Novel Antimicrobial Agents for Gram-Negative Pathogens
Abstract
:1. Introduction
Methods
2. Recently Approved Antimicrobial Agents
2.1. Cefiderocol
2.1.1. Pharmacokinetic-Pharmacodynamic Issues
2.1.2. Clinical Studies
2.1.3. Approvals
2.1.4. Molecular Formula
2.2. Imipenem-Cilastatin-Relebactam
2.2.1. Pharmacokinetic-Pharmacodynamic Issues
2.2.2. Clinical Studies
2.2.3. Approvals
2.2.4. Molecular Formula
2.3. Meropenem-Vaborbactam
2.3.1. Pharmacokinetic-Pharmacodynamic Issues
2.3.2. Clinical Studies
2.3.3. Approvals
2.3.4. Molecular Formula
2.4. Eravacycline
2.4.1. Pharmacokinetic-Pharmacodynamic Issues
2.4.2. Clinical Studies
2.4.3. Approvals
2.4.4. Molecular Formula
2.5. Omadacycline
2.5.1. Pharmacokinetic-Pharmacodynamic Issues
2.5.2. Clinical Studies
2.5.3. Approvals
2.5.4. Molecular Formula
2.6. Plazomicin
2.6.1. Clinical Studies
2.6.2. Approvals
2.6.3. Molecular Formula
3. Antimicrobials in Phase 3 Clinical Trials
3.1. Aztreonam/Avibactam
3.1.1. Pharmacokinetic-Pharmacodynamic Issues
3.1.2. Clinical Studies
3.1.3. Molecular Formula
3.2. Cefepime/Enmetazobactam
3.2.1. Pharmacokinetic-Pharmacodynamic Issues
3.2.2. Clinical Studies
3.2.3. Molecular Formula
3.3. Cefepime/Zidebactam
3.3.1. Pharmacokinetic-Pharmacodynamic Issues
3.3.2. Clinical Studies
3.3.3. Molecular Formula
3.4. Cefepime/Taniborbactam
3.4.1. Pharmacokinetic-Pharmacodynamic Issues
3.4.2. Clinical Studies
3.4.3. Molecular Formula
3.5. Sulbactam-Durlobactam
3.5.1. Pharmacokinetic-Pharmacodynamic Issues
3.5.2. Clinical Studies
3.5.3. Molecular Formula
3.6. Sulopenem
3.6.1. Pharmacokinetic-Pharmacodynamic Issues
3.6.2. Clinical Studies
3.6.3. Molecular Formula
3.7. Tebipenem
3.7.1. Pharmacokinetic-Pharmacodynamic Issues
3.7.2. Clinical Studies
3.7.3. Molecular Formula
3.8. Benapenem
3.8.1. Pharmacokinetic-Pharmacodynamic Issues
3.8.2. Clinical Studies
3.8.3. Molecular Formula
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A
- Cefiderocol is a new siderophore cephalosporin approved for cUTIs and HAP/VAP (FDA/EMA), active against lactose-fermenting and non-fermenting GNBs, including ESBL and carbapenemases-producing strains (including OXA-type serine beta-lactamases and MBLs, although further data are needed regarding clinical activity against MBLs).
- Meropenem/vaborbactam is a beta-lactam/beta-lactamases inhibitor combination approved for cUTIs and cIAIs (FDA), HAP/VAP, associated bacteremia and infections due to GNBs with limited treatment options (EMA). It is active against serine-beta-lactamases of class A (including ESBLs and KPCs) and class C (including AmpC) but is inactive against OXA-type beta-lactamases and MBLs.
- Imipenem/cilastatin/relebactam is a triple combination of a beta-lactam with beta-lactamases inhibitors, approved for cUTIs and cIAIs (FDA), HAP/VAP, associated bacteremia and GNBs with limited treatment options (EMA). It is active against lactose-fermenting and non-fermenting GNBs, including strains producing ESBL/KPC/AmpC (including imipenem-R); it is inactive against A. baumannii, and MBLs- producing GNBs.
- Eravacycline is a new glycylcycline approved for cIAIs (FDA/EMA), with a wide spectrum of activity against Gram-positive and Gram-negative pathogens, including ESBL-producing Enterobacterales (and some CRE strains) and A. baumannii (including some CRAB strains). It is inactive against P. aeruginosa and B. cenocepacia.
- Omadacycline is a novel tetracycline, approved for ABSSI and CABP (FDA), with a broad spectrum of activity against Gram-positive, Gram-negative and atypical bacteria, including ESBL-producing Enterobacterales and some CRE, and A.baumannii (including some CRAB), while it is inactive against P. aeruginosa, P. mirabilis, Providencia spp., and M. morgannii. Its role for ICU patients and against MDR-GNBs, such as CRE/CRAB is not yet established. Omadacycline also has an oral formulation.
- Plazomicin is a new semi-synthetic aminoglycoside approved for cUTIs (FDA), active against GNBs (better activity against lactose-fermenting ones), including CREs and AG-resistant producing several AMEs. It is inactive against A. baumannii and S. maltophilia, while its activity against P. aeruginosa is variable.
- Application of stringent antimicrobial stewardship programs, along with pK/pD optimization, may preclude indiscriminate use of these valuable additions to our antimicrobial armamentarium and prolong their self-lives.
- Aztreonam-avibactam can be a valuable option for the management of MBL-producing Enterobacterales.
- Cefepime-enmetazobactam possesses excellent activity against ESBL-producing Enterobacterales and can be considered as a carbapenem-sparing regimen in cUTIs, and possibly in VAP/HAP as it exhibits good ELF penetration. MBLs are not inhibited by cefepime-enmetazobactam.
- Cefepime-zidebactam and cefepime-taniborbactam are active against a wide range of β-lactamases from classes A, B, C, and D, conferring them a valuable option against MDR-GNB infections.
- Sulbactam-durlobactam’s strong anti-D activity against the OXA family of enzymes, makes it a potential option for carbapenem-resistant A. baumannii infections.
- Sulopenem (IV and oral) and tebipenem (oral) may have a role in the treatment of complicated and uncomplicated UTIs caused by ESBL, AmpC Enterobacterales, and quinolone-resistant uropathogens.
- Benapenem is another novel carbapenem, currently in phase 2/3 study for cUTIs.
References
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef]
- He, Y.; Lei, J.; Pan, X.; Huang, X.; Zhao, Y. The Hydrolytic Water Molecule of Class A β-Lactamase Relies on the Acyl-Enzyme Intermediate ES* for Proper Coordination and Catalysis. Sci. Rep. 2020, 10, 10205. [Google Scholar] [CrossRef] [PubMed]
- Hobson, C.A.; Cointe, A.; Jacquier, H.; Choudhury, A.; Magnan, M.; Courroux, C.; Tenaillon, O.; Bonacorsi, S.; Birgy, A. Cross-Resistance to Cefiderocol and Ceftazidime–Avibactam in KPC β-Lactamase Mutants and the Inoculum Effect. Clin. Microbiol. Infect. 2021, 27, 1172.e7–1172.e10. [Google Scholar] [CrossRef]
- Jiang, M.; Sun, B.; Huang, Y.; Liu, C.; Wang, Y.; Ren, Y.; Zhang, Y.; Wang, Y.; Mu, D. Diversity of Ceftazidime-Avibactam Resistance Mechanism in KPC2-Producing Klebsiella pneumoniae under Antibiotic Selection Pressure. IDR 2022, 15, 4627–4636. [Google Scholar] [CrossRef]
- Shields, R.K.; Chen, L.; Cheng, S.; Chavda, K.D.; Press, E.G.; Snyder, A.; Pandey, R.; Doi, Y.; Kreiswirth, B.N.; Nguyen, M.H.; et al. Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne Bla KPC-3 Mutations during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. Antimicrob. Agents Chemother. 2017, 61, e02097-16. [Google Scholar] [CrossRef]
- Bahr, G.; González, L.J.; Vila, A.J. Metallo-β-Lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem. Rev. 2021, 121, 7957–8094. [Google Scholar] [CrossRef]
- McKay, S.L.; Vlachos, N.; Daniels, J.B.; Albrecht, V.S.; Stevens, V.A.; Rasheed, J.K.; Johnson, J.K.; Lutgring, J.D.; Sjölund-Karlsson, M.; Halpin, A.L. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii in the United States, 2013–2017. Microb. Drug Resist. 2022, 28, 645–653. [Google Scholar] [CrossRef]
- Bonnin, R.A.; Bernabeu, S.; Emeraud, C.; Creton, E.; Vanparis, O.; Naas, T.; Jousset, A.B.; Dortet, L. Susceptibility of OXA-48-Producing Enterobacterales to Imipenem/Relebactam, Meropenem/Vaborbactam and Ceftazidime/Avibactam. Int. J. Antimicrob. Agents 2022, 60, 106660. [Google Scholar] [CrossRef]
- Castanheira, M.; Deshpande, L.M.; Mendes, R.E.; Doyle, T.B.; Sader, H.S. Prevalence of Carbapenemase Genes among Carbapenem-Nonsusceptible Enterobacterales Collected in US Hospitals in a Five-Year Period and Activity of Ceftazidime/Avibactam and Comparator Agents. JAC-Antimicrob. Resist. 2022, 4, dlac098. [Google Scholar] [CrossRef]
- Wang, M.; Earley, M.; Chen, L.; Hanson, B.M.; Yu, Y.; Liu, Z.; Salcedo, S.; Cober, E.; Li, L.; Kanj, S.S.; et al. Clinical Outcomes and Bacterial Characteristics of Carbapenem-Resistant Klebsiella pneumoniae Complex among Patients from Different Global Regions (CRACKLE-2): A Prospective, Multicentre, Cohort Study. Lancet Infect. Dis. 2022, 22, 401–412. [Google Scholar] [CrossRef]
- Bilinskaya, A.; Linder, K.E.; Kuti, J.L. Plazomicin: An Intravenous Aminoglycoside Antibacterial for the Treatment of Complicated Urinary Tract Infections. Expert Rev. Anti-Infect. Ther. 2020, 18, 705–720. [Google Scholar] [CrossRef]
- Su, M.; Satola, S.W.; Read, T.D. Genome-Based Prediction of Bacterial Antibiotic Resistance. J. Clin. Microbiol. 2019, 57, e01405-18. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus High-Dose, Extended-Infusion Meropenem for the Treatment of Gram-Negative Nosocomial Pneumonia (APEKS-NP): A Randomised, Double-Blind, Phase 3, Non-Inferiority Trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef]
- Solomkin, J.; Evans, D.; Slepavicius, A.; Lee, P.; Marsh, A.; Tsai, L.; Sutcliffe, J.A.; Horn, P. Assessing the Efficacy and Safety of Eravacycline vs Ertapenem in Complicated Intra-Abdominal Infections in the Investigating Gram-Negative Infections Treated With Eravacycline (IGNITE 1) Trial: A Randomized Clinical Trial. JAMA Surg. 2017, 152, 224. [Google Scholar] [CrossRef] [PubMed]
- Solomkin, J.S.; Gardovskis, J.; Lawrence, K.; Montravers, P.; Sway, A.; Evans, D.; Tsai, L. IGNITE4: Results of a Phase 3, Randomized, Multicenter, Prospective Trial of Eravacycline vs Meropenem in the Treatment of Complicated Intraabdominal Infections. Clin. Infect. Dis. 2019, 69, 921–929. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Giamarellos-Bourboulis, E.J.; Rahav, G.; Mathers, A.J.; Bassetti, M.; Vazquez, J.; Cornely, O.A.; Solomkin, J.; Bhowmick, T.; Bishara, J.; et al. Effect and Safety of Meropenem–Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial. Infect. Dis. Ther. 2018, 7, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Motsch, J.; Murta de Oliveira, C.; Stus, V.; Köksal, I.; Lyulko, O.; Boucher, H.W.; Kaye, K.S.; File, T.M.; Brown, M.L.; Khan, I.; et al. RESTORE-IMI 1: A Multicenter, Randomized, Double-Blind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients With Imipenem-Nonsusceptible Bacterial Infections. Clin. Infect. Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef]
- Titov, I.; Wunderink, R.G.; Roquilly, A.; Rodríguez Gonzalez, D.; David-Wang, A.; Boucher, H.W.; Kaye, K.S.; Losada, M.C.; Du, J.; Tipping, R.; et al. A Randomized, Double-Blind, Multicenter Trial Comparing Efficacy and Safety of Imipenem/Cilastatin/Relebactam Versus Piperacillin/Tazobactam in Adults with Hospital-Acquired or Ventilator-Associated Bacterial Pneumonia (RESTORE-IMI 2 Study). Clin. Infect. Dis. 2021, 73, e4539–e4548. [Google Scholar] [CrossRef] [PubMed]
- McKinnell, J.A.; Dwyer, J.P.; Talbot, G.H.; Connolly, L.E.; Friedland, I.; Smith, A.; Jubb, A.M.; Serio, A.W.; Krause, K.M.; Daikos, G.L. Plazomicin for Infections Caused by Carbapenem-Resistant Enterobacteriaceae. N. Engl. J. Med. 2019, 380, 791–793. [Google Scholar] [CrossRef]
- Matusik, E.; Boidin, C.; Friggeri, A.; Richard, J.-C.; Bitker, L.; Roberts, J.A.; Goutelle, S. Therapeutic Drug Monitoring of Antibiotic Drugs in Patients Receiving Continuous Renal Replacement Therapy or Intermittent Hemodialysis: A Critical Review. Ther. Drug Monit. 2022, 44, 86–102. [Google Scholar] [CrossRef]
- Kawaguchi, N.; Katsube, T.; Echols, R.; Wajima, T. Population Pharmacokinetic Analysis of Cefiderocol, a Parenteral Siderophore Cephalosporin, in Healthy Subjects, Subjects with Various Degrees of Renal Function, and Patients with Complicated Urinary Tract Infection or Acute Uncomplicated Pyelonephritis. Antimicrob. Agents Chemother. 2018, 62, e01391-17. [Google Scholar] [CrossRef]
- Fratoni, A.J.; Mah, J.W.; Nicolau, D.P.; Kuti, J.L. Imipenem/Cilastatin/Relebactam Pharmacokinetics in Critically Ill Patients with Augmented Renal Clearance. J. Antimicrob. Chemother. 2022, 77, 2992–2999. [Google Scholar] [CrossRef] [PubMed]
- Bakdach, D.; Elajez, R.; Bakdach, A.R.; Awaisu, A.; De Pascale, G.; Ait Hssain, A. Pharmacokinetics, Pharmacodynamics, and Dosing Considerations of Novel β-Lactams and β-Lactam/β-Lactamase Inhibitors in Critically Ill Adult Patients: Focus on Obesity, Augmented Renal Clearance, Renal Replacement Therapies, and Extracorporeal Membrane Oxygenation. JCM 2022, 11, 6898. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Pea, F. Pharmacokinetic/Pharmacodynamic Target Attainment in Critically Ill Renal Patients on Antimicrobial Usage: Focus on Novel Beta-Lactams and Beta Lactams/Beta-Lactamase Inhibitors. Expert Rev. Clin. Pharmacol. 2021, 14, 583–599. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-Lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. Aeruginosa). Clin. Infect. Dis. 2021, 72, e169–e183. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Guidelines for the Treatment of Infections Caused by Multidrug-Resistant Gram-Negative Bacilli (Endorsed by European Society of Intensive Care Medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Niederman, M.; Koulenti, D.; Lipman, J. Antimicrobial Agents with Primary Activity Against Gram-Negative Bacteria. In Textbook of Critical Care, 8th ed.; Vincent, J.-L., Moore., F.A., Marini, J.J., Bellomo, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 978-0-323-75929-8. [Google Scholar]
- Food and Drud Administration. Center for Drug Evaluation and Research Development & Approval Process|Drugs. Available online: https://www.fda.gov/drugs/development-approval-process-drugs (accessed on 26 March 2023).
- EMA Medicines. Available online: https://www.ema.europa.eu/en/medicines (accessed on 26 March 2023).
- Food and Drug Administration. FETROJA (Cefiderocol) for Injection, for Intravenous Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209445s002lbl.pdf (accessed on 26 March 2023).
- EMA Fetcroja. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/fetcroja (accessed on 5 December 2022).
- Food and Drud Administration. RECARBRIOTM (Imipenem, Cilastatin, and Relebactam) for Injection, for Intravenous Use Initial U.S. Approval: 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212819s002lbl.pdf (accessed on 26 March 2023).
- EMA Recarbrio. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/recarbrio (accessed on 26 March 2023).
- Food and Drug Administration. VABOMERE (Meropenem and Vaborbactam) for Injection. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209776lbl.pdf (accessed on 26 March 2023).
- EMA Vaborem. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/vaborem (accessed on 26 March 2023).
- Food and Drug Administration. XERAVA (Eravacycline) for Injection. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf (accessed on 26 March 2023).
- EMA Xerava. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/xerava (accessed on 26 March 2023).
- Food and Drug Administration. NUZYRA (Omadacycline). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209816_209817lbl.pdf (accessed on 26 March 2023).
- EMA Nuzyra: Withdrawn Application. Available online: https://www.ema.europa.eu/en/medicines/human/withdrawn-applications/nuzyra (accessed on 26 March 2023).
- Food and Drug Administration. Plazomicin. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210303Orig1s000lbl.pdf (accessed on 26 March 2023).
- EMA Zemdri: Withdrawn Application. Available online: https://www.ema.europa.eu/en/medicines/human/withdrawn-applications/zemdri (accessed on 26 March 2023).
- 2021 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis. Available online: https://www.who.int/publications-detail-redirect/9789240047655 (accessed on 26 March 2023).
- Ong’uti, S.; Czech, M.; Robilotti, E.; Holubar, M. Cefiderocol: A New Cephalosporin Stratagem Against Multidrug-Resistant Gram-Negative Bacteria. Clin. Infect. Dis. 2022, 74, 1303–1312. [Google Scholar] [CrossRef]
- Longshaw, C.; Roger, E.; Santerre Henriksen, A.; Baba, T.; Nguyen, S.; Yamano, Y. Evidence for Efficacy of Cefiderocol against OXA-48-Containing Isolates from the APEKS-NP and CREDIBLE-CR Trials. Antimicrob. Agents Chemother. 2022, 66, e01100-22. [Google Scholar] [CrossRef]
- Poirel, L.; Kieffer, N.; Nordmann, P. Stability of Cefiderocol against Clinically Significant Broad-Spectrum Oxacillinases. Int. J. Antimicrob. Agents 2018, 52, 866–867. [Google Scholar] [CrossRef]
- Poirel, L.; Ortiz de la Rosa, J.-M.; Sadek, M.; Nordmann, P. Impact of Acquired Broad-Spectrum β-Lactamases on Susceptibility to Cefiderocol and Newly Developed β-Lactam/β-Lactamase Inhibitor Combinations in Escherichia coli and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2022, 66, e00039-22. [Google Scholar] [CrossRef]
- Liu, X.; Lei, T.; Yang, Y.; Zhang, L.; Liu, H.; Leptihn, S.; Yu, Y.; Hua, X. Structural Basis of PER-1-Mediated Cefiderocol Resistance and Synergistic Inhibition of PER-1 by Cefiderocol in Combination with Avibactam or Durlobactam in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2022, 66, e00828-22. [Google Scholar] [CrossRef] [PubMed]
- Simner, P.J.; Beisken, S.; Bergman, Y.; Ante, M.; Posch, A.E.; Tamma, P.D. Defining Baseline Mechanisms of Cefiderocol Resistance in the Enterobacterales. Microb. Drug Resist. 2022, 28, 161–170. [Google Scholar] [CrossRef]
- Lasarte-Monterrubio, C.; Fraile-Ribot, P.A.; Vázquez-Ucha, J.C.; Cabot, G.; Guijarro-Sánchez, P.; Alonso-García, I.; Rumbo-Feal, S.; Galán-Sánchez, F.; Beceiro, A.; Arca-Suárez, J.; et al. Activity of Cefiderocol, Imipenem/Relebactam, Cefepime/Taniborbactam and Cefepime/Zidebactam against Ceftolozane/Tazobactam- and Ceftazidime/Avibactam-Resistant Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2022, 77, 2809–2815. [Google Scholar] [CrossRef] [PubMed]
- Eucast: Cefiderocol Susceptibility Testing. Available online: https://www.eucast.org/eucast_news/news_singleview/?tx_ttnews%5Btt_news%5D=493&cHash=22779384b74c8cf2c55aa3f7fd69d173 (accessed on 3 December 2022).
- Kawaguchi, N.; Katsube, T.; Echols, R.; Wajima, T. Population Pharmacokinetic and Pharmacokinetic/Pharmacodynamic Analyses of Cefiderocol, a Parenteral Siderophore Cephalosporin, in Patients with Pneumonia, Bloodstream Infection/Sepsis, or Complicated Urinary Tract Infection. Antimicrob. Agents Chemother. 2021, 65, e01437-20. [Google Scholar] [CrossRef] [PubMed]
- Wenzler, E.; Butler, D.; Tan, X.; Katsube, T.; Wajima, T. Pharmacokinetics, Pharmacodynamics, and Dose Optimization of Cefiderocol during Continuous Renal Replacement Therapy. Clin. Pharmacokinet. 2022, 61, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Bartoletti, M.; Cojutti, P.G.; Gaibani, P.; Conti, M.; Giannella, M.; Viale, P.; Pea, F. A Descriptive Case Series of Pharmacokinetic/Pharmacodynamic Target Attainment and Microbiological Outcome in Critically Ill Patients with Documented Severe Extensively Drug-Resistant Acinetobacter baumannii Bloodstream Infection and/or Ventilator-Associated Pneumonia Treated with Cefiderocol. J. Glob. Antimicrob. Resist. 2021, 27, 294–298. [Google Scholar] [CrossRef]
- Kufel, W.D.; Abouelhassan, Y.; Steele, J.M.; Gutierrez, R.L.; Perwez, T.; Bourdages, G.; Nicolau, D.P. Plasma and Cerebrospinal Fluid Concentrations of Cefiderocol during Successful Treatment of Carbapenem-Resistant Acinetobacter baumannii Meningitis. J. Antimicrob. Chemother. 2022, 77, 2737–2741. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and Safety of Cefiderocol or Best Available Therapy for the Treatment of Serious Infections Caused by Carbapenem-Resistant Gram-Negative Bacteria (CREDIBLE-CR): A Randomised, Open-Label, Multicentre, Pathogen-Focused, Descriptive, Phase 3 Trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Leonildi, A.; Della Sala, L.; Vecchione, A.; Barnini, S.; Farcomeni, A.; Menichetti, F. Cefiderocol- Compared to Colistin-Based Regimens for the Treatment of Severe Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2022, 66, e02142-21. [Google Scholar] [CrossRef] [PubMed]
- Sansone, P.; Giaccari, L.G.; Coppolino, F.; Aurilio, C.; Barbarisi, A.; Passavanti, M.B.; Pota, V.; Pace, M.C. Cefiderocol for Carbapenem-Resistant Bacteria: Handle with Care! A Review of the Real-World Evidence. Antibiotics 2022, 11, 904. [Google Scholar] [CrossRef] [PubMed]
- Corcione, S.; De Benedetto, I.; Pinna, S.M.; Vita, D.; Lupia, T.; Montrucchio, G.; Brazzi, L.; De Rosa, F.G. Cefiderocol Use in Gram Negative Infections with Limited Therapeutic Options: Is Combination Therapy the Key? J. Infect. Public Health 2022, 15, 975–979. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem–Relebactam and Meropenem–Vaborbactam: Two Novel Carbapenem-β-Lactamase Inhibitor Combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef] [PubMed]
- Lob, S.H.; DePestel, D.D.; DeRyke, C.A.; Kazmierczak, K.M.; Young, K.; Motyl, M.R.; Sahm, D.F. Ceftolozane/Tazobactam and Imipenem/Relebactam Cross-Susceptibility among Clinical Isolates of Pseudomonas aeruginosa from Patients with Respiratory Tract Infections in ICU and Non-ICU Wards—SMART United States 2017–2019. Open Forum Infect. Dis. 2021, 8, ofab320. [Google Scholar] [CrossRef]
- O’Donnell, J.N.; Putra, V.; Belfiore, G.M.; Maring, B.L.; Young, K.; Lodise, T.P. In Vitro Activity of Imipenem/Relebactam plus Aztreonam against Metallo-β-Lactamase-Producing, OprD-Deficient Pseudomonas aeruginosa with Varying Levels of Pseudomonas-Derived Cephalosporinase Production. Int. J. Antimicrob. Agents 2022, 59, 106595. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lob, S.H.; DeRyke, C.A.; Hilbert, D.W.; Wong, M.T.; Young, K.; Siddiqui, F.; Motyl, M.R.; Sahm, D.F. In Vitro Activity of Ceftolozane-Tazobactam, Imipenem-Relebactam, Ceftazidime-Avibactam, and Comparators against Pseudomonas aeruginosa Isolates Collected in United States Hospitals According to Results from the SMART Surveillance Program, 2018 to 2020. Antimicrob. Agents Chemother. 2022, 66, e00189-22. [Google Scholar] [CrossRef] [PubMed]
- Biagi, M.; Lee, M.; Wu, T.; Shajee, A.; Patel, S.; Deshpande, L.M.; Mendes, R.E.; Wenzler, E. Aztreonam in Combination with Imipenem-Relebactam against Clinical and Isogenic Strains of Serine and Metallo-β-Lactamase-Producing Enterobacterales. Diagn. Microbiol. Infect. Dis. 2022, 103, 115674. [Google Scholar] [CrossRef]
- Maraki, S.; Mavromanolaki, V.E.; Moraitis, P.; Stafylaki, D.; Kasimati, A.; Magkafouraki, E.; Scoulica, E. Ceftazidime-Avibactam, Meropenen-Vaborbactam, and Imipenem-Relebactam in Combination with Aztreonam against Multidrug-Resistant, Metallo-β-Lactamase-Producing Klebsiella pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1755–1759. [Google Scholar] [CrossRef]
- Doi, Y. Treatment Options for Carbapenem-Resistant Gram-Negative Bacterial Infections. Clin. Infect. Dis. 2019, 69, S565–S575. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lob, S.H.; Akrich, B.; DeRyke, C.A.; Siddiqui, F.; Young, K.; Motyl, M.R.; Hawser, S.P.; Sahm, D.F. In Vitro Activity of Imipenem/Relebactam against Piperacillin/Tazobactam-Resistant and Meropenem-Resistant Non-Morganellaceae Enterobacterales and Pseudomonas aeruginosa Collected from Patients with Lower Respiratory Tract Infections in Western Europe: SMART 2018–20. JAC-Antimicrob. Resist. 2022, 5, dlad003. [Google Scholar] [CrossRef]
- Heo, Y.-A. Imipenem/Cilastatin/Relebactam: A Review in Gram-Negative Bacterial Infections. Drugs 2021, 81, 377–388. [Google Scholar] [CrossRef]
- Patel, M.; Bellanti, F.; Daryani, N.M.; Noormohamed, N.; Hilbert, D.W.; Young, K.; Kulkarni, P.; Copalu, W.; Gheyas, F.; Rizk, M.L. Population Pharmacokinetic/Pharmacodynamic Assessment of Imipenem/Cilastatin/Relebactam in Patients with Hospital-acquired/Ventilator-associated Bacterial Pneumonia. Clin. Transl. Sci. 2022, 15, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.H.; Nicolau, D.P.; Kuti, J.L. Imipenem/Cilastatin/Relebactam Alone and in Combination against Pseudomonas aeruginosa in theIn Vitro Pharmacodynamic Model. Antimicrob. Agents Chemother. 2020, 64, e01764-20. [Google Scholar] [CrossRef] [PubMed]
- Kohno, S.; Bando, H.; Yoneyama, F.; Kikukawa, H.; Kawahara, K.; Shirakawa, M.; Aoyama, N.; Brown, M.; Paschke, A.; Takase, A. The Safety and Efficacy of Relebactam/Imipenem/Cilastatin in Japanese Patients with Complicated Intra-Abdominal Infection or Complicated Urinary Tract Infection: A Multicenter, Open-Label, Noncomparative Phase 3 Study. J. Infect. Chemother. 2021, 27, 262–270. [Google Scholar] [CrossRef]
- Rebold, N.; Morrisette, T.; Lagnf, A.M.; Alosaimy, S.; Holger, D.; Barber, K.; Justo, J.A.; Antosz, K.; Carlson, T.J.; Frens, J.J.; et al. Early Multicenter Experience with Imipenem-Cilastatin-Relebactam for Multidrug-Resistant Gram-Negative Infections. Open Forum Infect. Dis. 2021, 8, ofab554. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Huband, M.D.; Mendes, R.E.; Flamm, R.K. Meropenem-Vaborbactam Tested against Contemporary Gram-Negative Isolates Collected Worldwide during 2014, Including Carbapenem-Resistant, KPC-Producing, Multidrug-Resistant, and Extensively Drug-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 61, e00567-17. [Google Scholar] [CrossRef]
- Shortridge, D.; Carvalhaes, C.; Deshpande, L.; Castanheira, M. Activity of Meropenem/Vaborbactam and Comparators against Gram-Negative Isolates from Eastern and Western European Patients Hospitalized with Pneumonia Including Ventilator-Associated Pneumonia (2014–19). J. Antimicrob. Chemother. 2021, 76, 2600–2605. [Google Scholar] [CrossRef]
- Gaibani, P.; Re, M.C.; Campoli, C.; Viale, P.L.; Ambretti, S. Bloodstream Infection Caused by KPC-Producing Klebsiella pneumoniae Resistant to Ceftazidime/Avibactam: Epidemiology and Genomic Characterization. Clin. Microbiol. Infect. 2020, 26, 516.e1–516.e4. [Google Scholar] [CrossRef]
- Wilson, W.R.; Kline, E.G.; Jones, C.E.; Morder, K.T.; Mettus, R.T.; Doi, Y.; Nguyen, M.H.; Clancy, C.J.; Shields, R.K. Effects of KPC Variant and Porin Genotype on theIn Vitro Activity of Meropenem-Vaborbactam against Carbapenem-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 63, e02048-18. [Google Scholar] [CrossRef]
- Tsivkovski, R.; Lomovskaya, O. Potency of Vaborbactam Is Less Affected than That of Avibactam in Strains Producing KPC-2 Mutations That Confer Resistance to Ceftazidime-Avibactam. Antimicrob. Agents Chemother. 2020, 64, e01936-19. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Rubio-Aparicio, D.; Nelson, K.; Dudley, M.N.; Lomovskaya, O. Meropenem-Vaborbactam Resistance Selection, Resistance Prevention, and Molecular Mechanisms in Mutants of KPC-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2017, 61, e01694-17. [Google Scholar] [CrossRef] [PubMed]
- Bhavnani, S.M.; Trang, M.; Griffith, D.C.; Lomovskaya, O.; Hammel, J.P.; Loutit, J.S.; Cammarata, S.K.; Dudley, M.N.; Ambrose, P.G.; Rubino, C.M. Pharmacokinetic-Pharmacodynamic Target Attainment Analyses as Support for Meropenem-Vaborbactam Dosing Regimens and Susceptibility Breakpoints. Antimicrob. Agents Chemother. 2022, 66, e02130-21. [Google Scholar] [CrossRef] [PubMed]
- Kufel, W.D.; Eranki, A.P.; Paolino, K.M.; Call, A.; Miller, C.D.; Mogle, B.T. In Vivo Pharmacokinetic Analysis of Meropenem/Vaborbactam during Continuous Venovenous Haemodialysis. J. Antimicrob. Chemother. 2019, 74, 2117–2118. [Google Scholar] [CrossRef]
- Ackley, R.; Roshdy, D.; Meredith, J.; Minor, S.; Anderson, W.E.; Capraro, G.A.; Polk, C. Meropenem-Vaborbactam versus Ceftazidime-Avibactam for Treatment of Carbapenem-Resistant Enterobacteriaceae Infections. Antimicrob. Agents Chemother. 2020, 64, e02313-19. [Google Scholar] [CrossRef]
- Alosaimy, S.; Lagnf, A.M.; Morrisette, T.; Scipione, M.R.; Zhao, J.J.; Jorgensen, S.C.J.; Mynatt, R.; Carlson, T.J.; Jo, J.; Garey, K.W.; et al. Real-World, Multicenter Experience with Meropenem-Vaborbactam for Gram-Negative Bacterial Infections Including Carbapenem-Resistant Enterobacterales and Pseudomonas aeruginosa. Open Forum Infect. Dis. 2021, 8, ofab371. [Google Scholar] [CrossRef]
- Tumbarello, M.; Raffaelli, F.; Cascio, A.; Falcone, M.; Signorini, L.; Mussini, C.; De Rosa, F.G.; Losito, A.R.; De Pascale, G.; Pascale, R.; et al. Compassionate Use of Meropenem/Vaborbactam for Infections Caused by KPC-Producing Klebsiella pneumoniae: A Multicentre Study. JAC-Antimicrob. Resist. 2022, 4, dlac022. [Google Scholar] [CrossRef]
- Livermore, D.M.; Mushtaq, S.; Warner, M.; Woodford, N. In Vitro Activity of Eravacycline against Carbapenem-Resistant Enterobacteriaceae and Acinetobacter baumannii. Antimicrob. Agents Chemother. 2016, 60, 3840–3844. [Google Scholar] [CrossRef]
- Thabit, A.K.; Monogue, M.L.; Newman, J.V.; Nicolau, D.P. Assessment of in Vivo Efficacy of Eravacycline against Enterobacteriaceae Exhibiting Various Resistance Mechanisms: A Dose-Ranging Study and Pharmacokinetic/Pharmacodynamic Analysis. Int. J. Antimicrob. Agents 2018, 51, 727–732. [Google Scholar] [CrossRef]
- Connors, K.P.; Housman, S.T.; Pope, J.S.; Russomanno, J.; Salerno, E.; Shore, E.; Redican, S.; Nicolau, D.P. Phase I, Open-Label, Safety and Pharmacokinetic Study To Assess Bronchopulmonary Disposition of Intravenous Eravacycline in Healthy Men and Women. Antimicrob. Agents Chemother. 2014, 58, 2113–2118. [Google Scholar] [CrossRef]
- Meng, R.; Guan, X.; Sun, L.; Fei, Z.; Li, Y.; Luo, M.; Ma, A.; Li, H. The Efficacy and Safety of Eravacycline Compared with Current Clinically Common Antibiotics in the Treatment of Adults with Complicated Intra-Abdominal Infections: A Bayesian Network Meta-Analysis. Front. Med. 2022, 9, 935343. [Google Scholar] [CrossRef] [PubMed]
- Eljaaly, K.; Ortwine, J.K.; Shaikhomer, M.; Almangour, T.A.; Bassetti, M. Efficacy and Safety of Eravacycline: A Meta-Analysis. J. Glob. Antimicrob. Resist. 2021, 24, 424–428. [Google Scholar] [CrossRef]
- Alosaimy, S.; Morrisette, T.; Lagnf, A.M.; Rojas, L.M.; King, M.A.; Pullinger, B.M.; Hobbs, A.L.V.; Perkins, N.B.; Veve, M.P.; Bouchard, J.; et al. Clinical Outcomes of Eravacycline in Patients Treated Predominately for Carbapenem-Resistant Acinetobacter baumannii. Microbiol. Spectr. 2022, 10, e00479-22. [Google Scholar] [CrossRef]
- Lim, C.; Teparrukkul, P.; Nuntalohit, S.; Boonsong, S.; Nilsakul, J.; Srisamang, P.; Sartorius, B.; White, N.J.; Day, N.P.J.; Cooper, B.S.; et al. Excess Mortality Attributable to Hospital-Acquired Antimicrobial-Resistant Infections: A 2-Year Prospective Surveillance Study in Northeast Thailand. Open Forum Infect. Dis. 2022, 9, ofac305. [Google Scholar] [CrossRef]
- Zhang, Q.; Neidig, N.; Chu, T.-Y.; Divoky, C.; Carpenter, J.; Lee-Hsiao, C.; Threatt, H.; Sultana, R.; Bush, K. In Vitro Antibacterial Activity of Cefiderocol against Recent Multidrug-Resistant Carbapenem-Nonsusceptible Enterobacterales Isolates. Diagn. Microbiol. Infect. Dis. 2022, 103, 115651. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Esquivel, J.; Zelenitsky, S.; Lawrence, C.K.; Adam, H.J.; Golden, A.; Hink, R.; Berry, L.; Schweizer, F.; Zhanel, M.A.; et al. Omadacycline: A Novel Oral and Intravenous Aminomethylcycline Antibiotic Agent. Drugs 2020, 80, 285–313. [Google Scholar] [CrossRef]
- Abbey, T.; Vialichka, A.; Jurkovic, M.; Biagi, M.; Wenzler, E. Activity of Omadacycline Alone and in Combination against Carbapenem-Nonsusceptible Acinetobacter baumannii with Varying Minocycline Susceptibility. Microbiol. Spectr. 2022, 10, e00542-22. [Google Scholar] [CrossRef] [PubMed]
- Noel, A.R.; Attwood, M.; Bowker, K.E.; MacGowan, A.P. In Vitro Pharmacodynamics of Omadacycline against Escherichia coli and Acinetobacter baumannii. J. Antimicrob. Chemother. 2021, 76, 667–670. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.N.; Putra, V.; Maring, B.L.; Ozer, E.A.; Belfiore, G.M.; Rhodes, N.J. Effect of Omadacycline Alone and in Combination with Meropenem against Carbapenem-Resistant Acinetobacter baumannii Isolates. J. Glob. Antimicrob. Resist. 2022, 29, 147–149. [Google Scholar] [CrossRef]
- Gotfried, M.H.; Horn, K.; Garrity-Ryan, L.; Villano, S.; Tzanis, E.; Chitra, S.; Manley, A.; Tanaka, S.K.; Rodvold, K.A. Comparison of Omadacycline and Tigecycline Pharmacokinetics in the Plasma, Epithelial Lining Fluid, and Alveolar Cells of Healthy Adult Subjects. Antimicrob. Agents Chemother. 2017, 61, e01135-17. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Davis, A.P.; Mendes, R.E.; Serio, A.W.; Krause, K.M.; Flamm, R.K. In Vitro Activity of Plazomicin against Gram-Negative and Gram-Positive Isolates Collected from U.S. Hospitals and Comparative Activities of Aminoglycosides against Carbapenem-Resistant Enterobacteriaceae and Isolates Carrying Carbapenemase Genes. Antimicrob. Agents Chemother. 2018, 62, e00313-18. [Google Scholar] [CrossRef]
- Abd El-Aziz Gadallah, M.; El-sayed, W.M.; Hussien, M.Z.; Elheniedy, M.A.; Maxwell, S.Y. In-Vitro Activity of Plazomicin, Meropenem-Vaborbactam, and Omadacycline against Carbapenem-Resistant Gram-Negative Isolates in Egypt. J. Chemother. 2022, Online ahead of print, 1–14. [Google Scholar] [CrossRef]
- Serio, A.W.; Keepers, T.; Krause, K.M. Plazomicin Is Active Against Metallo-β-Lactamase-Producing Enterobacteriaceae. Open Forum Infect. Dis. 2019, 6, ofz123. [Google Scholar] [CrossRef] [PubMed]
- Arca-Suárez, J.; Rodiño-Janeiro, B.K.; Pérez, A.; Guijarro-Sánchez, P.; Vázquez-Ucha, J.C.; Cruz, F.; Gómez-Garrido, J.; Alioto, T.S.; Álvarez-Tejado, M.; Gut, M.; et al. Emergence of 16S RRNA Methyltransferases among Carbapenemase-Producing Enterobacterales in Spain Studied by Whole-Genome Sequencing. Int. J. Antimicrob. Agents 2022, 59, 106456. [Google Scholar] [CrossRef]
- Blanchard, L.S.; Van Belkum, A.; Dechaume, D.; Armstrong, T.P.; Emery, C.L.; Ying, Y.X.; Kresken, M.; Pompilio, M.; Halimi, D.; Zambardi, G. Multicenter Clinical Evaluation of ETEST Plazomicin (PLZ) for Susceptibility Testing of Enterobacterales. J. Clin. Microbiol. 2022, 60, e01831-21. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.M.E.; Cloutier, D.J.; Komirenko, A.S.; Cebrik, D.S.; Krause, K.M.; Keepers, T.R.; Connolly, L.E.; Miller, L.G.; Friedland, I.; Dwyer, J.P. Once-Daily Plazomicin for Complicated Urinary Tract Infections. N. Engl. J. Med. 2019, 380, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Liang, B.; Zhang, G.; Wang, J.; Zhu, M.; Cai, Y. Efficacy and Safety of Plazomicin in the Treatment of Enterobacterales Infections: A Meta-Analysis of Randomized Controlled Trials. Open Forum Infect. Dis. 2022, 9, ofac429. [Google Scholar] [CrossRef]
- Mauri, C.; Maraolo, A.E.; Di Bella, S.; Luzzaro, F.; Principe, L. The Revival of Aztreonam in Combination with Avibactam against Metallo-β-Lactamase-Producing Gram-Negatives: A Systematic Review of In Vitro Studies and Clinical Cases. Antibiotics 2021, 10, 1012. [Google Scholar] [CrossRef]
- Le Terrier, C.; Nordmann, P.; Poirel, L. In Vitro Activity of Aztreonam in Combination with Newly Developed β-Lactamase Inhibitors against MDR Enterobacterales and Pseudomonas aeruginosa Producing Metallo-β-Lactamases. J. Antimicrob. Chemother. 2022, 78, 101–107. [Google Scholar] [CrossRef]
- Emeraud, C.; Escaut, L.; Boucly, A.; Fortineau, N.; Bonnin, R.A.; Naas, T.; Dortet, L. Aztreonam plus Clavulanate, Tazobactam, or Avibactam for Treatment of Infections Caused by Metallo-β-Lactamase-Producing Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2019, 63, e00010-19. [Google Scholar] [CrossRef]
- Sader, H.S.; Mendes, R.E.; Arends, S.J.R.; Carvalhaes, C.G.; Castanheira, M. Antimicrobial Activities of Aztreonam-Avibactam and Comparator Agents Tested against Enterobacterales from European Hospitals Analysed by Geographic Region and Infection Type (2019–2020). Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Abbey, T.; Biagi, M.; Wenzler, E. Activity of Aztreonam in Combination with Ceftazidime–Avibactam against Serine- and Metallo-β-Lactamase–Producing Pseudomonas aeruginosa. Diagn. Microbiol. Infect. Dis. 2021, 99, 115227. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Xiong, L.; Luo, Q.; Chen, Y.; Ji, J.; Ying, C.; Liu, Z.; Xiao, Y. In Vitro Activity Comparison of Ceftazidime–Avibactam and Aztreonam–Avibactam Against Bloodstream Infections With Carbapenem-Resistant Organisms in China. Front. Cell. Infect. Microbiol. 2021, 11, 780365. [Google Scholar] [CrossRef]
- Ma, K.; Feng, Y.; Zong, Z. Aztreonam-Avibactam May Not Replace Ceftazidime/Avibactam: The Case of KPC-21 Carbapenemase and Penicillin-Binding Protein 3 with Four Extra Amino Acids. Int. J. Antimicrob. Agents 2022, 60, 106642. [Google Scholar] [CrossRef]
- Smith, N.M.; Boissonneault, K.R.; Chen, L.; Petraitis, V.; Petraitiene, R.; Tao, X.; Zhou, J.; Lang, Y.; Kavaliauskas, P.; Bulman, Z.P.; et al. Mechanistic Insights to Combating NDM- and CTX-M-Coproducing Klebsiella pneumoniae by Targeting Cell Wall Synthesis and Outer Membrane Integrity. Antimicrob. Agents Chemother. 2022, 66, e00527-22. [Google Scholar] [CrossRef] [PubMed]
- Lodise, T.P.; O’Donnell, J.N.; Balevic, S.; Liu, X.; Gu, K.; George, J.; Raja, S.; Guptill, J.T.; Zaharoff, S.; Schwager, N.; et al. Pharmacokinetics of Ceftazidime-Avibactam in Combination with Aztreonam (COMBINE) in a Phase 1, Open-Label Study of Healthy Adults. Antimicrob. Agents Chemother. 2022, 66, e00936-22. [Google Scholar] [CrossRef]
- Cornely, O.A.; Cisneros, J.M.; Torre-Cisneros, J.; Rodríguez-Hernández, M.J.; Tallón-Aguilar, L.; Calbo, E.; Horcajada, J.P.; Queckenberg, C.; Zettelmeyer, U.; Arenz, D.; et al. Pharmacokinetics and Safety of Aztreonam/Avibactam for the Treatment of Complicated Intra-Abdominal Infections in Hospitalized Adults: Results from the REJUVENATE Study. J. Antimicrob. Chemother. 2020, 75, 618–627. [Google Scholar] [CrossRef]
- Pfizer. A Prospective, Randomized, Open-Label, Comparative Study to Assess the Efficacy, Safety and Tolerability of Aztreonam-Avibactam (Atm-Avi) and Best Available Therapy for the Treatment of Serious Infections Due to Multi-Drug Resistant Gram-Negative Bacteria Producing Metallo-Β-Lactamase (Mbl). Available online: clinicaltrials.gov/ct2/show/NCT03580044 (accessed on 26 March 2023).
- Tselepis, L.; Langley, G.W.; Aboklaish, A.F.; Widlake, E.; Jackson, D.E.; Walsh, T.R.; Schofield, C.J.; Brem, J.; Tyrrell, J.M. In Vitro Efficacy of Imipenem-Relebactam and Cefepime-AAI101 against a Global Collection of ESBL-Positive and Carbapenemase-Producing Enterobacteriaceae. Int. J. Antimicrob. Agents 2020, 56, 105925. [Google Scholar] [CrossRef]
- Vázquez-Ucha, J.C.; Lasarte-Monterrubio, C.; Guijarro-Sánchez, P.; Oviaño, M.; Álvarez-Fraga, L.; Alonso-García, I.; Arca-Suárez, J.; Bou, G.; Beceiro, A. Assessment of Activity and Resistance Mechanisms to Cefepime in Combination with the Novel β-Lactamase Inhibitors Zidebactam, Taniborbactam, and Enmetazobactam against a Multicenter Collection of Carbapenemase-Producing Enterobacterales. Antimicrob. Agents Chemother. 2022, 66, e01676-21. [Google Scholar] [CrossRef]
- Morrissey, I.; Magnet, S.; Hawser, S.; Shapiro, S.; Knechtle, P. In Vitro Activity of Cefepime-Enmetazobactam against Gram-Negative Isolates Collected from U.S. and European Hospitals during 2014–2015. Antimicrob. Agents Chemother. 2019, 63, e00514-19. [Google Scholar] [CrossRef]
- Papp-Wallace, K.M.; Bethel, C.R.; Caillon, J.; Barnes, M.D.; Potel, G.; Bajaksouzian, S.; Rutter, J.D.; Reghal, A.; Shapiro, S.; Taracila, M.A.; et al. Beyond Piperacillin-Tazobactam: Cefepime and AAI101 as a Potent β-Lactam−β-Lactamase Inhibitor Combination. Antimicrob. Agents Chemother. 2019, 63, e00105-19. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, F.; Odedra, R.; Sordello, S.; Cardin, R.; Franzoni, S.; Charrier, C.; Belley, A.; Warn, P.; Machacek, M.; Knechtle, P. Pharmacokinetics-Pharmacodynamics of Enmetazobactam Combined with Cefepime in a Neutropenic Murine Thigh Infection Model. Antimicrob. Agents Chemother. 2020, 64, e00078-20. [Google Scholar] [CrossRef]
- Das, S.; Fitzgerald, R.; Ullah, A.; Bula, M.; Collins, A.M.; Mitsi, E.; Reine, J.; Hill, H.; Rylance, J.; Ferreira, D.M.; et al. Intrapulmonary Pharmacokinetics of Cefepime and Enmetazobactam in Healthy Volunteers: Towards New Treatments for Nosocomial Pneumonia. Antimicrob. Agents Chemother. 2020, 65, e01468-20. [Google Scholar] [CrossRef] [PubMed]
- Allecra. Phase 1, Open-Label, Parallel Group, Single-Dose Study to Evaluate the Pharmacokinetics, Safety and Tolerability of AAI101 with Cefepime in Subjects with Varying Degrees of Renal Function. Available online: clinicaltrials.gov/ct2/show/NCT03680352 (accessed on 26 March 2023).
- Johnson, A.; McEntee, L.; Farrington, N.; Kolamunnage-Dona, R.; Franzoni, S.; Vezzelli, A.; Massimiliano, M.; Knechtle, P.; Belley, A.; Dane, A.; et al. Pharmacodynamics of Cefepime Combined with the Novel Extended-Spectrum-β-Lactamase (ESBL) Inhibitor Enmetazobactam for Murine Pneumonia Caused by ESBL-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2020, 64, e00180-20. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Belley, A.; Barth, P.; Lahlou, O.; Knechtle, P.; Motta, P.; Velicitat, P. Effect of Cefepime/Enmetazobactam vs. Piperacillin/Tazobactam on Clinical Cure and Microbiological Eradication in Patients with Complicated Urinary Tract Infection or Acute Pyelonephritis: A Randomized Clinical Trial. JAMA 2022, 328, 1304. [Google Scholar] [CrossRef] [PubMed]
- More Cefepime. Available online: https://www.allecra.com/more-cefepime (accessed on 4 December 2022).
- Isler, B.; Harris, P.; Stewart, A.G.; Paterson, D.L. An Update on Cefepime and Its Future Role in Combination with Novel β-Lactamase Inhibitors for MDR Enterobacterales and Pseudomonas aeruginosa—Authors’ Response. J. Antimicrob. Chemother. 2021, 76, 3327–3328. [Google Scholar] [CrossRef]
- Thomson, K.; AbdelGhani, S.; Snyder, J.; Thomson, G. Activity of Cefepime-Zidebactam against Multidrug-Resistant (MDR) Gram-Negative Pathogens. Antibiotics 2019, 8, 32. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y.; Yin, D.; Zheng, Y.; Wu, S.; Zhu, D.; Hu, F. In Vitro Activity of Cefepime-Zidebactam, Ceftazidime-Avibactam, and Other Comparators against Clinical Isolates of Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii: Results from China Antimicrobial Surveillance Network (CHINET) in 2018. Antimicrob. Agents Chemother. 2020, 65, e01726-20. [Google Scholar] [CrossRef]
- Guo, Y.; Han, R.; Jiang, B.; Ding, L.; Yang, F.; Zheng, B.; Yang, Y.; Wu, S.; Yin, D.; Zhu, D.; et al. In Vitro Activity of New β-Lactam–β-Lactamase Inhibitor Combinations and Comparators against Clinical Isolates of Gram-Negative Bacilli: Results from the China Antimicrobial Surveillance Network (CHINET) in 2019. Microbiol. Spectr. 2022, 10, e01854-22. [Google Scholar] [CrossRef]
- Khan, Z.; Iregui, A.; Landman, D.; Quale, J. Activity of Cefepime/Zidebactam (WCK 5222) against Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii Endemic to New York City Medical Centres. J. Antimicrob. Chemother. 2019, 74, 2938–2942. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Mendes, R.E.; Duncan, L.R.; Carvalhaes, C.G.; Castanheria, M. Antimicrobial Activity of Cefepime/Zidebactam (WCK 5222), a β-Lactam/β-Lactam Enhancer Combination, against Clinical Isolates of Gram-Negative Bacteria Collected Worldwide (2018–19). J. Antimicrob. Chemother. 2022, 77, 2642–2649. [Google Scholar] [CrossRef] [PubMed]
- Lepak, A.J.; Zhao, M.; Andes, D.R. WCK 5222 (Cefepime-Zidebactam) Pharmacodynamic Target Analysis against Metallo-β-Lactamase-Producing Enterobacteriaceae in the Neutropenic Mouse Pneumonia Model. Antimicrob. Agents Chemother. 2019, 63, e01648-19. [Google Scholar] [CrossRef]
- Preston, R.A.; Mamikonyan, G.; DeGraff, S.; Chiou, J.; Kemper, C.J.; Xu, A.; Mastim, M.; Yeole, R.; Chavan, R.; Patel, A.; et al. Single-Center Evaluation of the Pharmacokinetics of WCK 5222 (Cefepime-Zidebactam Combination) in Subjects with Renal Impairment. Antimicrob. Agents Chemother. 2019, 63, e01484-18. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, S.S.; Periasamy, H.; Takalkar, S.S.; Palwe, S.R.; Khande, H.N.; Patel, M.V. The Novel β-Lactam Enhancer Zidebactam Augments the In Vivo Pharmacodynamic Activity of Cefepime in a Neutropenic Mouse Lung Acinetobacter baumannii Infection Model. Antimicrob. Agents Chemother. 2019, 63, e02146-18. [Google Scholar] [CrossRef]
- Avery, L.M.; Abdelraouf, K.; Nicolau, D.P. Assessment of the In Vivo Efficacy of WCK 5222 (Cefepime-Zidebactam) against Carbapenem-Resistant Acinetobacter baumannii in the Neutropenic Murine Lung Infection Model. Antimicrob. Agents Chemother. 2018, 62, e00948-18. [Google Scholar] [CrossRef]
- Monogue, M.L.; Tabor-Rennie, J.; Abdelraouf, K.; Nicolau, D.P. In Vivo Efficacy of WCK 5222 (Cefepime-Zidebactam) against Multidrug-Resistant Pseudomonas aeruginosa in the Neutropenic Murine Thigh Infection Model. Antimicrob. Agents Chemother. 2019, 63, e00233-19. [Google Scholar] [CrossRef] [PubMed]
- Wockhardt. A Phase 3, Randomized, Double-Blind, Multicenter, Comparative Study to Determine the Efficacy and Safety of Cefepime-Zidebactam vs. Meropenem in the Treatment of Complicated Urinary Tract Infection or Acute Pyelonephritis in Adults. Available online: clinicaltrials.gov/ct2/show/NCT04979806 (accessed on 26 March 2023).
- Piccirilli, A.; Segatore, B.; Brisdelli, F.; Amicosante, G.; Perilli, M. Potent Inhibitory Activity of Taniborbactam towards NDM-1 and NDM-1Q119X Mutants, and in Vitro Activity of Cefepime/Taniborbactam against MBLs Producing Enterobacterales. Int. J. Antimicrob. Agents 2021, 57, 106228. [Google Scholar] [CrossRef] [PubMed]
- Hernández-García, M.; García-Castillo, M.; Ruiz-Garbajosa, P.; Bou, G.; Siller-Ruiz, M.; Pitart, C.; Gracia-Ahufinger, I.; Mulet, X.; Pascual, Á.; Tormo, N.; et al. In Vitro Activity of Cefepime-Taniborbactam against Carbapenemase-Producing Enterobaowcterales and Pseudomonas aeruginosa Isolates Recovered in Spain. Antimicrob. Agents Chemother. 2022, 66, e02161-21. [Google Scholar] [CrossRef]
- Satapoomin, N.; Dulyayangkul, P.; Avison, M.B. Klebsiella pneumoniae Mutants Resistant to Ceftazidime-Avibactam Plus Aztreonam, Imipenem-Relebactam, Meropenem-Vaborbactam, and Cefepime-Taniborbactam. Antimicrob. Agents Chemother. 2022, 66, e02179-21. [Google Scholar] [CrossRef]
- Abdelraouf, K.; Almarzoky Abuhussain, S.; Nicolau, D.P. In Vivo Pharmacodynamics of New-Generation β-Lactamase Inhibitor Taniborbactam (Formerly VNRX-5133) in Combination with Cefepime against Serine-β-Lactamase-Producing Gram-Negative Bacteria. J. Antimicrob. Chemother. 2020, 75, 3601–3610. [Google Scholar] [CrossRef]
- Dowell, J.A.; Marbury, T.C.; Smith, W.B.; Henkel, T. Safety and Pharmacokinetics of Taniborbactam (VNRX-5133) with Cefepime in Subjects with Various Degrees of Renal Impairment. Antimicrob. Agents Chemother. 2022, 66, e00253-22. [Google Scholar] [CrossRef]
- Lasko, M.J.; Nicolau, D.P.; Asempa, T.E. Clinical Exposure–Response Relationship of Cefepime/Taniborbactam against Gram-Negative Organisms in the Murine Complicated Urinary Tract Infection Model. J. Antimicrob. Chemother. 2022, 77, 443–447. [Google Scholar] [CrossRef] [PubMed]
- NCT03894046. Available online: https://www.google.com/search?q=NCT03894046&oq=NCT03894046&aqs=chrome..69i57j0i546l3j0i30i546j0i546.1576j0j15&sourceid=chrome&ie=UTF-8 (accessed on 4 December 2022).
- UTIs: Why Did You Have to Go and Make Things so Complicated? Available online: https://www.contagionlive.com/view/why-did-you-have-to-go-and-make-things-so-complicated- (accessed on 4 December 2022).
- Barnes, M.D.; Kumar, V.; Bethel, C.R.; Moussa, S.H.; O’Donnell, J.; Rutter, J.D.; Good, C.E.; Hujer, K.M.; Hujer, A.M.; Marshall, S.H.; et al. Targeting Multidrug-Resistant Acinetobacter spp.: Sulbactam and the Diazabicyclooctenone β-Lactamase Inhibitor ETX2514 as a Novel Therapeutic Agent. mBio 2019, 10, e00159-19. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Hackel, M.A.; McLeod, S.M.; Miller, A.A. In Vitro Activity of Sulbactam-Durlobactam against Global Isolates of Acinetobacter baumannii-Calcoaceticus Complex Collected from 2016 to 2021. Antimicrob. Agents Chemother. 2022, 66, e00781-22. [Google Scholar] [CrossRef] [PubMed]
- Segatore, B.; Piccirilli, A.; Cherubini, S.; Principe, L.; Alloggia, G.; Mezzatesta, M.L.; Salmeri, M.; Di Bella, S.; Migliavacca, R.; Piazza, A.; et al. In Vitro Activity of Sulbactam–Durlobactam against Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates: A Multicentre Report from Italy. Antibiotics 2022, 11, 1136. [Google Scholar] [CrossRef] [PubMed]
- Petropoulou, D.; Siopi, M.; Vourli, S.; Pournaras, S. Activity of Sulbactam-Durlobactam and Comparators Against a National Collection of Carbapenem-Resistant Acinetobacter baumannii Isolates from Greece. Front. Cell. Infect. Microbiol. 2022, 11, 814530. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.; Preston, R.A.; Mamikonyan, G.; Stone, E.; Isaacs, R. Pharmacokinetics, Safety, and Tolerability of Intravenous Durlobactam and Sulbactam in Subjects with Renal Impairment and Healthy Matched Control Subjects. Antimicrob. Agents Chemother. 2019, 63, e00794-19. [Google Scholar] [CrossRef]
- Rodvold, K.A.; Gotfried, M.H.; Isaacs, R.D.; O’Donnell, J.P.; Stone, E. Plasma and Intrapulmonary Concentrations of ETX2514 and Sulbactam Following Intravenous Administration of ETX2514SUL to Healthy Adult Subjects. Antimicrob. Agents Chemother. 2018, 62, e01089-18. [Google Scholar] [CrossRef]
- Sagan, O.; Yakubsevitch, R.; Yanev, K.; Fomkin, R.; Stone, E.; Hines, D.; O’Donnell, J.; Miller, A.; Isaacs, R.; Srinivasan, S. Pharmacokinetics and Tolerability of Intravenous Sulbactam-Durlobactam with Imipenem-Cilastatin in Hospitalized Adults with Complicated Urinary Tract Infections, Including Acute Pyelonephritis. Antimicrob. Agents Chemother. 2020, 64, e01506-19. [Google Scholar] [CrossRef]
- Entasis Therapeutics Announces Positive Topline Results for Sulbactam-Durlobactam (SUL-DUR) from Phase 3 ATTACK Trial|Entasis Therapeutics Holdings Inc. Available online: https://investors.entasistx.com/news-releases/news-release-details/entasis-therapeutics-announces-positive-topline-results (accessed on 4 December 2022).
- Zhanel, G.G.; Pozdirca, M.; Golden, A.R.; Lawrence, C.K.; Zelenitsky, S.; Berry, L.; Schweizer, F.; Bay, D.; Adam, H.; Zhanel, M.A.; et al. Sulopenem: An Intravenous and Oral Penem for the Treatment of Urinary Tract Infections Due to Multidrug-Resistant Bacteria. Drugs 2022, 82, 533–557. [Google Scholar] [CrossRef]
- Walkty, A.J.; Karlowsky, J.A.; Baxter, M.R.; Lagace-Wiens, P.R.S.; Adam, H.J.; Zhanel, G.G. In Vitro Activity of Sulopenem against 1880 Bacterial Pathogens Isolated from Canadian Patients with Urinary Tract Infections (CANWARD, 2014–2021). J. Antimicrob. Chemother. 2022, 77, 3414–3420. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Adam, H.J.; Baxter, M.R.; Denisuik, A.J.; Lagacé-Wiens, P.R.S.; Walkty, A.J.; Puttagunta, S.; Dunne, M.W.; Zhanel, G.G. In Vitro Activity of Sulopenem, an Oral Penem, against Urinary Isolates of Escherichia coli. Antimicrob. Agents Chemother. 2019, 63, e01832-18. [Google Scholar] [CrossRef]
- Dunne, M.W.; Aronin, S.I.; Das, A.F.; Akinapelli, K.; Zelasky, M.T.; Puttagunta, S.; Boucher, H.W. Sulopenem or Ciprofloxacin for the Treatment of Uncomplicated Urinary Tract Infections in Women: A Phase 3, Randomized Trial. Clin. Infect. Dis. 2022, 76, 66–77. [Google Scholar] [CrossRef]
- NCT05584657. Available online: https://www.google.com/search?q=NCT05584657&oq=NCT05584657&aqs=chrome..69i57j0i546l4.1631j0j15&sourceid=chrome&ie=UTF-8 (accessed on 4 December 2022).
- Iterum Therapeutics Announces Topline Results from Phase 3 Clinical Trial of Oral and IV Sulopenem for the Treatment of Complicated Intra-Abdominal Infections-Drugs.Com MedNews. Available online: https://www.drugs.com/clinical_trials/iterum-therapeutics-announces-topline-results-phase-3-clinical-trial-oral-iv-sulopenem-complicated-18400.html (accessed on 4 December 2022).
- Sun, Z.; Su, L.; Cotroneo, N.; Critchley, I.; Pucci, M.; Jain, A.; Palzkill, T. Evaluation of Tebipenem Hydrolysis by β-Lactamases Prevalent in Complicated Urinary Tract Infections. Antimicrob. Agents Chemother. 2022, 66, e02396-21. [Google Scholar] [CrossRef]
- Cotroneo, N.; Rubio, A.; Critchley, I.A.; Pillar, C.; Pucci, M.J. In Vitro and In Vivo Characterization of Tebipenem, an Oral Carbapenem. Antimicrob. Agents Chemother. 2020, 64, e02240-19. [Google Scholar] [CrossRef] [PubMed]
- Rodvold, K.A.; Gotfried, M.H.; Gupta, V.; Ek, A.; Srivastava, P.; Talley, A.; Bruss, J. Plasma and Intrapulmonary Concentrations of Tebipenem Following Oral Administration of Tebipenem Pivoxil Hydrobromide to Healthy Adult Subjects. Antimicrob. Agents Chemother. 2022, 66, e00590-22. [Google Scholar] [CrossRef] [PubMed]
- McEntee, L.; Johnson, A.; Farrington, N.; Unsworth, J.; Dane, A.; Jain, A.; Cotroneo, N.; Critchley, I.; Melnick, D.; Parr, T.; et al. Pharmacodynamics of Tebipenem: New Options for Oral Treatment of Multidrug-Resistant Gram-Negative Infections. Antimicrob. Agents Chemother. 2019, 63, e00603-19. [Google Scholar] [CrossRef]
- Patel, G.; Rodvold, K.A.; Gupta, V.K.; Bruss, J.; Gasink, L.; Bajraktari, F.; Lei, Y.; Jain, A.; Srivastava, P.; Talley, A.K. Pharmacokinetics of Oral Tebipenem Pivoxil Hydrobromide in Subjects with Various Degrees of Renal Impairment. Antimicrob. Agents Chemother. 2022, 66, e02407-21. [Google Scholar] [CrossRef]
- Eckburg, P.B.; Muir, L.; Critchley, I.A.; Walpole, S.; Kwak, H.; Phelan, A.-M.; Moore, G.; Jain, A.; Keutzer, T.; Dane, A.; et al. Oral Tebipenem Pivoxil Hydrobromide in Complicated Urinary Tract Infection. N. Engl. J. Med. 2022, 386, 1327–1338. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Xue, F.; Kang, Z.; Zhong, W.; Kuan, I.H.; Yang, X.; Zhu, X.; Li, Y.; Lv, Y. Model-Informed Drug Development, Pharmacokinetic/Pharmacodynamic Cutoff Value Determination, and Antibacterial Efficacy of Benapenem against Enterobacteriaceae. Antimicrob. Agents Chemother. 2020, 64, e01751-19. [Google Scholar] [CrossRef]
- Zhao, C.-Y.; Lv, Y.; Zhu, Y.; Wei, M.-J.; Liu, M.-Y.; Ji, X.-W.; Kang, Z.-S.; Xia, Y.-H.; Tian, J.-H.; Ma, Y.; et al. A First-in-Human Safety, Tolerability, and Pharmacokinetics Study of Benapenem in Healthy Chinese Volunteers. Antimicrob. Agents Chemother. 2019, 63, e02188-18. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, M.; Chen, Y.; Ren, H.; Zhang, H.; Yu, C.; Lu, J.; You, L.; Yu, J.; Liang, H.; et al. Pharmacokinetics of Benapenem for Injection in Subjects with Mild to Moderate Renal Impairment. Eur. J. Clin. Pharmacol. 2022, 78, 1079–1086. [Google Scholar] [CrossRef]
- Sihuan Pharmaceutical Holdings Group Ltd. A Phase 2, Randomized, Double-Blind, Positive-Control, Multicenter, Prospective Study to Assess Efficacy and Safety of Intravenous Benapenem in Patients with Complicated Urinary Tract Infection (CUTI) or Acute Pyelonephritis (AP). Available online: clinicaltrials.gov/ct2/show/NCT04505683 (accessed on 23 March 2023).
- Timsit, J.-F.; Wicky, P.-H.; de Montmollin, E. Treatment of Severe Infections Due to Metallo-Betalactamases Enterobacterales in Critically Ill Patients. Antibiotics 2022, 11, 144. [Google Scholar] [CrossRef]
- Belati, A.; Bavaro, D.F.; Diella, L.; De Gennaro, N.; Di Gennaro, F.; Saracino, A. Meropenem/Vaborbactam Plus Aztreonam as a Possible Treatment Strategy for Bloodstream Infections Caused by Ceftazidime/Avibactam-Resistant Klebsiella pneumoniae: A Retrospective Case Series and Literature Review. Antibiotics 2022, 11, 373. [Google Scholar] [CrossRef]
- Pogue, J.M.; Bonomo, R.A.; Kaye, K.S. Ceftazidime/Avibactam, Meropenem/Vaborbactam, or Both? Clinical and Formulary Considerations. Clin. Infect. Dis. 2019, 68, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Findlay, J.; Rens, C.; Poirel, L.; Nordmann, P. In Vitro Mechanisms of Resistance Development to Imipenem-Relebactam in KPC-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2022, 66, e00918-22. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.E.; Holmes, A.; Peck, R.; Livermore, D.M.; Hope, W. OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob. Agents Chemother. 2022, 66, e00216-22. [Google Scholar] [CrossRef]
- Tamma, P.D.; Bergman, Y.; Jacobs, E.B.; Lee, J.H.; Lewis, S.; Cosgrove, S.E.; Simner, P.J. For the Centers for Disease Control and Prevention Epicenters Program Comparing the Activity of Novel Antibiotic Agents against Carbapenem-Resistant Enterobacterales Clinical Isolates. Infect. Control Hosp. Epidemiol. 2022; Ahead of print. [Google Scholar] [CrossRef]
- Nulsopapon, P.; Pongchaidecha, M.; Nasomsong, W.; Polwichai, P.; Suphankong, S.; Sirichote, P.; Chaisomboonpan, S.; Santimaleeworagun, W. Antimicrobial Activity Profiles and Potential Antimicrobial Regimens against Carbapenem-Resistant Enterobacterales Isolated from Multi-Centers in Western Thailand. Antibiotics 2022, 11, 355. [Google Scholar] [CrossRef]
- Papadimitriou-Olivgeris, M.; Bartzavali, C.; Lambropoulou, A.; Solomou, A.; Tsiata, E.; Anastassiou, E.D.; Fligou, F.; Marangos, M.; Spiliopoulou, I.; Christofidou, M. Reversal of Carbapenemase-Producing Klebsiella pneumoniae Epidemiology from BlaKPC- to BlaVIM-Harbouring Isolates in a Greek ICU after Introduction of Ceftazidime/Avibactam. J. Antimicrob. Chemother. 2019, 74, 2051–2054. [Google Scholar] [CrossRef]
- Sadek, M.; Le Guern, R.; Kipnis, E.; Gosset, P.; Poirel, L.; Dessein, R.; Nordmann, P. Progressive in Vivo Development of Resistance to Cefiderocol in Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 42, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Luterbach, C.L.; Qiu, H.; Hanafin, P.O.; Sharma, R.; Piscitelli, J.; Lin, F.-C.; Ilomaki, J.; Cober, E.; Salata, R.A.; Kalayjian, R.C.; et al. A Systems-Based Analysis of Mono- and Combination Therapy for Carbapenem-Resistant Klebsiella pneumoniae Bloodstream Infections. Antimicrob. Agents Chemother. 2022, 66, e00591-22. [Google Scholar] [CrossRef] [PubMed]
- Danjean, M.; Hobson, C.A.; Gits-Muselli, M.; Courroux, C.; Monjault, A.; Bonacorsi, S.; Birgy, A. Evaluation of the Inoculum Effect of New Antibiotics against Carbapenem-Resistant Enterobacterales. Clin. Microbiol. Infect. 2022, 28, 1503.e1–1503.e3. [Google Scholar] [CrossRef]
- PubChem Open Chemistry Database at the National Institutes of Health (NIH), U.S. National Library of Medicine. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 7 January 2021).
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; A Shoemaker, B.; A Thiessen, P.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2022, 51, D1373–D1380. [Google Scholar] [CrossRef] [PubMed]
Drug | Drug Class | Bacterial Spectrum | Drug Stable to Beta-Lactamase Type | Approval Year/Indication in Adults | Recommendations | Route//Dosage | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
KPC | MBL | AmpC | OXA | ESBL | FDA | EMA | IDSA | ESCMID | ||||
Cefiderocol | BL | GNB; not GPB and anaerobes | yes | yes | yes | yes | yes | 2019/cUTI, HAP/VAP | 2020/aerobic GNB when limited treatment options | CRE: cUTI | CRE #, CRAB, CRPA * | IV//2 g TDS (2 g QDS if augmented renal clearance) |
Meropenem/ vaborbactam | CP/BLI | GNB, GPB, anaerobes; not MRSA, VRE; VARB cannot enhance activity against A. baumannii and Pseudomonas aeruginosa | yes § | no | yes | no | yes | 2017/cUTI | 2018/cUTI, cIAI, HAP/VAP, when limited options | CRE: cUTI, infections elsewhere | CRE | IV//4 g TDS |
Imipenem/ cilastatin/ relebactam | CP/ BLI | GNB, GPB, anaerobes; not MRSA, VRE; RELE enhances activity against P. aeruginosa, contrary to A. baumannii; not Morganellaceae | yes | no | yes | no | yes | 2019/cUTI and cIAI with limited options, HAP, VAP | 2021/HAP/VAP, BSI possibly secondary to pneumonia, when limited options | CRE: cUTI, infections elsewhere CRPA: cUTI | CRPA * | IV//1.25 g QDS |
Eravacycline | TC | GNB, GPB, anaerobes; MRSA, VRE active; possibly against A. baumannii; not P. aeruginosa; less active against Morganellaceae | - | - | - | - | - | 2018/cIAI | 2018/cIAI | - | CRAB: No data | IV//1 mg/kg BD |
Omadacycline | TC | GNB, atypical, GPB, anaerobes; MRSA, VRE active; may display activity against A. baumannii; not against P.aeruginosa and Morganellaceae | - | - | - | - | - | 2018/CAP, ABSSSI | - | - | CRAB: No data | IV//1st day 200 mg, later 100 mg OD; oral//450 mg for 2 days followed by 300 mg |
Plazomicin | AG | Aerobic GNB, ESBL-E, CRE (including MBL); stable against some AG-resistant Enterobacterales | - | - | - | - | - | 2018/cUTI | No | - | CRE: cUTI | IV//15 mg/Kg/day |
Drug | Drug Class | Bacterial Pectrum | Drug Stable to Beta-Lactamase Type | Potential Indications | Ongoing Trials (Phase 3) | Route//Dosage | Comment | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
KPC | MBL | AmpC | OXA | ESBL | |||||||
Aztreonam/avibactam | MB/BLI | GNB; less effective against MBL-producing P. aeruginosa | yes | yes | yes | yes | yes | cIAI, HAP, VAP, cUTI, BSI | NCT03580044 | IV//500/167 mg loading dose, 1500/500 mg QDS | Combination that covers both serine and MBL carbapenemases |
Cefepime/ enmetazobactam | BL/BLI | GNB, GPB; ineffective against A. baumannii, CRE, and MRSA | no | no | yes/no | no | yes | cUTI, HAP, VAP | NCT03687255 | IV//2 g/500 mg TDS | Excellent class A, anti-ESBL activity; Potential carbapenem-sparing drug; Penetrates ELF easily |
Cefepime/ zidebactam | BL/BLI | GPB (no MRSA); GNB (not A. baumannii) | yes | yes | yes | yes | yes | cUTI | NCT04979806 | IV//2 g/1 g TDS | Phase 3 study recruiting patients |
Cefepime/ taniborbactam | BL/BLI | GPB (not MRSA), GNB, (not A. baumannii) | yes | yes | yes | yes | yes | cUTI | NCT03840148 | IV//2 g/0.5 g TDS | Preliminary results from phase 3 cUTI study: comparable efficacy to MER |
Sulbactam/ durlobactam | BL/BLI | GNB, particularly Acinetobacter spp.; active against Burkholderia cepacia; not P. aeruginosa | yes | no | yes | yes | yes | Acinetobacter infections | NCT03894046 | 1 g/1 g QDS | Phase 3, pneumonia and BSI study. Better clinical cure and less nephrotoxicity than colistin (preliminary results) |
Sulopenem | CP | GPB (not MRSA); GNB (not P.aeruginosa, Stenotrophomonas maltophilia, B. cepacia) | no | no | yes | no | yes | cUTI, uUTI, cIAI | NCT03357614, NCT03358576 | Oral//sulopenem etzadroxil 500 mg/probenecid 500 mg BD; IV//1000 mg OD | Phase 3 trial of uncomplicated UTI, recruiting patients |
Tebipenem | CP | GPB (not MRSA); GNB (not P.aeruginosa, A. baumannii) | no | no | yes | no | yes | cUTI | NCT03788967 | Oral//600 mg TDS | Excellent anti-ESBL activity |
Benapenem | CP | Like other CPs | no | no | yes | no | yes | cUTI | NCT04505683 | IV//1000 mg OD | Excellent anti-ESBL activity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karvouniaris, M.; Almyroudi, M.P.; Abdul-Aziz, M.H.; Blot, S.; Paramythiotou, E.; Tsigou, E.; Koulenti, D. Novel Antimicrobial Agents for Gram-Negative Pathogens. Antibiotics 2023, 12, 761. https://doi.org/10.3390/antibiotics12040761
Karvouniaris M, Almyroudi MP, Abdul-Aziz MH, Blot S, Paramythiotou E, Tsigou E, Koulenti D. Novel Antimicrobial Agents for Gram-Negative Pathogens. Antibiotics. 2023; 12(4):761. https://doi.org/10.3390/antibiotics12040761
Chicago/Turabian StyleKarvouniaris, Marios, Maria Panagiota Almyroudi, Mohd Hafiz Abdul-Aziz, Stijn Blot, Elisabeth Paramythiotou, Evdoxia Tsigou, and Despoina Koulenti. 2023. "Novel Antimicrobial Agents for Gram-Negative Pathogens" Antibiotics 12, no. 4: 761. https://doi.org/10.3390/antibiotics12040761
APA StyleKarvouniaris, M., Almyroudi, M. P., Abdul-Aziz, M. H., Blot, S., Paramythiotou, E., Tsigou, E., & Koulenti, D. (2023). Novel Antimicrobial Agents for Gram-Negative Pathogens. Antibiotics, 12(4), 761. https://doi.org/10.3390/antibiotics12040761