Effectiveness of Antimicrobial Lock Therapy for the Treatment of Catheter-Related and Central-Line-Associated Bloodstream Infections in Children: A Single Center Retrospective Study
Abstract
:1. Introduction
2. Results
Outcome Analysis
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Definitions
4.3. Lock Therapy Procedure
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ziegler, M.J.; Pellegrini, D.C.; Safdar, N. Attributable mortality of central line associated bloodstream infection: Systematic review and meta-analysis. Infection 2015, 43, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Ford, W.J.; Bundy, D.G.; Oyeku, S.; Heo, M.; Saiman, L.; Rosenberg, R.E.; De La Mora, P.; Rabin, B.; Zachariah, P.; Mirhaji, P.; et al. Central Venous Catheter Salvage in Ambulatory Central Line–Associated Bloodstream Infections. Pediatrics 2021, 148, e2020042069. [Google Scholar] [CrossRef] [PubMed]
- Mermel, L.A.; Allon, M.; Bouza, E.; Craven, D.E.; Flynn, P.; O’Grady, N.P.; Raad, I.I.; Rijnders, B.J.A.; Sherertz, R.J.; Warren, D.K. Clinical Practice Guidelines for the Diagnosis and Management of Intravascular Catheter-Related Infection: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 49, 1–45, Erratum in Clin. Infect. Dis. 2010, 50, 1079. [Google Scholar] [CrossRef] [PubMed]
- Buonsenso, D.; Salerno, G.; Sodero, G.; Mariani, F.; Pisapia, L.; Gelormini, C.; Di Nardo, M.; Valentini, P.; Scoppettuolo, G.; Biasucci, D.G. Catheter salvage strategies in children with central venous catheter-related or -associated bloodstream infections: A systematic review and meta-analysis. J. Hosp. Infect. 2022, 125, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Manierski, C.; Besarab, A. Antimicrobial locks: Putting the lock on catheter infections. Adv. Chronic Kidney Dis. 2006, 13, 245–258. [Google Scholar] [CrossRef]
- Freire, M.P.; Pierrotti, L.C.; Zerati, A.E.; Benites, L.; da Motta-Leal Filho, J.M.; Ibrahim, K.Y.; Araujo, P.H.; Abdala, E. Role of Lock Therapy for Long-Term Catheter-Related Infections by Multi-drug-Resistant Bacteria. Antimicrob. Agents Chemother. 2018, 62, e00569-18. [Google Scholar] [CrossRef]
- Gompelman, M.; Paus, C.; Bond, A.; Akkermans, R.P.; Bleeker-Rovers, C.P.; Lal, S.; A Wanten, G.J. Comparing success rates in central venous catheter salvage for catheter-related bloodstream infections in adult patients on home parenteral nutrition: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2021, 114, 1173–1188. [Google Scholar] [CrossRef]
- Padilla-Orozco, M.; Mendoza-Flores, L.; Herrera-Alonso, A.; González, E.G.; Ferman, J.L.G.; Rodríguez-López, J.M.; Bocanegra-Ibarias, P.; Camacho-Ortiz, A. Generalized and Prolonged Use of Gentamicin-Lock Therapy Reduces Hemodialysis Catheter-Related Infections Due to Gram Negatives. Nephron 2019, 143, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Janum, S.; Afshari, A. Central venous catheter removal for adults and children suffering from bloodstream infections caused by Candida species. Cochrane Database Syst. Rev. 2016, 7, CD011195. [Google Scholar]
- Lee, Y.-M.; Moon, C.; Kim, Y.J.; Lee, H.-J.; Lee, M.S.; Park, K.-H. Clinical impact of delayed catheter removal for patients with central-venous-catheter-related Gram-negative bacteraemia. J. Hosp. Infect. 2018, 99, 106–113. [Google Scholar] [CrossRef]
- Sun, Y.; Wan, G.; Liang, L. Taurolidine lock solution for catheter-related bloodstream infections in pediatric patients: A meta-analysis. PLoS ONE 2020, 15, e0231110. [Google Scholar] [CrossRef] [PubMed]
- Handrup, M.M.; Møller, J.K.; Schrøder, H. Central venous catheters and catheter locks in children with cancer: A prospective randomized trial of taurolidine versus heparin. Pediatr. Blood Cancer 2013, 60, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Chesshyre, E.; Goff, Z.; Bowen, A.; Carapetis, J. The prevention, diagnosis and management of central venous line infections in children. J. Infect. 2015, 71 (Suppl. 1), S59–S75. [Google Scholar] [CrossRef] [PubMed]
- Vassallo, M.; Dunais, B.; Roger, P.M. Antimicrobial lock therapy in central-line associated bloodstream infections: A systematic review. Infection 2015, 43, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Brescia, F.; Pittiruti, M.; Scoppettuolo, G.; Zanier, C.; Nadalini, E.; Bottos, P.; Moreal, C.; Da Ros, V.; Fabiani, F. Taurolidine lock in the treatment of colonization and infection of totally im-planted venous access devices in cancer patients. J. Vasc. Access. 2023, 24, 87–91. [Google Scholar] [CrossRef]
- Haag, G.-M.; Berger, A.-K.; Jäger, D. Treatment of Long-Term Catheter-Related Bloodstream Infections with a Taurolidine Block: A Single Cancer Center Experience. J. Vasc. Access. 2011, 12, 244–247. [Google Scholar] [CrossRef]
- Piersigilli, F.; Auriti, C.; Dotta, A.; Goffredo, B.M.; Cairoli, S.; Savarese, I.; Campi, F.; Corsetti, T.; Bersani, I. Use of Meropenem and Other Antimicrobial Lock Therapy in the Treatment of Catheter-Related Blood Stream Infections in Neonates: A Retrospective Study. Children 2022, 9, 614. [Google Scholar] [CrossRef]
- Justo, J.A.; Bookstaver, P. Antibiotic lock therapy: Review of technique and logistic challenges. Infect. Drug Resist. 2014, 7, 343–363. [Google Scholar]
- Wang, Y.; Sun, X. Reevaluation of lock solutions for Central venous catheters in hemodialysis: A narrative review. Ren. Fail. 2022, 44, 1501–1518. [Google Scholar] [CrossRef]
- Celebi, S.; Sezgin, M.E.; Cakir, D.; Baytan, B.; Demirkaya, M.; Sevinir, B.; Bozdemir, S.E.; Gunes, A.M.; Hacimustafaoglu, M. Catheter-associated Bloodstream Infections in Pediatric Hematology-Oncology Patients. Pediatr. Hematol. Oncol. 2013, 30, 187–194. [Google Scholar] [CrossRef]
- Chiba, M.; Yonekura, T.; Kaji, T.; Amae, S.; Tazuke, Y.; Oowari, M.; Obana, K.; Nakano, M.; Kuroda, T.; Fukumoto, K.; et al. Ethanol lock therapy in pediatric patients: A multicenter prospective study. Pediatr. Int. 2020, 62, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Asrak, H.K.; Belet, N.; Tüfekçi, Ö.; Özlü, C.; Baysal, B.; İnce, D. Investigating the risk factors for antibiotic lock therapy failure in pediatric cancer: A single centre retrospective analysis. Turk. J. Pediatr. 2021, 63, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control. 2008, 36, 309–332. [Google Scholar] [CrossRef] [PubMed]
- Haddin, Y.; Annamaraju, P.; Regunath, H. Central Line Associated Blood Stream Infections; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Bookstaver, P.B.; Rokas, K.E.E.; Norris, L.B.; Edwards, J.M.; Sherertz, R.J. Stability and compatibility of antimicrobial lock solutions. Am. J. Health Pharm. 2013, 70, 2185–2198. [Google Scholar] [CrossRef]
- ISO20776-1:2019; Clinical Laboratory Testing and In Vitro Diagnostic Test Systems. Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices—Part 1: Reference Method for Testing the In Vitro Activity of Antimicrobial Agents against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. International Organization for Standardization (ISO): Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/70464.html (accessed on 1 December 2019).
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical Breakpoints—Breakpoints and Guidance (V.12); EUCAST: Växjö, Sweden, 2023; Available online: https://eucast.org/clinical_breakpoints (accessed on 2 January 2023).
Characteristics of 28 Children with 37 BSIs Episodes | Values |
---|---|
Age, m, median (IQR) * | 58 (31–116) |
Gender, n (%) | |
Male | 20 (71.4) |
Female | 8 (28.6) |
Reasons for using CVC, n (%) | |
TPN | 13 (46.4) |
Chemotherapy | 11 (39.3) |
Dialysis | 3 (10.7) |
Other ** | 1 (3.6) |
CVC insertion, n (%) * | |
Innominate vein | 18 (48.7) |
Internal jugular vein | 3 (8.1) |
Subclavian vein | 6 (16.2) |
Brachiocephalic veinMissing | 2 (5.4)8 (21.6) |
Catheter type, n (%) * | |
Port-A | 5 (13.5) |
Tunneled single-lumen catheter | 23 (62.2) |
Tunneled double-lumen catheter | 9 (24.3) |
WBC cell/mm3, at the onset of infection, median (IQR) * | 5635 (3852.5–11,132.5) |
WBC cell/mm3, n (%) * | |
<11,000 | 27 (73.0) |
≥11,000 | 10 (27.0) |
ANC at the onset of infection, median (IQR) * | 4139 (1654–8446.5) |
ANC cell/mm3, n (%) * | |
≤1500 | 9 (24.3) |
1500–7000 | 17 (46) |
≥7000 | 11(29.7) |
CRP, mg/dl, at the onset of infection, median (IQR) * | 4.725 (1.345–9.1) |
CPR mg/dl, n (%) * | |
≤2 | 14 (37.8) |
2–7 | 11 (29.7) |
≥7 | 12 (32.4) |
Procalcitonin, ng/mL, at the onset of infection, median (IQR) * | 8.26 (1.9–43.85) |
Procalcitonin ng/mL, n (%) * | |
≤2 | 9 (24.3) |
2–10 | 11 (29.7) |
≥10Missing | 13 (35.1)4 (10.9) |
Type of infection, n (%) * | |
CRBSI | 10 (27.0) |
CLABSI | 27 (73.0) |
Duration from catheter insertion to the onset of infection, days, median (IQR) * | 250 (105–427.5) |
Time to lock therapy, days, median (IQR) * | 5.5 (3–13) |
Catheter removal, n (%) * | 16 (43.2) |
Successful ALT in CRBSI/CLABSI, n (%) * | 28 (75.7) |
Microorganism | CLABSI /CRBSI n (%) | Age, m | Primary Condition | N° of Episode | Catheter Insertion Site Infection | MDR | ALT | MIC μg/mL | Antimicrobial Concentration (mg/mL) | Anticoagulant Concentration (IU/mL) | Time to ALT, d | Dwell Time, h | Duration, d | I day of Negative Culture Since The Start of ALT | Persistent Bacteremia/Clinical or Laboratory Infection Findings Despite 72 H of ALT | Recurrence | Catheter Salvage | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gram + | Coagulase- | 8 | 27 | PID | I | No | Yes | Daptomycin | 1 | 5 | 4000 | 28 | 24 | 23 | 3 | No | No | Yes |
19 (51.3%) | negative Staphylococci | (21.6%) | 87 | CRF | I | No | No | Teicoplanin | ≤0.12 | 10 | 2500 | 5 | 24 for 2 d, | 7 | 7 | No | No | Yes |
then 12 | ||||||||||||||||||
65 | Thalassemia | I | No | Yes | Daptomycin | NA | 5 | 4000 | 3 | 23 | 11 | 8 | No | No | Yes | |||
214 | OS | I | No | Yes | Daptomycin | 0.5 | 5 | 2000 | 14 | 24 | 11 | 5 | No | No | Yes | |||
210 | GC | I | No | Yes | Taurolidine | NA | 2% | NA | 34 | 24 for 3 | 12 | 5 | No | Yes | Yes | |||
d, then 12 | ||||||||||||||||||
167 | SBS | I | No | No | Cefazolin | NA | 5 | 2500 | 20 | 24 | 4 | 9 | No | No | Yes | |||
48 | ALL | I | No | Yes | Vancomycin | 1 | 5 | 2500 | 13 | 24 | 11 | 11 | Yes | NA | No | |||
208 | ALM | I | No | Yes | Vancomycin | 1 | 5 | 2500 | 3 | 24 | 5 | 5 | No | NA | No (end of therapy) | |||
S. aureus | 7 | 56 | CRF | I | No | No | Vancomycin | 1 | 16.6 | NA | 4 | 24 | 14 | 6 | No | No | Yes | |
(18.9%) | 119 | CRF | III | No | No | Taurolidine | NA | 2% | Citrate | 3 | 24 | 3 | 3 | No | No | Yes | ||
4% | ||||||||||||||||||
123 | CRF | IV | No | No | Daptomycin | 0.5 | 5 | 5000 | 2 | 24 | 16 | 3 | No | No | Yes | |||
131 | CRF | V | No | No | Daptomycin | 0.5 | 5 | 5000 | 2 | 24 | 20 | 5 | No | NA | No (dislocation) | |||
16 | CCD | I | Yes | No | Teicoplanin | ≤0.5 | 10 | 2500 | 2 | 24 | 7 | 3 | No | NA | No | |||
165 | CRF | I | Yes | No | Vancomycin | 1 | 11.1 | 3333.3 | 5 | 24 | 14 | 9 | No | No | Yes | |||
47 | Thalassemia | I | No | No | Vancomycin | 1 | 5 | 2500 | 3 | 24 | 4 | 3 | No | NA | No (end of therapy) | |||
Bacillus cereus | 1 (2.7%) | 58 | ALL | I | No | No | Levofloxacin | 0.12 | 5 | NA | 1 | 24 | 10 | NA | Yes | NA | No | |
Bacillus thurigiensis | 1 (2.7%) | 65 | ALL | I | No | No | Vancomycin | 2 | 5 | 250 | 13 | 24 | 10 | 4 | No | NA | No (reinfection) | |
E. faecalis | 1 (2.7%) | 18 | CTE | I | No | No | Teicoplanin | ≤0.5 | 10 | 2500 | 4 | 24 for 3 d then 12 | 8 | 6 | No | NA | No (reinfection) | |
Enterococcus hirae | 1 (2.7%) | 21 | SBS | I | No | No | Vancomycin | ≤0.5 | 2.5 | 2500 | 4 | 24 for 6 | 14 | 5 | No | No | Yes | |
d, then 12 | ||||||||||||||||||
Fungi | C. parapsilosis | 3(8.1%) | 110 | CRF | II | No | NA | Taurolidine | NA | 2% | Citrate | 8 | 24 | 3 | NA | Yes | NA | No |
3 (8.1%) | 4% | |||||||||||||||||
159 | CF | I | No | NA | Caspofungin | 0.12 | 3 | NA | 9 | 24 | 10 | 4 | No | Yes | No | |||
73 | Syndrome | I | No | NA | Caspofungin | 0.25 | 2 | NA | 5 | 24 | 9 | 5 | No | No | Yes | |||
Gram - | K. | 6 | 34 | CTE | II | No | No | Ceftazidime | ≤0.25 | 5 | 2500 | 12 | 24 | 9 | 6 | No | No | Yes |
15 | pneumoniae | (16.2%) | 3 | Syndrome | I | No | Yes | Imipenem | ≤0.12 | NA | NA | 3 | 24 | NA | 14 | No | No | Yes |
(40.5%) | 61 | SBS | I | No | Yes | Amikacin | ≤4 | 2 | NA | 23 | 24 | 10 | 6 | No | No | Yes | ||
28 | SBS | I | No | Yes | Tigecycline | 0.5 | 10 | NA | 2 | 24 for 5 d, then 8 | 11 | 6 | No | Yes | No | |||
50 | ALL | I | No | Yes | Gentamicin | ≤1 | 1 | 2500 | 9 | 24 | 10 | 6 | No | NA | No | |||
46 | PID | II | Yes | Yes | Taurolidine | NA | NA | NA | 15 | 24 | 16 | NA | Yes | NA | No | |||
E. coli | 3 (8.1%) | 113 | SBS | I | No | Yes | Gentamicin | ≤1 | 1 | 2500 | 2 | 24 | 20 | NA | Yes | NA | No | |
25 | GCH | I | No | No | Ceftazidime | ≤0.12 | 5 | 2500 | 10 | 24 | 8 | 4 | No | No | Yes | |||
30 | IBD | I | No | NA | Gentamicin | NA | 1 | 2500 | 3 | 24 | 15 | 5 | No | No | Yes | |||
Morganella | 1 (2.7%) | 42 | CTE | III | No | Yes | Ciprofloxacin | ≤0.06 | 0.2 | 4500 | 11 | 24 | 10 | 5 | No | No | Yes | |
morganii | ||||||||||||||||||
S. | 2 (5.4%) | 73 | RMS | I | No | No | Levofloxacin | ≤1 | 5 | NA | 6 | 24 | 10 | 6 | No | No | Yes | |
maltophilia | ||||||||||||||||||
39 | NB | I | No | No | Levofloxacin | ≤2 | 5 | NA | 4 | 24 | 10 | 4 | No | No | Yes | |||
E. cloacae | 1 (2.7%) | 10 | SBS | II | No | Yes | Tigecycline | 1 | 10 | NA | 8 | 24 for 3 d then 12 | 14 | 5 | No | NA | No (reinfection) | |
Pseudomonas putida | 1 (2.7%) | 85 | RMS | II | No | No | Gentamicin | ≤4 | 1.2 | 2500 | 3 | 24 | 9 | 3 | No | No | Yes | |
Pseudomonas aeruginosa | 1 (2.7%) | 32 | HCL | I | Yes | No | Ciprofloxacin | 0.25 | 0.2 | 4500 | 2 | 24 | 4 | NA | Yes | NA | No |
Success (n = 25) | Failure (n = 12) | p | |
---|---|---|---|
Age, m, (IQR) | 61 (34–119) | 53 (31–110.75) | 0.74896 |
Gender, n (%) | |||
Male | 16 (64) | 9 (75) | 0.711 |
Reason for using CVC, n (%) | |||
TPN | 10(40) | 6 (50) | 0.7258 |
Chemotherapy | 8 (32) | 5 (41.7) | 0.7161 |
Dialysis | 6 (24) | 1 (8.3) | 0.3891 |
Other | 1 (4) | 0 | 1 |
ANC/ mm3 (IQR) | 3864 (1241–10,103) | 3996 (2943.5–4794) | 0.72634 |
CRP, mg/dl (IQR) | 4.04 (1.34–7.4) | 5.68 (1.6225–9.205) | 0.32218 |
Procalcitonin, ng/mL (IQR) | 8 (2.1–79.3) | 3.7 (1.6–42.35) | 0.64552 |
Catheter days, (IQR) | 234 (97.5–376.5) | 270 (135–420) | 0.60306 |
CRBSI, n (%) | 6 (24) | 4 (33.3) | 0.7004 |
MDR, n (%) | 8/24 (33.3) + 1 Candida parapsilosis | 6/10 (60) + 2 Candida parapsilosis | 0.2522 |
Time to ALT, d (IQR) | 4 (3–6) | 8 (2–11) | 0.87288 |
Taurolidine, n (%) | 1 (4) | 3 (25) | 0.1394 |
CVC insertion site infection, n (%) | 3 (12) | 2 (16.7) | 1 |
Dwell time of 24 h, n (%) | 22 (88) | 8 (66.7) | 0.1827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Signorino, C.; Fusco, E.; Galli, L.; Chiappini, E. Effectiveness of Antimicrobial Lock Therapy for the Treatment of Catheter-Related and Central-Line-Associated Bloodstream Infections in Children: A Single Center Retrospective Study. Antibiotics 2023, 12, 800. https://doi.org/10.3390/antibiotics12050800
Signorino C, Fusco E, Galli L, Chiappini E. Effectiveness of Antimicrobial Lock Therapy for the Treatment of Catheter-Related and Central-Line-Associated Bloodstream Infections in Children: A Single Center Retrospective Study. Antibiotics. 2023; 12(5):800. https://doi.org/10.3390/antibiotics12050800
Chicago/Turabian StyleSignorino, Claudia, Eleonora Fusco, Luisa Galli, and Elena Chiappini. 2023. "Effectiveness of Antimicrobial Lock Therapy for the Treatment of Catheter-Related and Central-Line-Associated Bloodstream Infections in Children: A Single Center Retrospective Study" Antibiotics 12, no. 5: 800. https://doi.org/10.3390/antibiotics12050800
APA StyleSignorino, C., Fusco, E., Galli, L., & Chiappini, E. (2023). Effectiveness of Antimicrobial Lock Therapy for the Treatment of Catheter-Related and Central-Line-Associated Bloodstream Infections in Children: A Single Center Retrospective Study. Antibiotics, 12(5), 800. https://doi.org/10.3390/antibiotics12050800