Co-Occurrence of mcr-1 and Carbapenem Resistance in Avian Pathogenic E. coli Serogroup O78 ST95 from Colibacillosis-Infected Broiler Chickens
Abstract
:1. Introduction
2. Results
2.1. CR-APEC O78 among Collected Samples
2.2. Source-Wise Distribution of the mcr-1-harboring CR-APEC
2.3. Detection of VAGs in APEC Isolates
2.4. Resistance Profile of the Isolates
2.5. Distribution of ARGs in APEC Isolates
2.6. CR-APEC ST95
3. Discussion
4. Materials and Methods
4.1. Ethical Approval and Study Settings
4.2. Sample Collection, Preliminary Screening, and Transportation
4.3. Isolation and Identification of E. coli
4.4. Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) Based Confirmation
4.5. VAGs-Based Confirmation of APEC
4.6. Antibiotic Susceptibility Testing
4.7. Carba NP Test (CNPt-CLSI)
4.8. Molecular Identification of ARGs
4.9. Serogrouping of APEC
4.10. Allele-Specific PCR
4.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elmanama, A.A.; Al-Reefi, M.R.; Shamali, M.A.; Hemaid, H.I. Carbapenem-resistant Gram-negative bacteria isolated from poultry samples: A cross-sectional study. Lancet 2019, 393, S21. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Tahir, M.F.; Ullah, R.W.; Ali, J.; Siddique, N.; Rasheed, A.; Akram, M.; Zaheer, M.U.; Mohsin, M. Quantification and Trends of Antimicrobial Use in Commercial Broiler Chicken Production in Pakistan. Antibiotics 2021, 10, 598. [Google Scholar] [CrossRef]
- Azam, M.; Mohsin, M.; Sajjad Ur, R.; Saleemi, M.K. Virulence-associated genes and antimicrobial resistance among avian pathogenic Escherichia coli from colibacillosis affected broilers in Pakistan. Trop. Anim. Health Prod. 2019, 51, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.J.; Logue, C.M.; Johnson, J.R.; Kuskowski, M.A.; Sherwood, J.S.; Barnes, H.J.; DebRoy, C.; Wannemuehler, Y.M.; Obata-Yasuoka, M.; Spanjaard, L.; et al. Associations between multidrug resistance, plasmid content, and virulence potential among extraintestinal pathogenic and commensal Escherichia coli from humans and poultry. Foodborne Pathog. Dis. 2012, 9, 37–46. [Google Scholar] [CrossRef]
- Iancu, I.; Cătana, D.; Pascu, C.; Herman, N. Evaluation of antimicrobial resistance in strains of E. coli isolated from broiler carcasses. Rev. Rom. Med. Vet. 2018, 28, 35–38. [Google Scholar]
- Liu, C.M.; Stegger, M.; Aziz, M.; Johnson, T.J.; Waits, K.; Nordstrom, L.; Gauld, L.; Weaver, B.; Rolland, D.; Statham, S.; et al. Escherichia coli ST131-H22 as a Foodborne Uropathogen. mBio 2018, 9, e00470-18. [Google Scholar] [CrossRef]
- Le Gall, T.; Clermont, O.; Gouriou, S.; Picard, B.; Nassif, X.; Denamur, E.; Tenaillon, O. Extraintestinal virulence is a coincidental by-product of commensalism in B2 phylogenetic group Escherichia coli strains. Mol. Biol. Evol. 2007, 24, 2373–2384. [Google Scholar] [CrossRef]
- Alam, M.; Rasool, M.H.; Khan, I.; Khurshid, M.; Aslam, B. Multilocus Sequence Typing of Carbapenem-Resistant Acinetobacter baumannii Isolates Harboring bla(OXA-23) and bla(IMP) in Cattle from Punjab, Pakistan. Microb. Drug Resist. 2022, 28, 997–1002. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Daubié, A.S.; Gordon, D.M.; Denamur, E. Development of an allele-specific PCR for Escherichia coli B2 sub-typing, a rapid and easy to perform substitute of multilocus sequence typing. J. Microbiol. Methods 2014, 101, 24–27. [Google Scholar] [CrossRef]
- Azam, M.; Mohsin, M.; Johnson, T.J.; Smith, E.A.; Johnson, A.; Umair, M.; Saleemi, M.K.; Sajjad Ur, R. Genomic landscape of multi-drug resistant avian pathogenic Escherichia coli recovered from broilers. Vet. Microbiol. 2020, 247, 108766. [Google Scholar] [CrossRef]
- Ievy, S.; Islam, M.S.; Sobur, M.A.; Talukder, M.; Rahman, M.B.; Khan, M.F.R.; Rahman, M.T. Molecular Detection of avian pathogenic Escherichia coli (APEC) for the First Time in Layer Farms in Bangladesh and Their Antibiotic Resistance Patterns. Microorganisms 2020, 8, 1021. [Google Scholar] [CrossRef]
- Tivendale, K.A.; Logue, C.M.; Kariyawasam, S.; Jordan, D.; Hussein, A.; Li, G.; Wannemuehler, Y.; Nolan, L.K. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infect. Immun. 2010, 78, 3412–3419. [Google Scholar] [CrossRef]
- Clifford, K.; Desai, D.; da Costa, C.P.; Meyer, H.; Klohe, K.; Winkler, A.S.; Rahman, T.; Islam, T.; Zaman, M.H. Antimicrobial resistance in livestock and poor quality veterinary medicines. Bull. World Health Organ. 2018, 96, 662–664. [Google Scholar] [CrossRef]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-PLoSkonska, G.; Choroszy-Krol, I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathog. 2019, 11, 10–1186. [Google Scholar] [CrossRef]
- Liao, X.; Yang, R.S.; Xia, J.; Chen, L.; Zhang, R.; Fang, L.X.; Lei, F.; Song, G.; Jia, L.; Han, L.; et al. High colonization rate of a novel carbapenem-resistant Klebsiella lineage among migratory birds at Qinghai Lake, China. J. Antimicrob. Chemother. 2019, 74, 2895–2903. [Google Scholar] [CrossRef]
- Barbieri, N.L.; Pimenta, R.L.; de Melo, D.A.; Nolan, L.K.; de Souza, M.M.S.; Logue, C.M. mcr-1 Identified in Fecal Escherichia coli and avian pathogenic E. coli (APEC) From Brazil. Front. Microbiol. 2021, 12, 659613. [Google Scholar] [CrossRef]
- Dhaouadi, S.; Soufi, L.; Hamza, A.; Fedida, D.; Zied, C.; Awadhi, E.; Mtibaa, M.; Hassen, B.; Cherif, A.; Torres, C.; et al. Co-occurrence of mcr-1 mediated colistin resistance and β-lactamase-encoding genes in multidrug-resistant Escherichia coli from broiler chickens with colibacillosis in Tunisia. J. Glob. Antimicrob. Resist. 2020, 22, 538–545. [Google Scholar] [CrossRef]
- Cummins, M.L.; Reid, C.J.; Roy Chowdhury, P.; Bushell, R.N.; Esbert, N.; Tivendale, K.A.; Noormohammadi, A.H.; Islam, S.; Marenda, M.S.; Browning, G.F.; et al. Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene. Microb. Genom. 2019, 5, 1099. [Google Scholar] [CrossRef]
- Kathayat, D.; Lokesh, D.; Ranjit, S.; Rajashekara, G. Avian pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. Pathogens 2021, 10, 467. [Google Scholar] [CrossRef]
- Wang, S.; Meng, Q.; Dai, J.; Han, X.; Han, Y.; Ding, C.; Liu, H.; Yu, S. Development of an allele-specific PCR assay for simultaneous sero-typing of avian pathogenic Escherichia coli predominant O1, O2, O18 and O78 strains. PLoS ONE 2014, 9, e96904. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, A.; Iyoda, S.; Seto, K.; Morita-Ishihara, T.; Scheutz, F.; Ohnishi, M. Escherichia coli O-Genotyping PCR: A Comprehensive and Practical Platform for Molecular O Serogrouping. J. Clin. Microbiol. 2015, 53, 2427–2432. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, L.L.; Kudirkiene, E.; Jørgensen, S.L.; Djordjevic, S.P.; Cummins, M.L.; Christensen, J.P.; Christensen, H.; Bisgaard, M.; Thøfner, I. Whole genome sequence comparison of avian pathogenic Escherichia coli from acute and chronic salpingitis of egg laying hens. BMC Vet. Res. 2020, 16, 148. [Google Scholar] [CrossRef]
- Olsen, R.H.; Stockholm, N.M.; Permin, A.; Christensen, J.P.; Christensen, H.; Bisgaard, M. Multi-locus sequence typing and plasmid profile characterization of avian pathogenic Escherichia coli associated with increased mortality in free-range layer flocks. Avian Pathol. 2011, 40, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, S.L.; Stegger, M.; Kudirkiene, E.; Lilje, B.; Poulsen, L.L.; Ronco, T.; Dos Santos, T.P.; Kiil, K.; Bisgaard, M.; Pedersen, K.; et al. Diversity and Population Overlap between Avian and Human Escherichia coli Belonging to Sequence Type 95. mSphere 2019, 4, e00333-18. [Google Scholar] [CrossRef]
- Ilyas, S.; Rasool, M.H.; Arshed, M.J.; Qamar, M.U.; Aslam, B.; Almatroudi, A.; Khurshid, M. The Escherichia coli Sequence Type 131 Harboring Extended-Spectrum Beta-Lactamases and Carbapenemases Genes from Poultry Birds. Infect. Drug Resist. 2021, 14, 805–813. [Google Scholar] [CrossRef]
- Kanokudom, S.; Assawakongkarat, T.; Akeda, Y.; Ratthawongjirakul, P.; Chuanchuen, R.; Chaichanawongsaroj, N. Rapid detection of extended spectrum β-lactamase producing Escherichia coli isolated from fresh pork meat and pig cecum samples using multiplex recombinase polymerase amplification and lateral flow strip analysis. PLoS ONE 2021, 16, e0248536. [Google Scholar] [CrossRef]
- Ben Yahia, H.; Ben Sallem, R.; Tayh, G.; Klibi, N.; Ben Amor, I.; Gharsa, H.; Boudabbous, A.; Ben Slama, K. Detection of CTX-M-15 harboring Escherichia coli isolated from wild birds in Tunisia. BMC Microbiol. 2018, 18, 26. [Google Scholar] [CrossRef]
- Kim, Y.B.; Yoon, M.Y.; Ha, J.S.; Seo, K.W.; Noh, E.B.; Son, S.H.; Lee, Y.J. Molecular characterization of avian pathogenic Escherichia coli from broiler chickens with colibacillosis. Poult. Sci. 2020, 99, 1088–1095. [Google Scholar] [CrossRef]
- Jamil, A.; Zahoor, M.A.; Nawaz, Z.; Siddique, A.B.; Khurshid, M. Genetic Diversity of Escherichia coli Coharboring mcr-1 and Extended Spectrum Beta-Lactamases from Poultry. BioMed Res. Int. 2022, 2022, 8224883. [Google Scholar] [CrossRef]
- Sarwar, F.; Rasool, M.H.; Khurshid, M.; Qamar, M.U.; Aslam, B. Escherichia coli Isolates Harboring bla(NDM) Variants and 16S Methylases Belonging to Clonal Complex 131 in Southern Punjab, Pakistan. Microb. Drug Resist. 2022, 28, 623–635. [Google Scholar] [CrossRef]
- Aslam, B.; Chaudhry, T.H.; Arshad, M.I.; Muzammil, S.; Siddique, A.B.; Yasmeen, N.; Khurshid, M.; Amir, A.; Salman, M.; Rasool, M.H.; et al. Distribution and genetic diversity of multi-drug-resistant Klebsiella pneumoniae at the human-animal-environment interface in Pakistan. Front. Microbiol. 2022, 13, 898248. [Google Scholar] [CrossRef]
- Chaudhry, T.H.; Aslam, B.; Arshad, M.I.; Alvi, R.F.; Muzammil, S.; Yasmeen, N.; Aslam, M.A.; Khurshid, M.; Rasool, M.H.; Baloch, Z. Emergence of bla (NDM-1) Harboring Klebsiella pneumoniae ST29 and ST11 in Veterinary Settings and Waste of Pakistan. Infect. Drug Resist. 2020, 13, 3033–3043. [Google Scholar] [CrossRef] [PubMed]
- Subedi, M.; Luitel, H.; Devkota, B.; Bhattarai, R.K.; Phuyal, S.; Panthi, P.; Shrestha, A.; Chaudhary, D.K. Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Vet. Res. 2018, 14, 113. [Google Scholar] [CrossRef]
Specimen Category | No. of Samples Collected | E coli Positive Samples | APEC % out of E. coli | Overall, APEC E. coli Isolates Confirmation | CR-APEC | CR-APEC Serogroups | Statistical Analysis | |
---|---|---|---|---|---|---|---|---|
MALDI-TOF | VAGs | |||||||
Pericardial swabs | 250 | 123 (49.20%) | 35/123 (28.45%) | 35 (14.00%) | 35 (14.00%) | 2/35 (6%) | O78 | ** p value = 0.001 |
Perihepatic swabs | 250 | 131 (52.40%) | 41/131 (31.30%) | 41 (16.40%) | 41 (16.40%) | 3/41 (7%) | O78 (2) & O1 (1) | |
Fecal | 250 | 164 (65.60%) | 78/164 (47.56%) | 78 (47.56%) | 78 (47.56%) | 8/78 (10%) | O78 | |
Overall | 750 | 418/750 (55.73%) | 154/418 (36.84%) | 154 | 154 | 13/154 (8.4%) |
Sample Source | APEC | mcr-1-Harboring APEC | CR-APEC co-Harboring mcr-1 | Serogroups | ST95 | Statistical Analysis |
---|---|---|---|---|---|---|
Pericardial Swabs | 35 | 21 (60%) | 1 (3%) | O78 | ND | * p value ≤ 0.05 |
Perihepatic Swabs | 41 | 23 (56%) | 3 (7%) | O78 (2) & O1 (1) | Detected | |
Fecal samples | 78 | 17 (22%) | 1 (1%) | O78 | Detected | |
Total | 154 | 61 (39.61%) | 5 (3.2%) |
Antibiotics | Conc. | CLSI- EUCAST/FDA Resistance Breakpoints | mcr-1-Harboring APEC Isolates | Overall Resistance Profile of APEC | ||||
---|---|---|---|---|---|---|---|---|
Pericardial Swabs (n = 1) | Perihepatic Swabs (n = 3) | Fecal Samples (n = 1) | ||||||
Ampicillin | 10 µg | ≥32 | 256 | 256 | 256 | 512 | 256 | 100% |
Cefepime | 30 µg | ≥16 | 128 | 512 | 256 | 256 | 128 | 100% |
Ciprofloxacin | 5 µg | ≥4 | 64 | 32 | 64 | 128 | 32 | 54% |
Levofloxacin | 5 µg | ≥4 | 32 | 128 | 64 | 128 | 64 | 54 |
Chloramphenicol | 30 µg | ≥32 | 128 | 256 | 128 | 128 | 128 | 89% |
Trimethoprim | 5 µg | ≥16 | 64 | 256 | 32 | 64 | 128 | 65% |
Imipenem | 10 µg | ≥4 | 32 | 128 | 64 | 64 | 32 | 11% |
Meropenem | 10 µg | ≥4 | 32 | 64 | 128 | 64 | 32 | 11% |
Colistin | 10 µg | ≥8 | 32 | 64 | 32 | 64 | 32 | 46% |
Tetracycline | 30 µg | ≥16 | 64 | 128 | 64 | 128 | 64 | 81% |
Tigecycline | 15 µg | ≥8 | 4 | 4 | 8 | 8 | 4 | 4% |
Sample Source | APEC Isolates | mcr-1 Detection | CR-APEC Detection | CR-APEC Co-Harboring mcr-1 | Co-Existence of ARGs |
---|---|---|---|---|---|
Pericardial swabs | 35 | 21 (60%) | 2 (6%) | 1 (3%) | mcr-1, blaTEM, blaSHV, blaNDM-1, blaIMP |
Perihepatic Swabs | 41 | 23 (56%) | 3 (5%) | 3 (7%) | mcr-1, blaCTX-M, blaNDM-1, blaKPC, blaOXA-48, blaIMP |
Fecal samples | 78 | 17 (22%) | 8 (11%) | 1 (1%) | mcr-1, blaCTX-M, blaSHV, blaNDM-1, blaKPC, blaOXA-48, blaIMP |
Total | 154 | 61 (39%) | 13 (8%) | 5 (38 %) |
Sr. no. | Antibiotics/VAGs/Serogroups | Target | Sequence | Annealing Temp | Amplicon Size | References |
---|---|---|---|---|---|---|
ARGs | ||||||
1 | β-lactams | blaCTX-M-1 | F: ATGTGCAGYACCAGTAARGTKATGGC R: TGGGTRAARTARGTSACCAGAAYCAGCGG | 61 | 593 | [26,27] |
2 | blaTEM | F: CGCCGCATACACTATTCTCAGAATGA R: ACGCTCACCGGCTCCAGATTTAT | 61 | 445 | ||
3 | blaSHV | F: CTTTATCGGCCCTCACTCAA R: AGGTGCTCATCATGGGAAAG | 61 | 237 | ||
4 | Tetracyclines | tetA | F: GTAATTCTGAGCACTGTCGC R: CTGCCTGGACAACATTGCTT | 55 | 956 | [28,29] |
5 | tetB | F: CTCAGTATTCCAAGCCTTTG R: ACTCCCCTGAGCTTGAGGGG | 55 | 414 | ||
6 | Quinolones | qnrA | F: TCAGCAAGAGGATTTCTCA R: GGCAGCACTATTACTCCCA | 51 | 627 | |
7 | qnrB | F: CGACCTGAGCGGCACTGAAT R: TGAGCAACGATGCCTGGTAG | 52 | 515 | ||
8 | Colistin | mcr-1 | F: AGTCCGTTTGTTCTTGTGGC R: AGATCCTTGGTCTCGGCTTG | 60 | 320 | [30] |
9 | Carbapenems | blaNDM-1 | F: TGCCCAATATTATGCACCCGG R: CGAAACCCGGCATGTCGAGA | 59 | 292 | [31,32,33] |
10 | blaOXA-48 | F: TTGGTGGCATCGATTATCGG R: GAGCACTTCTTTTGTGATGGC | 55 | 743 | ||
11 | blaKPC | F: TGCAGAGCCCAGTGTCAGTTT R: CGCTCTATCGGCGATACCA | 52 | 880 | ||
12 | blaIMP | F: GGAATAGAGTGGCTTAATTCTC R: CCAAACCACTACGTTATC | 54 | 624 | ||
VAGs | ||||||
1 | Enteroaggregative toxin | astA | F: TGCCATCAACACAGTATATCC R: TCAGGTCGCGAGTGACGGC | 59 | 116 | [34] |
2 | Colisin V operon gene | cva/cvi | F: TGGTAGAATGTGCCAGAGCAAG R: GAGCTGTTTGTAGCGAAGCC | 59 | 1181 | |
3 | Salmochelin | iroN | F: AATCCGGCAAAGAGACGAACCGCCT R: GTTCGGGCAACCCCTGCTTTGACTTT | 58 | 553 | |
4 | Hemolysin F | hlyF | F: GGCCACAGTCGTTTAGGGTGCTTACC R: GGCGGTTTAGGCATTCCGATACTCAG | 58 | 450 | |
5 | Outer membrane protein | ompT | F: TCATCCCGGAAGCCTCCCTCACTACTAT R: TAGCGTTTGCTGCACTGGCTTCTGATAC | 59 | 496 | |
6 | Iron repressible protein | irp-2 | F: AAGGATTCGCTGTTACCGGAC R: AACTCCTGATACAGGTGGC | 58 | 413 | |
7 | Temperature sensitive hemagglutinin | tsh | F: ACTATTCTCTGCAGGAAGTC R: CTTCCGATGTTCTGAACGT | 58 | 824 | |
8 | Aerobactin operon | iucD | F: ACAAAAAGTTCTATCGCTTCC R: CCTGATCCAGATGATGCTC | 59 | 714 | |
9 | P fimbriae | papC | F: TGATATCACGCAGTCAGTAGC R: CCGGCCATATTCACATAA | 57 | 501 | |
10 | Increased serum survival | iss | F: CAGCAACCCGAACCACTTGATG R: AGCATTGCCAGAGCGGCAGAA | 57 | 323 | |
11 | Aerobactin siderophores ferric receptor protein | iutA | F: GGCTGGACATCATGGGAACTGG R: CGTCGGGAACGGGTAGAATCG | 57 | 302 | |
O serogroups | ||||||
1 | Serogroup O1 | ECO1 | F: CGATGTTGAGCGCAAGGTTG R: CATTAGGTGTCTCTGGCACG | 58 | 263 | [21] |
2 | Serogroup O2 | ECO2 | F: CGATGTTGAGCGCAAGGTTG R: GATAAGGAATGCACATCGCC | 58 | 355 | |
Serogroup O78 | ECO78 | F: CGATGTTGAGCGCAAGGTTG R: TAGGTATTCCTGTTGCGGAG | 58 | 623 | ||
ST95 Allele Specific PCR | ||||||
1 | Internal control | chuA | F: CGATACGGTCGATGCAAAAG R: TTGGACAACATCAGGTCATC | 62 | 1013 | [10] |
2 | ST95, groupIX | aesIX | F: CCTGGCCTGCAACGGGAG R: TCTGGCTGCGGATAAAAGAG | 62 | 160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usman, M.; Rasool, M.H.; Khurshid, M.; Aslam, B.; Baloch, Z. Co-Occurrence of mcr-1 and Carbapenem Resistance in Avian Pathogenic E. coli Serogroup O78 ST95 from Colibacillosis-Infected Broiler Chickens. Antibiotics 2023, 12, 812. https://doi.org/10.3390/antibiotics12050812
Usman M, Rasool MH, Khurshid M, Aslam B, Baloch Z. Co-Occurrence of mcr-1 and Carbapenem Resistance in Avian Pathogenic E. coli Serogroup O78 ST95 from Colibacillosis-Infected Broiler Chickens. Antibiotics. 2023; 12(5):812. https://doi.org/10.3390/antibiotics12050812
Chicago/Turabian StyleUsman, Muhammad, Muhammad Hidayat Rasool, Mohsin Khurshid, Bilal Aslam, and Zulqarnain Baloch. 2023. "Co-Occurrence of mcr-1 and Carbapenem Resistance in Avian Pathogenic E. coli Serogroup O78 ST95 from Colibacillosis-Infected Broiler Chickens" Antibiotics 12, no. 5: 812. https://doi.org/10.3390/antibiotics12050812
APA StyleUsman, M., Rasool, M. H., Khurshid, M., Aslam, B., & Baloch, Z. (2023). Co-Occurrence of mcr-1 and Carbapenem Resistance in Avian Pathogenic E. coli Serogroup O78 ST95 from Colibacillosis-Infected Broiler Chickens. Antibiotics, 12(5), 812. https://doi.org/10.3390/antibiotics12050812