Acinetobacter baumannii under Acidic Conditions Induces Colistin Resistance through PmrAB Activation and Lipid A Modification
Abstract
:1. Introduction
2. Results
2.1. Construction of ΔpmrA and ΔpmrB Mutants and pmrA-Complemented Strains
2.2. Effects of pmrAB on the Growth of A. baumannii
2.3. Induction of Colistin Resistance in A. baumannii under Acidic or High-Iron Conditions
2.4. High Expression of pmrCAB Operon and Production of PmrA in A. baumannii under Acidic Conditions
2.5. Lipid A Modification in A. baumannii under Acidic Conditions
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains, Plasmids, and Growth Media
4.2. Construction of ΔpmrA and ΔpmrB Mutants and pmrA-Complemented Strains
4.3. Construction of ppmrA_FLAG Plasmids
4.4. Antimicrobial Susceptibility Testing
4.5. Bacterial Growth Curve
4.6. Western Blot Analysis
4.7. Isolation of Lipid A and MALDI-TOF MS Analysis
4.8. RNA Isolation and qPCR
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howard, A.; O’Donoghue, M.; Feeney, A.; Sleator, R.D. Acinetobacter baumannii: An emerging opportunistic pathogen. Virulence 2012, 3, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Antunes, L.; Visca, P.; Towner, K.J. Acinetobacter baumannii: Evolution of a global pathogen. Pathog. Dis. 2014, 71, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Kasiakou, S.K. Colistin: The revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin. Infect. Dis. 2005, 40, 1333–1341. [Google Scholar] [CrossRef]
- Rice, L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef]
- Manchanda, V.; Sanchaita, S.; Singh, N. Multidrug resistant acinetobacter. J. Glob. Infect. Dis. 2010, 2, 291–304. [Google Scholar] [CrossRef]
- Olaitan, A.O.; Morand, S.; Rolain, J.M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, J.H.; Harper, M.; Harrison, P.; Hale, J.D.; Vinogradov, E.; Seemann, T.; Henry, R.; Crane, B.; St Michael, F.; Cox, A.D.; et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother. 2010, 54, 4971–4977. [Google Scholar] [CrossRef]
- Pelletier, M.R.; Casella, L.G.; Jones, J.W.; Adams, M.D.; Zurawski, D.V.; Hazlett, K.R.O.; Doi, Y.; Ernst, R.K. Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2013, 57, 4831–4840. [Google Scholar] [CrossRef]
- Stock, A.M.; Robinson, V.L.; Goudreau, P.N. Two-component signal transduction. Annu. Rev. Biochem. 2000, 69, 183–215. [Google Scholar] [CrossRef]
- Tiwari, S.; Jamal, S.B.; Hassan, S.S.; Carvalho, P.V.S.D.; Almeida, S.; Barh, D.; Ghosh, P.; Silva, A.; Castro, T.L.P.; Azevedo, V. Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: An overview. Front. Microbiol. 2017, 8, 1878. [Google Scholar] [CrossRef] [PubMed]
- De Silva, P.M.; Kumar, A. Signal transduction proteins in Acinetobacter baumannii: Role in antibiotic resistance, virulence, and potential as drug targets. Front. Microbiol. 2019, 10, 49. [Google Scholar] [CrossRef]
- Adams, M.D.; Nickel, G.C.; Bajaksouzian, S.; Lavender, H.; Murthy, A.R.; Jacobs, M.R.; Bonomo, R.A. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob. Agents Chemother. 2009, 53, 3628–3634. [Google Scholar] [CrossRef]
- Gunn, J.S.; Ryan, S.S.; Van Velkinburgh, J.C.; Ernst, R.K.; Miller, S.I. Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infect. Immun. 2000, 68, 6139–6146. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ribeiro, A.A.; Guan, Z.; Raetz, C.R.H. Identification of undecaprenyl phosphate-β-d-galactosamine in Francisella novicida and its function in lipid A modification. Biochemistry 2009, 48, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Nishino, K.; Hsu, F.-F.; Turk, J.; Cromie, M.J.; Wösten, M.M.S.M.; Groisman, E.A. Identification of the lipopolysaccharide modifications controlled by the Salmonella PmrA/PmrB system mediating resistance to Fe(III) and Al(III). Mol. Microbiol. 2006, 61, 645–654. [Google Scholar] [CrossRef]
- Rubin, E.J.; Herrera, C.M.; Crofts, A.A.; Trent, M.S. PmrD is required for modifications to Escherichia coli endotoxin that promote antimicrobial resistance. Antimicrob. Agents Chemother. 2015, 59, 2051–2061. [Google Scholar] [CrossRef]
- Mitrophanov, A.Y.; Jewett, M.W.; Hadley, T.J.; Groisman, E.A. Evolution and dynamics of regulatory architectures controlling polymyxin B resistance in enteric bacteria. PLoS Genet. 2008, 4, e1000233. [Google Scholar] [CrossRef]
- Cheng, H.-Y.; Chen, Y.-F.; Peng, H.-L. Molecular characterization of the PhoPQ-PmrD-PmrAB mediated pathway regulating polymyxin B resistance in Klebsiella pneumoniae CG43. J. Biomed. Sci. 2010, 17, 60. [Google Scholar] [CrossRef]
- March, C.; Regueiro, V.; Llobet, E.; Moranta, D.; Morey, P.; Garmendia, J.; Bengoechea, J.A. Dissection of host cell signal transduction during Acinetobacter baumannii-triggered inflammatory response. PLoS ONE 2010, 5, e10033. [Google Scholar] [CrossRef]
- Clifton, L.A.; Skoda, M.W.A.; Brun, A.P.L.; Ciesielski, F.; Kuzmenko, I.; Holt, S.A.; Lakey, J.H. Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models. Langmuir 2015, 31, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Velkov, T.; Thompson, P.E.; Nation, R.L.; Li, J. Structure-activity relationships of polymyxin antibiotics. J. Med. Chem. 2010, 53, 1898–1916. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Ribeiro, A.A.; Lin, S.; Cotter, R.J.; Miller, S.I.; Raetz, C.R. Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PMRA-dependent 4-amino-4-deoxy-L-arabinose, and phosphoethanolamine incorporation. J. Biol. Chem. 2001, 276, 43111–43121. [Google Scholar] [CrossRef] [PubMed]
- Owusu-Anim, D.; Kwon, D.H. Differential role of two-component regulatory systems (phoPQ and pmrAB) in polymyxin B susceptibility of Pseudomonas aeruginosa. Adv. Microbiol. 2012, 2, 10.4236/aim.2012.21005. [Google Scholar] [CrossRef] [PubMed]
- Beceiro, A.; Llobet, E.; Aranda, J.; Bengoechea, J.A.; Doumith, M.; Hornsey, M.; Dhanji, H.; Chart, H.; Bou, G.; Livermore, D.M.; et al. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob. Agents Chemother. 2011, 55, 3370–3379. [Google Scholar] [CrossRef]
- Wösten, M.M.; Kox, L.F.; Chamnongpol, S.; Soncini, F.C.; Groisman, E.A. A signal transduction system that responds to extracellular iron. Cell 2000, 103, 113–125. [Google Scholar] [CrossRef]
- Perez, J.C.; Groisman, E.A. Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica. Mol. Microbiol. 2007, 63, 283–293. [Google Scholar] [CrossRef]
- García Véscovi, E.; Soncini, F.C.; Groisman, E.A. Mg2+ as an extracellular signal: Environmental regulation of Salmonella virulence. Cell 1996, 84, 165–174. [Google Scholar] [CrossRef]
- Chin, C.Y.; Gregg, K.A.; Napier, B.A.; Ernst, R.K.; Weiss, D.S. A PmrB-regulated deacetylase required for lipid A modification and polymyxin resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2015, 59, 7911–7914. [Google Scholar] [CrossRef]
- Al-Khodor, S.; Kalachikov, S.; Morozova, I.; Price, C.T.; Kwaik, Y.A. The PmrA/PmrB two-component system of Legionella pneumophila is a global regulator required for intracellular replication within macrophages and protozoa. Infect. Immun. 2009, 77, 374–386. [Google Scholar] [CrossRef]
- Warner, D.M.; Duval, V.; Levy, S.B. The contribution of PmrAB to the virulence of a clinical isolate of Escherichia coli. Virulence 2013, 4, 634–637. [Google Scholar] [CrossRef] [PubMed]
- López-Rojas, R.; Domínguez-Herrera, J.; McConnell, M.J.; Docobo-Peréz, F.; Smani, Y.; Fernández-Reyes, M.; Rivas, L.; Pachón, J. Impaired virulence and in vivo fitness of colistin-resistant Acinetobacter baumannii. J. Infect. Dis. 2011, 203, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.H.; Lee, J.C.; Kim, J.; Choi, C.H.; Kan, K. Simple method for markerless gene deletion in multidrug-resistant Acinetobacter baumannii. Appl. Environ. Microbiol. 2015, 81, 3357–3368. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fourth Informational Supplement, M100-S28; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2018. [Google Scholar]
- Kim, J.N.; Stanhope, M.J.; Burne, R.A. Core-gene-encoded peptide regulating virulence-associated traits in Streptococcus mutants. J. Bacteriol. 2013, 195, 2912–2920. [Google Scholar] [CrossRef]
- Hamidi, E.A.; Tirsoaga, A.; Novikov, A.; Hussein, A.; Caroff, M. Microextraction of bacterial lipid A: Easy and rapid method for mass spectrometric characterization. J. Lipid Res. 2005, 46, 1773–1778. [Google Scholar] [CrossRef]
- Henderson, J.C.; O’Brien, J.P.; Brodbelt, J.S.; Trent, M.S. Isolation and chemical characterization of lipid A from gram-negative bacteria. J. Vis. Exp. 2013, 79, e50623. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Culture Conditions | Colistin MIC (μg/mL) | |||||
---|---|---|---|---|---|---|
ATCC 17978 | HJ2751D | HJ2750D | HJ2751C | |||
CAMHB * | pH | pH 7.0 | 1 | 1 | 1 | 1 |
pH 6.5 | 1 | 1 | 1 | 1 | ||
pH 5.5 | 32 | 2 | 2 | 256 | ||
pH 4.5 | - | - | - | - | ||
CAMHB pH 7.0 | Fe3+ | 100 μM FeCl3 | 1 | 2 | 2 | 2 |
500 μM FeCl3 | 4 | 4 | 4 | 4 | ||
1 mM FeCl3 | 8 | 8 | 8 | 8 | ||
CAMHB pH 5.5 | Fe3+ | 1 mM FeCl3 | 16 | 16 | 16 | 256 |
Bacteria/Plasmids | Relevant Characteristics * | Reference of Source |
---|---|---|
Bacterial strains | ||
A. baumannii | ||
ATCC 17978 | Wild-type strain | ATCC |
HJ2751D | ∆pmrA of A. baumannii ATCC 17978 | This study |
HJ2750D | ∆pmrB of A. baumannii ATCC 17978 | This study |
HJ2751C | pmrA rescued in ∆pmrA with pWH1266 | This study |
E. coli | ||
DH5α pir (SY327 λ pir) | supE44 ΔlacU169 (Φ80 lacZΔM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1 λpir (phage lysogen); plasmid replication | Laboratory collection |
sm10λ pir | thi thr leu tonA lacY supE recA::RP4-2-Tc::Mu Km λpir π-requiring plasmids; conjugal donor | Laboratory collection |
Plasmids | ||
pOH4 | pHKD01 with the ompA coding region of A. baumannii ATCC 17978 under the control of its native promoter with nptI; KmR | Laboratory collection |
pDM4 | Suicide vector, ori R6K; CmR; sacB | GenBank accession no. KC795686 |
pWH1266 | Shuttle-vector with Acinetobacter and E. coli origin used for cloning vehicle; ampR; tetR | Laboratory collection |
pHJ2751D | pDM4 with ∆pmrA::nptI; CmR, KmR | This study |
pHJ2750D | pDM4 with ∆pmrB::nptI; CmR, KmR | This study |
pHJ2751C | pWH1266 carrying pmrA with the ompA promoter and T1 terminator; TetR | This study |
ppmrA_FLAG | pWH1266 carrying the FLGA-tagged pmrA coding region under the control of its native promoter with t1 terminator; TetR | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, S.-Y.; Kim, N.; Park, S.-Y.; Kim, S.-Y.; Shin, M.; Lee, J.-C. Acinetobacter baumannii under Acidic Conditions Induces Colistin Resistance through PmrAB Activation and Lipid A Modification. Antibiotics 2023, 12, 813. https://doi.org/10.3390/antibiotics12050813
Ko S-Y, Kim N, Park S-Y, Kim S-Y, Shin M, Lee J-C. Acinetobacter baumannii under Acidic Conditions Induces Colistin Resistance through PmrAB Activation and Lipid A Modification. Antibiotics. 2023; 12(5):813. https://doi.org/10.3390/antibiotics12050813
Chicago/Turabian StyleKo, Seo-Yeon, Nayeong Kim, Seong-Yong Park, Seong-Yeop Kim, Minsang Shin, and Je-Chul Lee. 2023. "Acinetobacter baumannii under Acidic Conditions Induces Colistin Resistance through PmrAB Activation and Lipid A Modification" Antibiotics 12, no. 5: 813. https://doi.org/10.3390/antibiotics12050813
APA StyleKo, S. -Y., Kim, N., Park, S. -Y., Kim, S. -Y., Shin, M., & Lee, J. -C. (2023). Acinetobacter baumannii under Acidic Conditions Induces Colistin Resistance through PmrAB Activation and Lipid A Modification. Antibiotics, 12(5), 813. https://doi.org/10.3390/antibiotics12050813