptom scale in two populations of patients with cystic fibrosis and chronic Pseudomonas aeruginosa airway infection. Chest 2009, 135, 1610–1618. [Google Scholar] [CrossRef] [Green Version]
- Flume, P.A.; Suthoff, E.D.; Kosinski, M.; Marigowda, G.; Quittner, A.L. Measuring recovery in health-related quality of life during and after pulmonary exacerbations in patients with cystic fibrosis. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2019, 18, 737–742. [Google Scholar] [CrossRef] [Green Version]
- de Boer, K.; Vandemheen, K.L.; Tullis, E.; Doucette, S.; Fergusson, D.; Freitag, A.; Paterson, N.; Jackson, M.; Lougheed, M.D.; Kumar, V.; et al. Exacerbation frequency and clinical outcomes in adult patients with cystic fibrosis. Thorax 2011, 66, 680–685. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.M.; Sivam, S.; Dentice, R.L.; Dwyer, T.J.; Jo, H.E.; Lau, E.M.; Munoz, P.A.; Nolan, S.A.; Taylor, N.A.; Visser, S.K.; et al. Quality of home spirometry performance amongst adults with cystic fibrosis. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2022, 21, 84–87. [Google Scholar] [CrossRef]
- Duesberg, U.; Wosniok, J.; Naehrlich, L.; Eschenhagen, P.; Schwarz, C. Risk factors for respiratory Aspergillus fumigatus in German Cystic Fibrosis patients and impact on lung function. Sci. Rep. 2020, 10, 18999. [Google Scholar] [CrossRef]
- Schwarz, C.; Eschenhagen, P.; Schmidt, H.; Hohnstein, T.; Iwert, C.; Grehn, C.; Roehmel, J.; Steinke, E.; Stahl, M.; Lozza, L.; et al. Antigen specificity and cross-reactivity drive functionally diverse anti-Aspergillus fumigatus T cell responses in cystic fibrosis. J. Clin. Investig. 2023, 133, e161593. [Google Scholar] [CrossRef]
- Bacher, P.; Hohnstein, T.; Beerbaum, E.; Rocker, M.; Blango, M.G.; Kaufmann, S.; Rohmel, J.; Eschenhagen, P.; Grehn, C.; Seidel, K.; et al. Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell 2019, 176, 1340–1355 e1315. [Google Scholar] [CrossRef] [Green Version]
- Henry, B.; Aussage, P.; Grosskopf, C.; Goehrs, J. Development of the Cystic Fibrosis Questionnaire (CFQ) for Assessing Quality of Life in Pediatric and Adult Patients. Qual. Life Res. 2003, 12, 63–76. [Google Scholar] [CrossRef]
- Quittner, A.L.; Buu, A.; Messer, M.A.; Modi, A.C.; Watrous, M. Development and Validation of the Cystic Fibrosis Questionnaire in the United States*—A Health-Related Quality-of-Life Measure for Cystic Fibrosis. Chest 2005, 128, 2347–2354. [Google Scholar] [CrossRef]
Baseline Data (Day 0) a | All Subjects (n = 96) | Outpatients (n = 42) | Inpatients (n = 54) | p-Value b |
---|---|---|---|---|
Gender: female/male, number | 50/46 (52.1/47.9) | 22 (52.4) | 28 (51.9) | ns c |
Age | 28.5 ± 11.5 (8.8–57.9) | 29.2 ± 11.4 (17.5–57.9) | 26.95 ± 11.53 (8.8–57.0) | ns |
Age < 18 years | 10 (10.4) | 1 (2.4) | 9 (16.7) | p ≤ 0.05 |
BMI (kg/m²) | 19.9 ± 3.7 (12.2–33.7) | 20.4 ± 3.9 (14.3–33.7) | 19.15 ± 3.11 (12.2–28.8) | p ≤ 0.001 |
CF- related diabetes mellitus | 38 (39.6) | 15 (35.7) | 23 (42.6) | ns |
Exocrine pancreatic insufficiency | 89 (92.7) | 36 (85.7) | 53 (98.1) | p ≤ 0.05 |
Chronic airway infection: Pseudomonas aeruginosa Staphylococcus aureus | 60 (62.5) 41 (42.7) | 23 (54.8) 25 (59.5) | 37 (68.5) 16 (29.6) | ns p ≤ 0.01 |
Hospitalizations last 2 years (number) | 3 ± 4 (0–17) | 2 ± 3 (0–11) | 4 ± 4 (0–17) | p ≤ 0.01 |
PEx last 2 years (number) | 4 ± 4 (0–18) | 4 ± 3 (0–14) | 4 ± 4 (0–18) | ns |
ΔFEV1 last 2 years: ΔFEV1 in % | (n = 82) −6.9 ± 14.7 (−58.5–28.9) | (n = 33) −4.1 ± 11.5 (−21.9–28.9) | (n = 49) −8.7 ± 15.1 (−58.5–13.9) | p ≤ 0.01 |
Home spirometry FEV1 (l/s) | 1.3 ± 0.8 (0.4–3.2) | 1.4 ± 0.8 (0.7–3.9) | 1.1 ± 0.6 (0.4–3.1) | p ≤ 0.001 |
Modified Fuchs PEx symptom-score | 4 ± 1 (3–6) | 4 ± 1 (3–6) | 5 ± 1 (3–6) | ns |
Lung function (spirometry): FEV1 (L/s) FVC (L) MEF 25 (L/s) MEF 25/75 (L/s) | (n = 59) 1.4 ± 0.9 (0.5–3.7) 2.6 ± 1.0 (1.1–5.7) 0.3 ± 0.3 (0.1–1.4) 0.7 ± 0.8 (0.2–3.3) | (n = 34) 1.9 ± 0.9 (0.7–3.7) 2.9 ± 1.0 (1.5–5.6) 0.3 ± 0.4 (0.1–1.4) 0.8 ± 1.0 (0.3–3.3) | (n = 25) 1.2 ± 0.6 (0.5 ± 3.0) 2.2 ± 0.8 (1.1–4.1) 0.2 ± 0.3 (0.1–1.3) 0.6 ± 0.6 (0.2–2.4) | p ≤ 0.001 p ≤ 0.001 p ≤ 0.01 p ≤ 0.01 |
Laboratory results: CRP (mg/L) Leukocytes (/nL) | (n = 83) 20.3 ± 31.7 (0.3–177.5) 13.1 ± 5.1 (4.1–29.3) | (n = 29) 15.4 ± 21.5 (0.3–72.0) 11.0 ± 3.9 (5.2–18.8) | (n = 54) 21.1 ± 35.3 (0.8–177.5) 13.6 ± 5.2 (4.1–29.3) | ns p ≤ 0.01 |
CFQ-R domains (sum of item scores) Physical functioning Vitality Emotional functioning Social role/everyday life Body image Eating disturbances Treatment burden Health perceptions Weight Respiratory symptoms Digestive symptoms | (n = 91) 42 ± 25 (0–92) 33 ± 18 (0–75) 67 ± 18 (17–100) 56 ± 18 (22–100) 58 ± 26 (0–100) 67 ± 25 (22–100) 78 ± 24 (11–100) 56 ± 18 (11–100) 33 ± 22 (0–100) 67 ± 38 (0–100) 39 ± 20 (0–78) 89 ± 20 (22–100) | (n = 40) 56 ± 24 (17–92) 38 ± 18 (0–75) 73 ± 17 (20–100) 61 ± 21 (22–100) 67 ± 24 (17–100) 67 ± 24 (22–100) 89 ± 22 (11–100) 56 ± 18 (11–100) 39 ± 25 (0–100) 44 ± 19 (11–78) 89 ± 15 (44–100) 100 ± 36 (0–100) | (n = 51) 33 ± 21 (0–67) 33 ± 18 (0–75) 60 ± 19 (17–93) 50 ± 15 (22–100) 56 ± 26 (0–100) 44 ± 24 (22–100) 78 ± 25 (11–100) 56 ± 18 (11–89) 33 ± 20 (0–78) 28 ± 19 (0–72) 78 ± 22 (22–100) 67 ± 39 (0–100) | p ≤ 0.001 ns p ≤ 0.05 ns ns p ≤ 0.001 p ≤ 0.05 ns p ≤ 0.05 p ≤ 0.05 p ≤ 0.01 ns |
Microbiology: Pseudomonas aeruginosa Staphylococcus aureus Fungi | (n = 93) 57 (61.3) 44 (47.3) 73 (78.5) | (n = 39) 21 (53.9) 27 (69.2) 26 (66.7) | (n = 54) 36 (66.7) 17 (31.5) 47 (87.0) | ns p ≤ 0.001 p ≤ 0.05 |
Exacerbation Therapy | All Subjects (n = 96) | Outpatients (n =42) | Inpatients (n = 54) | p-Value b |
---|---|---|---|---|
Duration of therapy (days) Combined antibiotic therapy Intravenous antibiotic therapy Oral antibiotic therapy Inhalative antibiotic therapy Corticosteroid therapy Antifungal therapy | 14 ± 5 (10–28) 62 (64.6) 54 (56.3) 43 (44.8) 20 (20.8) 38 (39.6) 26 (27.1) | 14 ± 7 (10–28) 9 (21.4) 0 (0.0) 39 (92.9) 12 (28.6) 6 (14.3) 0 (0.0) | 28 (51.9) 53 (98.1) 54 (100.0) 5 (9.3) 8 (14.8) 32 (59.3) 26 (48.1) | ns c p < 0.001 p < 0.001 p < 0.001 ns p < 0.001 p < 0.001 |
Outcome Day 0–28 |
Day0 Median ± SD (Min–Max) |
Day28 Median ± SD (Min–Max) | p-Value |
---|---|---|---|
Home spirometry FEV1 (L/s) a | 1.3 ± 0.8 (0.4–3.2) | 1.4 ± 0.6 (0.4–4.8) | p ≤ 0.001 |
PEx symptom score a | 4 ± 1 (3–6) | 1± 2 (0–6) | p ≤ 0.001 |
Laboratory parameters b: CRP (mg/L) Leukocyte count (/nL) | 21.1 ± 33.1 (0.3–177.5) 12.7 ± 5.1 (4.1–29.3) | 11.5 ± 27.5 (0.3–195.6) 11.9 ± 5.4 (2.4–25.5) | p ≤ 0.001 ns |
In-hospital lung function c: ppFEV1 | 43 ± 20.42 (16–101) | 52.5 ± 21 (17–107) | p ≤ 0.001 |
CFQ-R domains (%) d PHYSICAL FUNCTIONING VITALITY EMOTIONAL FUNCTIONING SOCIAL ROLE/EVERYDAY LIFE BODY IMAGE EATING DISTURBANCES TREATMENT BURDEN HEALTH PERCEPTIONS RESPIRATORY SYMPTOMS DIGESTIVE SYMPTOMS WEIGHT | 42 ± 25 (0–92) 33 ± 18 (0–75) 67 ± 18 (17–100) 56 ± 18 (22–100) 58 ± 26 (0–100) 67 ± 25 (22–100) 78 ± 24 (11–100) 56 ± 18 (11–100) 33 ± 22 (0–100) 39 ± 20 (0–78) 89 ± 20 (22–100) 67 ± 38 (0–100) | 58 ± 26 (0–100) 50 ± 19 (8–100) 73 ± 19 (20–100) 56 ± 18 (11–100) 67 ± 24 (8–100) 67 ± 23 (11–100) 100 ± 20 (11–100) 56 ± 17 (11–100) 44 ± 21 (0–89) 56 ± 20 (0–89) 78 ± 18 (33–100) 100 ± 32 (0–100) | p ≤ 0.001 p ≤ 0.001 p ≤ 0.001 ns ns ns p ≤ 0.001 p ≤ 0.01 p ≤ 0.001 p ≤ 0.001 ns p ≤ 0.01 |
BMI (kg/m2) e | 19.8 ± 3.7 (12.8–33.7) | 20.0 ± 3.7 (13.1–34.2) | p ≤ 0.01 |
Follow up Day 28 |
Outpatients
Median ± SD (Min–Max) |
Inpatients
Median ± SD (Min–Max) | p-Value |
---|---|---|---|
Home spirometry FEV1 (L/s) a | 1.9 ± 0.9 (0.9–4.8) | 1.2 ± 0.8 (0.4–3.8) | p ≤ 0.01 |
PEx symptom score a | 1 ± 1 (0–5) | 2± 2 (0–6) | p ≤ 0.05 |
Laboratory parameters b: CRP (mg/L) Leukocyte count (/nL) | 7.1 ± 12.1 (0.3–45.0) 10.4 ± 3.9 (2.4–18.6) | 15.6 ± 33.2 (0.3–195.3) 13.7 ± 5.7 (2.8–25.5) | ns p ≤ 0.05 |
CFQ-R domains (%) c PHYSICAL FUNCTIONING VITALITY EMOTIONAL FUNCTIONING SOCIAL ROLE/EVERYDAY LIFE BODY IMAGE EATING DISTURBANCES TREATMENT BURDEN HEALTH PERCEPTIONS RESPIRATORY SYMPTOMS DIGESTIVE SYMPTOMS WEIGHT | 67 ± 23 (13–100) 50 ± 20 (8–100) 73 ± 18 (20–100) 61 ± 19 (11–100) 67 ± 19 (17–100) 67 ± 22 (22–100) 100 ± 13 (44–100) 56 ± 14 (33–89) 44 ± 19 (11–78) 56 ± 19 (11–83) 89 ± 16 (44–100) 100 ± 27 (0–100) | 46 ± 26 (0–92) 50 ± 19 (8–83) 67 ± 19 (27–100) 56 ± 17 (22–94) 53 ± 25 (8–100) 56 ± 23 (11–100) 78 ± 22 (11–100) 56 ± 19 (11–100) 44 ± 22 (0–89) 56 ± 22 (0–89) 78 ± 19 (33–100) 67 ± 37 (0–100) | p ≤ 0.001 ns ns ns p ≤ 0.01 p ≤ 0.05 p ≤ 0.01 ns ns ns p ≤ 0.05 p ≤ 0.05 |
BMI (kg/m2) d | 20.6 ± 3.8 (17.8–16.4) | 19.6 ± 3.3 (13.1–28.6) | p ≤ 0.05 |
Responder (n = 57) | Non-Responder (n = 39) | p-Value b | |
---|---|---|---|
Female Age (years) CF-related diabetes Exocrine pancreatic insufficiency Hospitalizations, past 2 years Exacerbations, past 2 years ΔFEV1, past 2 years d | 28 (49.1%) 28.1 ± 11.4 (8.8–57.9) 19 (33.3%) 52 (91.2) 2 ± 3 (0–12) 4 ± 4 (0–13) −6.3 ± 14.0 (−58.5–22.7) | 22 (56.4%) 32.1 ± 11.7 (16.2–57.0) 19 (48.7%) 37 (94.9) 4 ± 4 (0–17) 5 ± 4 (0–18) 7.0 ± 15.6 (−56.5–28.9) | ns c ns ns ns ns ns ns |
Airway colonization: Pseudomonas aeruginosa Staphylococcus aureus Fungi | 34 (59.6) 26 (45.6) 47 (82.5) | 26 (66.7) 15 (38.5) 26 (72.2) | ns ns ns |
Modified Fuchs score, day 0 BMI Day 0 (kg/m2) Home spirometry FEV1, day 0 (L/s) In-hospital FEV1, day 0 (L/s) e CRP, day 0 (mg/L) f Leukocyte count, day 0 (/nL) g | 5 ± 1 (3–6) 19.8 ± 3.6 (12.2–33.5) 1.2 ± 0.8 (0.4–3.9) 1.3 ± 0.8 (0.5–3.4) 26.5 ± 34.7 (0.5–177.5) 12.6 ± 5.3 (4.1–29.3) | 4 ± 1 (3–6) 20.0 ± 3.8 (14.4–33.7) 1.3 ± 0.7 (0.4–3.2) 1.6 ± 0.9 (0.5–3.7) 14.9 ± 24.7 (0.3–100.4) 12.9 ± 5.0 (4.8–25.0) | p < 0.05 ns ns ns p < 0.05 ns |
Outpatient treatment Duration of therapy Steroid therapy | 25 (43.9) 14 ± 6 (10–28) 25 (43.9) | 17 (43.6) 14 ± 5 (10–28) 13 (33.3) | ns ns ns |
BMI-change, day 0–28 (kg/m²) h CRP-change, day 0–28 (mg/dL) f Leukocyte count change, day 0–28 (/nL) f Modified Fuchs score change, day 0–28 | 0.3 ± 1.0 (−0.7–4.1) −18.9 ± 38.2 (−174.1–15.8) −1.4 ± 3.2 (−7.6–6.5) −4 ± 2 (−6–2) | 0.0 ± 0.8 (−3.0–1.4) 0.0 ± 25.6 (−42.8–101.2) 0.4 ± 4.0 (−9.0–10.0) −2 ± 2 (−5–1) | ns p < 0.001 ns p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarz, C.; Wimmer, E.; Holz, F.; Grehn, C.; Staab, D.; Eschenhagen, P.N. Antibiotic Therapy for Pulmonary Exacerbations in Cystic Fibrosis—A Single-Centre Prospective Observational Study. Antibiotics 2023, 12, 734. https://doi.org/10.3390/antibiotics12040734
Schwarz C, Wimmer E, Holz F, Grehn C, Staab D, Eschenhagen PN. Antibiotic Therapy for Pulmonary Exacerbations in Cystic Fibrosis—A Single-Centre Prospective Observational Study. Antibiotics. 2023; 12(4):734. https://doi.org/10.3390/antibiotics12040734
Chicago/Turabian StyleSchwarz, Carsten, Eliana Wimmer, Frederik Holz, Claudia Grehn, Doris Staab, and Patience Ndidi Eschenhagen. 2023. "Antibiotic Therapy for Pulmonary Exacerbations in Cystic Fibrosis—A Single-Centre Prospective Observational Study" Antibiotics 12, no. 4: 734. https://doi.org/10.3390/antibiotics12040734
APA StyleSchwarz, C., Wimmer, E., Holz, F., Grehn, C., Staab, D., & Eschenhagen, P. N. (2023). Antibiotic Therapy for Pulmonary Exacerbations in Cystic Fibrosis—A Single-Centre Prospective Observational Study. Antibiotics, 12(4), 734. https://doi.org/10.3390/antibiotics12040734