Effect of Group Housing of Preweaned Dairy Calves: Health and Fecal Commensal Antimicrobial Resistance Outcomes
Abstract
:1. Introduction
2. Results
2.1. Group Versus Individual Housing Trial
2.1.1. Descriptive Statistics and Disease Incidence
2.1.2. Disease Hazard
2.2. Longitudinal Cohort Study for AMR Hypotheses
2.2.1. Antimicrobial Drug Treatments
2.2.2. Antimicrobial Resistance
2.2.3. EC Isolates AMR Phenotype
Interval Censored Parametric Accelerated Failure Time (AFT) Models of AMR in EC Isolates
2.2.4. ES Isolates AMR Phenotype
Interval Censored Parametric AFT Survival Models of AMR in ES Isolates
3. Discussion
3.1. Disease Occurrence in Group- Versus Individually Housed Calves
3.2. Antimicrobial Resistance Phenotype of Fecal Commensals from the Study Calves
3.3. Association between Antimicrobial Resistance and Type of Calf Housing
3.4. Accelerated Failure Time Interval Regression Models to Quantify Change in Antimicrobial Resistance
4. Materials and Methods
4.1. Group Versus Individual Housing Trial
4.2. Sample Size Calculation
4.3. Hutch Modifications
4.4. Treatment Data
4.5. Data Collection
4.6. Isolation and Storage of Escherichia coli (EC)
4.7. Isolation and Storage of Enterococci and Streptococci (ES)
4.8. Bacterial Identification
4.9. Longitudinal Cohort Study for AMR Hypotheses
Antimicrobial Resistance Phenotyping
4.10. Statistical Analyses
4.10.1. Baseline Comparisons and Health Outcomes
4.10.2. Survival Analysis Models for Disease Hazard
4.10.3. EC and ES AMR Phenotype
4.10.4. Survival Interval Regression Models for Effect of Exposure to a Treated Calf
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Level | Group | Individual | p |
---|---|---|---|---|
n = 21 | n = 21 | |||
Breed | ||||
Jersey | 16 | 13 | 0.33 | |
Jersey X | 5 | 8 | ||
Body Measurements | Mean (SE) | Mean (SE) | ||
Weight (kg) | 31.64 (0.802) | 31.86 (0.695) | 0.84 | |
Hip height (cm) | 74.93 (0.407) | 74.74 (0.639) | 0.8 | |
Withers height (cm) | 70.93 (0.326) | 71.07 (0.4) | 0.78 | |
Chest girth (cm) | 73.9 (0.656) | 74.21 (0.547) | 0.72 | |
Serum Total Protein (g/dL) | 6.99 (0.791) | 7.29 (0.585) | 0.16 |
Outcome | Variable | Group | Individual | p |
---|---|---|---|---|
% (SE) | % (SE) | |||
Disease Incidence—Treatment | BRD | 66.66 (10.29) | 47.62 (10.9) | 0.22 |
Diarrhea | 33.33 (10.29) | 33.33 (10.29) | 1 | |
Disease Incidence—Scoring | CA BRD Scoring system | 61.9 (10.59) | 38.1 (10.59) | 0.122 |
Diarrhea | 100 | 95.24 (4.65) | 0.32 | |
Treatment—any | AMD treatment | 71.42 (9.86) | 71.42 (9.86) | 1 |
Variable | Group (n = 14) | p | Individual (n = 12) | p | |||
---|---|---|---|---|---|---|---|
Exposed | Unexposed | Exposed | Unexposed | ||||
Breed | |||||||
Jersey | 3 | 8 | 0.21 | 3 | 4 | 0.56 | |
Jersey X | 2 | 1 | 3 | 2 | |||
Initial Body Measurements | Mean (SE) | Mean (SE) | |||||
Weight (Kg) | 31.6 (1.9) | 32.7 (1.13) | 0.62 | 33.5 (1.27) | 32.2 (1.38) | 0.51 | |
Hip height (cm) | 74.5 (1.20) | 75.6 (0.38) | 0.32 | 75.8 (0.92) | 75.1 (1.72) | 0.73 | |
Withers height | 70.5 (0.92) | 71.4 (0.33) | 0.29 | 71.6 (0.51) | 71.7 (0.97) | 0.91 | |
Chest girth | 74 (1.56) | 74.6 (0.78) | 0.70 | 75.9 (1.02) | 73.9 (1.22) | 0.23 | |
Total Protein (g/dL) | 6.96 (0.953) | 7.24 (0.882) | 0.63 | 7.43 (0.557) | 7.27 (0.484) | 0.57 |
Antimicrobial Drug Tested | MIC (µg/mL) Breakpoint | Treatment Status | Group | Individual | ||
---|---|---|---|---|---|---|
N | % Resistant (95% CI) | N | % Resistant (95% CI) | |||
Ampicillin | ≥16 | Treated | 3 | 100 (-) | 13 | 100 (-) |
Untreated | 21 | 95.24 (85.9, 100) | 21 | 90.48 (77.61, 100) | ||
Ceftiofur | ≥8 | Treated | 3 | 66.67 (1.33, 100) | 13 | 53.85 (25.64, 82.05) |
Untreated | 21 | 38.1 (16.81, 59.38) | 21 | 52.38 (30.49, 74.27) | ||
Neomycin | ≥16 | Treated | 3 | 100 (-) | 13 | 100 (-) |
Untreated | 21 | 100 (-) | 21 | 100 (-) | ||
Gentamicin | ≥16 | Treated | 3 | 66.67 (1.33, 100) | 13 | 84.62 (64.2, 100) |
Untreated | 21 | 90.48 (77.61, 100) | 21 | 90.48 (77.61, 100) | ||
Spectinomycin | >64 | Treated | 3 | 100 (-) | 13 | 69.23 (43.12, 95.34) |
Untreated | 21 | 71.43 (51.63, 91.23) | 21 | 80.95 (63.74, 98.16) | ||
Enrofloxacin | ≥2 | Treated | 3 | 66.67 (1.33, 100) | 13 | 84.62 (64.2, 100) |
Untreated | 21 | 95.24 (85.9, 100) | 21 | 66.67 (46.01, 87.33) | ||
Danofloxacin | ≥1 | Treated | 3 | 66.67 (1.33, 100) | 13 | 84.62 (64.2, 100) |
Untreated | 21 | 95.24 (85.9, 100) | 21 | 66.67 (46.01, 87.33) | ||
Trimethoprim- sulfamethoxazole | >2/38 | Treated | 3 | 100 (-) | 13 | 92.31 (77.23, 100) |
Untreated | 21 | 85.71 (70.38, 100) | 21 | 85.71 (70.38, 100) | ||
Sulphadimethoxine | >256 | Treated | 3 | 100 (-) | 13 | 100 (-) |
Untreated | 21 | 100 (-) | 21 | 95.24 (85.9, 100) | ||
Florfenicol | ≥8 | Treated | 3 | 100 (100, 100) | 13 | 84.62 (64.2, 100) |
Untreated | 21 | 95.24 (85.9, 100) | 21 | 95.24 (85.9, 100) | ||
Tetracycline | >8 | Treated | 3 | 100 (-) | 13 | 100 (-) |
Untreated | 21 | 100 (-) | 21 | 80.95 (63.74, 98.16) |
Antimicrobial Drug Tested | MIC (µg/mL) Cut Point | Treatment Status | Individual | |
---|---|---|---|---|
N | % Resistant (95% CI) | |||
Ampicillin | ≥16 | Treated | 10 | 100 (-) |
Untreated | 14 | 100 (-) | ||
Ceftiofur | ≥8 | Treated | 10 | 20 (0, 46.13) |
Untreated | 14 | 71.43 (46.87, 95.99) | ||
Neomycin | ≥16 | Treated | 10 | 100 (-) |
Untreated | 14 | 100 (-) | ||
Gentamicin | ≥16 | Treated | 10 | 100 (-) |
Untreated | 14 | 92.86 (78.86, 100) | ||
Spectinomycin | >64 | Treated | 10 | 50 (17.33, 82.67) |
Untreated | 14 | 92.86 (78.86, 100) | ||
Enrofloxacin | ≥2 | Treated | 10 | 40 (7.99, 72.01) |
Untreated | 14 | 64.29 (38.24, 90.33) | ||
Danofloxacin | ≥1 | Treated | 10 | 40 (7.99, 72.01) |
Untreated | 14 | 64.29 (38.24, 90.33) | ||
Trimethoprim- sulfamethoxazole | >2/38 | Treated | 10 | 60 (27.99, 92.01) |
Untreated | 14 | 71.43 (46.87, 95.99) | ||
Sulphadimethoxine | >256 | Treated | 10 | 100 (-) |
Untreated | 14 | 100 (-) | ||
Florfenicol | ≥8 | Treated | 10 | 90 (70.4, 100) |
Untreated | 14 | 100 (-) | ||
Tetracycline | >8 | Treated | 10 | 100 (-) |
Untreated | 14 | 92.86 (78.86, 100) |
Antimicrobial Drug Tested | MIC (µg/mL) Breakpoint | Treatment Status | Group | Individual | ||
---|---|---|---|---|---|---|
N | % Resistant (95% CI) | N | % Resistant (95% CI) | |||
Ampicillin | ≥16 | Treated | 1 | 0 (-) | 10 | 10 (0, 29.6) |
Untreated | 16 | 6.25 (0, 18.5) | 15 | 6.67 (0, 19.73) | ||
Penicillin | >8 | Treated | 1 | 0 (-) | 10 | 20 (0, 46.13) |
Untreated | 16 | 18.75 (0, 38.5) | 15 | 13.33 (0, 31.14) | ||
Tilmicosin | >16 | Treated | 1 | 0 (-) | 10 | 100 (-) |
Untreated | 16 | 87.5 (70.76, 100) | 15 | 93.33 (80.27, 100) | ||
Florfenicol | ≥8 | Treated | 1 | 0 (-) | 10 | 70 (40.06, 99.94) |
Untreated | 16 | 6.25 (0, 18.5) | 15 | 20 (0, 40.95) | ||
Tetracycline | >8 | Treated | 1 | 100 (-) | 10 | 100 (-) |
Untreated | 16 | 87.5 (70.76, 100) | 15 | 100 (-) | ||
Tiamulin | ≥32 | Treated | 1 | 100 (-) | 10 | 70 (40.06, 99.94) |
Untreated | 16 | 75 (53.09, 96.91) | 15 | 40 (14.34, 65.66) | ||
Tylosin | >16 | Treated | 1 | 0 (-) | 10 | 100 (-) |
Untreated | 16 | 87.5 (70.76, 100) | 15 | 100 (-) | ||
Tulathromycin | >64 | Treated | 1 | 0 (-) | 10 | 80 (53.87, 100) |
Untreated | 16 | 75 (53.09, 96.91) | 15 | 73.33 (50.17, 96.5) | ||
Tildiporisin | >16 | Treated | 1 | 0 (-) | 10 | 0 (-) |
Untreated | 16 | 0 (-) | 15 | 0 (-) | ||
Gamithromycin | >8 | Treated | 1 | 0 (-) | 10 | 90 (70.4, 100) |
Untreated | 16 | 93.75 (81.5, 100) | 15 | 86.67 (68.86, 100) |
Antimicrobial Drug Tested | MIC (µg/mL) Breakpoint | Treatment Status | Individual | |
---|---|---|---|---|
N | % Resistant (95% CI) | |||
Ampicillin | ≥16 | Treated | 9 | 33.33 (0.67, 66) |
Untreated | 12 | 25 (0, 50.59) | ||
Penicillin | >8 | Treated | 9 | 22.22 (0, 51.03) |
Untreated | 12 | 33.33 (5.48, 61.19) | ||
Tilmicosin | >16 | Treated | 9 | 100 (-) |
Untreated | 12 | 100 (-) | ||
Florfenicol | ≥8 | Treated | 9 | 55.56 (21.12, 89.99) |
Untreated | 12 | 33.33 (5.48, 61.19) | ||
Tetracycline | >8 | Treated | 9 | 77.78 (48.97, 100) |
Untreated | 12 | 91.67 (75.33, 100) | ||
Tiamulin | ≥32 | Treated | 9 | 100 (-) |
Untreated | 12 | 83.33 (61.31, 100) | ||
Tylosin | >16 | Treated | 9 | 44.44 (10.01, 78.88) |
Untreated | 12 | 83.33 (61.31, 100) | ||
Tulathromycin | >64 | Treated | 9 | 55.56 (21.12, 89.99) |
Untreated | 12 | 75 (49.41, 100) | ||
Tildiporisin | >16 | Treated | 9 | 0 (-) |
Untreated | 12 | 0 (-) | ||
Gamithromycin | >8 | Treated | 9 | 88.89 (67.11, 100) |
Untreated | 12 | 100 (-) |
Housing Type | Antimicrobial Drug Tested | Distribution | No. of Observations | No. of Right- Censored Observations | No. of Left- Censored Observations | Model DF |
---|---|---|---|---|---|---|
Group | Ceftiofur | Lognormal | 66 | 18 | 8 | 5 |
Individual | Ceftiofur | Exponential | 57 | 19 | 1 | 7 |
Danofloxacin | Exponential | 57 | 33 | 16 | 5 | |
Gentamicin | Exponential | 57 | 40 | 13 | 5 | |
Florfenicol | Exponential | 57 | 39 | 0 | 5 |
EC | ES | ||
---|---|---|---|
Class | Antimicrobial Drugs | MIC(µg/mL) | MIC(µg/mL) |
Aminoglycoside | Gentamicin | ≥16 | - |
Neomycin | ≥16 a | - | |
Spectinomycin | >64 a | - | |
Cephalosporins | Ceftiofur | ≥8 | - |
Fluoroquinolone | Danofloxacin | ≥1 | - |
Enrofloxacin | ≥2 | - | |
Sulphonamides | Sulphadimethoxine | >256 | - |
Folate pathway Antagonist | Trimethoprim- sulfamethoxazole | >2/38 | - |
Macrolide | Gamithromycin | ≥8 a | |
Tildipirosin | >16 a | ||
Tilmicosin | >16 a | ||
Tulathromycin | >64 a | ||
Tylosin | >16 a | ||
Aminopenicillins | Ampicillin | ≥16 | ≥16 |
Penicillins | Penicillin | - | >8 |
Phenicol | Florfenicol | ≥8 | ≥8 |
Pleuromutilin | Tiamulin | - | ≥32 a |
Tetracyclines | Tetracycline | >8 | >8 |
References
- CDC. Antibiotic Resistance Threats in the United States; U.S. Department of Human Health and Services, CDC: Atlanta, GA, USA, 2019.
- Federal Task Force on Combating Antibiotic-Resistant Bacteria. National Action Plan For Combating Antibiotic-Resistant Bacteria 2020–2025; U.S. Department of Human Health and Services, Office of the Assistant Secretary for Planning and Evaluation: Washington, DC, USA, 2020.
- World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th ed.; WHO: Geneva, Switzerland, 2019; ISBN 9789241515528.
- US Food and Drug Administration. The Judicious Use of Medically Important Antimicrobial Drugs in Food-Producing Animals; 2012; Volume 77 FR 2232, ISBN 2402769084. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cvm-gfi-209-judicious-use-medically-important-antimicrobial-drugs-food-producing-animals (accessed on 12 May 2023).
- Summers, A.O. Generally Overlooked Fundamentals of Bacterial Genetics and Ecology. Clin. Infect. Dis. 2002, 34, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smet, A.; Martel, A.; Persoons, D.; Dewulf, J.; Heyndrickx, M.; Herman, L.; Haesebrouck, F.; Butaye, P. Broad-Spectrum β-Lactamases among Enterobacteriaceae of Animal Origin: Molecular Aspects, Mobility and Impact on Public Health. FEMS Microbiol. Rev. 2010, 34, 295–316. [Google Scholar] [CrossRef] [Green Version]
- Liebana, E.; Carattoli, A.; Coque, T.M.; Hasman, H.; Magiorakos, A.P.; Mevius, D.; Peixe, L.; Poirel, L.; Schuepbach-Regula, G.; Torneke, K.; et al. Public Health Risks of Enterobacterial Isolates Producing Extended-Spectrum β-Lactamases or AmpC β-Lactamases in Food and Food-Producing Animals: An EU Perspective of Epidemiology, Analytical Methods, Risk Factors, and Control Options. Clin. Infect. Dis. 2013, 56, 1030–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazarus, B.; Paterson, D.L.; Mollinger, J.L.; Rogers, B.A. Do Human Extraintestinal Escherichia Coli Infections Resistant to Expanded-Spectrum Cephalosporins Originate from Food-Producing Animals? A Systematic Review. Clin. Infect. Dis. 2015, 60, 439–452. [Google Scholar] [CrossRef] [Green Version]
- Cella, E.; Okello, E.; Rossitto, P.V.; Cenci-Goga, B.T.; Grispoldi, L.; Williams, D.R.; Sheedy, D.B.; Pereira, R.; Karle, B.M.; Lehenbauer, T.W.; et al. Estimating the Rates of Acquisition and Loss of Resistance of Enterobacteriaceae to Antimicrobial Drugs in Pre-Weaned Dairy Calves. Microorganisms 2021, 9, 2103. [Google Scholar] [CrossRef]
- Duse, A.; Waller, K.P.; Emanuelson, U.; Unnerstad, H.E.; Persson, Y.; Bengtsson, B. Risk Factors for Antimicrobial Resistance in Fecal Escherichia Coli from Preweaned Dairy Calves. J. Dairy Sci. 2015, 98, 500–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berge, A.C.B.; Atwill, E.R.; Sischo, W.M. Animal and Farm Influences on the Dynamics of Antibiotic Resistance in Faecal Escherichia Coli in Young Dairy Calves. Prev. Vet. Med. 2005, 69, 25–38. [Google Scholar] [CrossRef]
- Urie, N.J.; Lombard, J.E.; Shivley, C.B.; Kopral, C.A.; Adams, A.E.; Earleywine, T.J.; Olson, J.D.; Garry, F.B. Preweaned Heifer Management on US Dairy Operations: Part V. Factors Associated with Morbidity and Mortality in Preweaned Dairy Heifer Calves. J. Dairy Sci. 2018, 101, 9229–9244. [Google Scholar] [CrossRef] [Green Version]
- Love, W.J.; Lehenbauer, T.W.; Van Eenennaam, A.L.; Drake, C.M.; Kass, P.H.; Farver, T.B.; Aly, S.S. Sensitivity and Specificity of On-Farm Scoring Systems and Nasal Culture to Detect Bovine Respiratory Disease Complex in Preweaned Dairy Calves. J. Vet. Diagn. Investig. 2016, 28, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Short, D.M.; Lombard, J.E. The National Animal Health Monitoring System’s Perspective on Respiratory Disease in Dairy Cattle. Anim. Health Res. Rev. 2020, 21, 135–138. [Google Scholar] [CrossRef]
- California Department of Food & Agriculture. Guidelines for Judicious Use of Antimicrobials in Livestock; Industry Guideline; CDFA Antimicrobial Use and Stewardship; Sacramento 2020. Available online: https://www.cdfa.ca.gov/AHFSS/AUS/docs/Guidelines_Judicious_Use_of_Antimicrobials_Livestock.pdf (accessed on 28 May 2023).
- Karle, B.M.; Maier, G.U.; Love, W.J.; Dubrovsky, S.A.; Williams, D.R.; Anderson, R.J.; Van Eenennaam, A.L.; Lehenbauer, T.W.; Aly, S.S. Regional Management Practices and Prevalence of Bovine Respiratory Disease in California’s Preweaned Dairy Calves. J. Dairy Sci. 2019, 102, 7583–7596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, G.U.; Love, W.J.; Karle, B.M.; Dubrovsky, S.A.; Williams, D.R.; Champagne, J.D.; Anderson, R.J.; Rowe, J.D.; Lehenbauer, T.W.; Van Eenennaam, A.L.; et al. Management Factors Associated with Bovine Respiratory Disease in Preweaned Calves on California Dairies: The BRD 100 Study. J. Dairy Sci. 2019, 102, 7288–7305. [Google Scholar] [CrossRef] [PubMed]
- Cobb, C.J.; Obeidat, B.S.; Sellers, M.D.; Pepper-Yowell, A.R.; Ballou, M.A. Group Housing of Holstein Calves in a Poor Indoor Environment Increases Respiratory Disease but Does Not Influence Performance or Leukocyte Responses. J. Dairy Sci. 2014, 97, 3099–3109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahendran, S.A.; Claire Wathes, D.; Booth, R.E.; Blackie, N. The Health and Behavioural Effects of Individual versus Pair Housing of Calves at Different Ages on a UK Commercial Dairy Farm. Animals 2021, 11, 612. [Google Scholar] [CrossRef]
- Pereira, R.V.; Siler, J.D.; Ng, J.C.; Davis, M.A.; Warnick, L.D. Effect of Preweaned Dairy Calf Housing System on Antimicrobial Resistance in Commensal Escherichia Coli. J. Dairy Sci. 2014, 97, 7633–7643. [Google Scholar] [CrossRef] [Green Version]
- Califormia Proposition 2. Standards for Confining Farm Animals; Ballot Initiative. 2008. Available online: https://repository.uclawsf.edu/ca_ballot_props/1282 (accessed on 28 May 2023).
- California Proposition 12. Establishes New Standards for Confinement of Specified Farm Animals; Bans Sale of Noncomplying Products. Initiative Statute. 2018. Available online: https://repository.uclawsf.edu/ca_ballot_props/1377 (accessed on 28 May 2023).
- Foutz, C.A.; Godden, S.M.; Bender, J.B.; Diez-Gonzalez, F.; Akhtar, M.; Vatulin, A. Exposure to Antimicrobials through the Milk Diet or Systemic Therapy Is Associated with a Transient Increase in Antimicrobial Resistance in Fecal Escherichia Coli of Dairy Calves. J. Dairy Sci. 2018, 101, 10126–10141. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.V.; Altier, C.; Siler, J.D.; Mann, S.; Jordan, D.; Warnick, L.D. Longitudinal Effects of Enrofloxacin or Tulathromycin Use in Preweaned Calves at High Risk of Bovine Respiratory Disease on the Shedding of Antimicrobial-Resistant Fecal Escherichia Coli. J. Dairy Sci. 2020, 103, 10547–10559. [Google Scholar] [CrossRef]
- Duse, A.; Waller, K.P.; Emanuelson, U.; Unnerstad, H.E.; Persson, Y.; Bengtsson, B. Risk Factors for Quinolone-Resistant Escherichia Coli in Feces from Preweaned Dairy Calves and Postpartum Dairy Cows. J. Dairy Sci. 2015, 98, 6387–6398. [Google Scholar] [CrossRef]
- Gulliksen, S.M.; Lie, K.I.; Løken, T.; Østerås, O. Calf Mortality in Norwegian Dairy Herds. J. Dairy Sci. 2009, 92, 2782–2795. [Google Scholar] [CrossRef] [Green Version]
- Losinger, W.C.; Heinrichs, A.J. Management Practices Associated with High Mortality among Preweaned Dairy Heifers. J. Dairy Res. 1997, 64, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Ma, J.; Li, J.; Alugongo, G.M.; Wu, Z.; Wang, Y.; Li, S.; Cao, Z. Effects of Pair versus Individual Housing on Performance, Health, and Behavior of Dairy Calves. Animals 2020, 10, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bučková, K.; Šárová, R.; Moravcsíková, Á.; Špinka, M. The Effect of Pair Housing on Dairy Calf Health, Performance, and Behavior. J. Dairy Sci. 2021, 104, 10282–10290. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.B.; Larsen, L.E. Effects of Level of Social Contact on Dairy Calf Behavior and Health. J. Dairy Sci. 2014, 97, 5035–5044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolt, S.L.; Boyland, N.K.; Mlynski, D.T.; James, R.; Croft, D.P. Pair Housing of Dairy Calves and Age at Pairing: Effects on Weaning Stress, Health, Production and Social Networks. PLoS ONE 2017, 12, e0166926. [Google Scholar] [CrossRef] [Green Version]
- Chua, B.; Coenen, E.; Van Delen, J.; Weary, D.M. Effects of Pair versus Individual Housing on the Behavior and Performance of Dairy Calves. J. Dairy Sci. 2002, 85, 360–364. [Google Scholar] [CrossRef]
- Dubrovsky, S.A.; Van Eenennaam, A.L.; Karle, B.M.; Rossitto, P.V.; Lehenbauer, T.W.; Aly, S.S. Epidemiology of Bovine Respiratory Disease (BRD) in Preweaned Calves on California Dairies: The BRD 10K Study. J. Dairy Sci. 2019, 102, 7306–7319. [Google Scholar] [CrossRef]
- Hötzel, M.J.; Longo, C.; Balcão, L.F.; Cardoso, C.S.; Costa, J.H.C. A Survey of Management Practices That Influence Performance and Welfare of Dairy Calves Reared in Southern Brazil. PLoS ONE 2014, 9, e114995. [Google Scholar] [CrossRef]
- Kung, L.; Demarco, S.; Siebenson, L.N.; Joyner, E.; Haenlein, G.F.W.; Morris, R.M. An Evaluation of Two Management Systems for Rearing Calves Fed Milk Replacer. J. Dairy Sci. 1997, 80, 2529–2533. [Google Scholar] [CrossRef]
- Svensson, C.; Liberg, P. The Effect of Group Size on Health and Growth Rate of Swedish Dairy Calves Housed in Pens with Automatic Milk-Feeders. Prev. Vet. Med. 2006, 73, 43–53. [Google Scholar] [CrossRef]
- Cobb, C.J.; Obeidat, B.S.; Sellers, M.D.; Pepper-Yowell, A.R.; Hanson, D.L.; Ballou, M.A. Improved Performance and Heightened Neutrophil Responses during the Neonatal and Weaning Periods among Outdoor Group-Housed Holstein Calves. J. Dairy Sci. 2014, 97, 930–939. [Google Scholar] [CrossRef]
- Abdelfattah, E.M.; Karousa, M.M.; Lay, D.C.; Marchant-Forde, J.N.; Eicher, S.D. Short Communication: Effect of Age at Group Housing on Behavior, Cortisol, Health, and Leukocyte Differential Counts of Neonatal Bull Dairy Calves. J. Dairy Sci. 2018, 101, 596–602. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 4th ed; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Bøsling, J.; Poulsen, S.M.; Vester, B.; Long, K.S. Resistance to the Peptidyl Transferase Inhibitor Tiamulin Caused by Mutation of Ribosomal Protein L3. Antimicrob. Agents Chemother. 2003, 47, 2892–2896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelfattah, E.M.; Ekong, P.S.; Okello, E.; Chamchoy, T.; Karle, B.M.; Black, R.A.; Sheedy, D.; ElAshmawy, W.R.; Williams, D.R.; Califano, D.; et al. Epidemiology of Antimicrobial Resistance (AMR) on California Dairies: Descriptive and Cluster Analyses of AMR Phenotype of Fecal Commensal Bacteria Isolated from Adult Cows. PeerJ 2021, 9, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.C.P.; Woerther, P.L.; Bouvet, M.; Andremont, A.; Leclercq, R.; Canu, A. Escherichia Coli as Reservoir for Macrolide Resistance Genes. Emerg. Infect. Dis. 2009, 15, 1648–1650. [Google Scholar] [CrossRef]
- Wellington, E.M.H.; Boxall, A.B.A.; Cross, P.; Feil, E.J.; Gaze, W.H.; Hawkey, P.M.; Johnson-Rollings, A.S.; Jones, D.L.; Lee, N.M.; Otten, W.; et al. The Role of the Natural Environment in the Emergence of Antibiotic Resistance in Gram-Negative Bacteria. Lancet Infect. Dis. 2013, 13, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Beyi, A.F.; Brito-Goulart, D.; Hawbecker, T.; Ruddell, B.; Hassall, A.; Dewell, R.; Dewell, G.; Sahin, O.; Zhang, Q.; Plummer, P.J. Enrofloxacin Alters Fecal Microbiota and Resistome Irrespective of Its Dose in Calves. Microorganisms 2021, 9, 2162. [Google Scholar] [CrossRef] [PubMed]
- De Smet, J.; Boyen, F.; Croubels, S.; Rasschaert, G.; Haesebrouck, F.; Temmerman, R.; Rutjens, S.; De Backer, P.; Devreese, M. The Impact of Therapeutic-Dose Induced Intestinal Enrofloxacin Concentrations in Healthy Pigs on Fecal Escherichia Coli Populations. BMC Vet. Res. 2020, 16, 382. [Google Scholar] [CrossRef]
- Andraud, M.; Rose, N.; Laurentie, M.; Sanders, P.; Le Roux, A.; Cariolet, R.; Chauvin, C.; Jouy, E. Estimation of Transmission Parameters of a Fluoroquinolone-Resistant Escherichia Coli Strain between Pigs in Experimental Conditions. Vet. Res. 2011, 42, 44. [Google Scholar] [CrossRef] [Green Version]
- Michael, A.; Kelman, T.; Pitesky, M. Overview of Quantitative Methodologies to Understand Antimicrobial Resistance via Minimum Inhibitory Concentration. Animals 2020, 10, 1405. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; O’Connor, A. A Hierarchical Bayesian Latent Class Mixture Model with Censorship for Detection of Linear Temporal Changes in Antibiotic Resistance. PLoS ONE 2020, 15, e0220427. [Google Scholar] [CrossRef] [Green Version]
- Stegeman, J.A.; Vernooij, J.C.M.; Khalifa, O.A.; Van den Broek, J.; Mevius, D.J. Establishing the Change in Antibiotic Resistance of Enterococcus Faecium Strains Isolated from Dutch Broilers by Logistic Regression and Survival Analysis. Prev. Vet. Med. 2006, 74, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Maier, G.U.; Love, W.J.; Karle, B.M.; Dubrovsky, S.A.; Williams, D.R.; Champagne, J.D.; Anderson, R.J.; Rowe, J.D.; Lehenbauer, T.W.; Van Eenennaam, A.L.; et al. A Novel Risk Assessment Tool for Bovine Respiratory Disease in Preweaned Dairy Calves. J. Dairy Sci. 2020, 103, 9301–9317. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chow, S. Sample Size Calculation for Comparing Variabilities. Wiley StatsRef Stat. Ref. Online 2014, 1–11. [Google Scholar] [CrossRef]
- Love, W.J.; Lehenbauer, T.W.; Kass, P.H.; Van Eenennaam, A.L.; Aly, S.S. Development of a Novel Clinical Scoring Systemfor On-Farmdiagnosis of Bovine Respiratory Disease in Pre-Weaned Dairy Calves. PeerJ 2014, 2014, e238. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, H.R.; Williams, D.R.; Champagne, J.D.; Lehenbauer, T.W.; Aly, S.S. Effectiveness of Zinc Supplementation on Diarrhea and Average Daily Gain in Preweaned Dairy Calves: A Double-Blind, Blockrandomized, Placebo-Controlled Clinical Trial. PLoS ONE 2019, 14, e0219321. [Google Scholar] [CrossRef] [Green Version]
- Kleinbaum, D.G.; Klein, M. Survival Analysis: A Self Learning Text; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Aly, S.S.; Gardner, I.A.; Adaska, J.M.; Anderson, R.J. Off-Site Rearing of Heifers Reduces the Risk of Mycobacterium Avium Ssp. Paratuberculosis ELISA Seroconversion and Fecal Shedding in a California Dairy Herd. J. Dairy Sci. 2015, 98, 1805–1814. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Crespi, C.M.; Wong, W.K. Comparison of Methods for Estimating the Intraclass Correlation Coefficient for Binary Responses in Cancer Prevention Cluster Randomized Trials. Contemp. Clin. Trials 2012, 33, 869–880. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.L. A Note on Robust Variance Estimation for Cluster-Correlated Data. Biometrics 2000, 56, 645–646. [Google Scholar] [CrossRef]
Disease | Outcome | Variable | Level | Hazard Ratio | SE | p | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
BRD | Treatment | Housing | Individual | Referent | ||||
Group | 1.94 | 0.589 | 0.03 | 1.07 | 3.52 | |||
California BRD Scoring System ≥ 5 | Housing | Individual | Referent | |||||
Group | 1.85 | 0.88 | 0.2 | 0.723 | 4.721 | |||
Diarrhea | Treatment | Housing | Individual | Referent | ||||
Group | 0.71 | 0.298 | 0.42 | 0.31 | 1.62 | |||
Fecal Score = 3 | Housing | Individual | Referent | |||||
Group | 1.25 | 0.345 | 0.42 | 0.73 | 2.15 |
Antimicrobial Drug Tested | MIC (µg/mL) Breakpoint | Status | Group | Individual | p | ||
---|---|---|---|---|---|---|---|
N | % Resistant (95% CI) | N | % Resistant (95% CI) | ||||
Ampicillin | ≥16 | Unexposed | 29 | 79.3 (52.7, 100) | 20 | 90 (76.9, 100) | 0.47 |
Exposed | 25 | 96 (88.3, 100) | 28 | 89.3 (77.8, 100) | 0.36 | ||
Treated | 20 | 100 (-) | 27 | 92.6 (82.7, 100) | 0.21 | ||
Ceftiofur | ≥8 | Unexposed | 29 | 17.2 (3.5, 30.9) a,b | 20 | 60 (38.5, 81.5) | <0.01 |
Exposed | 25 | 60 (40.8, 79.2) a | 28 | 57.1 (23.6, 90.7) | 0.89 | ||
Treated | 20 | 55 (33.2, 76.8) b | 27 | 55.6 (36.8, 74.3) | 0.97 | ||
Enrofloxacin | ≥2 | Unexposed | 29 | 79.3 (54.1, 100) | 20 | 80 (47.5, 100) | 0.97 |
Exposed | 25 | 88 (75.3, 100) | 28 | 53.6 (28.9, 78.3) | 0.02 | ||
Treated | 20 | 100 (-) | 27 | 88.9 (77.0, 100) | 0.12 | ||
Florfenicol | ≥8 | Unexposed | 29 | 37.9 (17.5, 58.4) | 20 | 80 (60.9, 99.1) | <0.01 |
Exposed | 25 | 40 (17.1, 62.9) | 28 | 71.4 (48.1, 94.8) | 0.07 | ||
Treated | 20 | 60 (35.3, 84.6) | 27 | 66.7 (44.1, 89.3) | 0.75 | ||
Tetracycline | ≥8 | Unexposed | 29 | 86.2 (65.9, 100) | 20 | 90 (76.9, 100) | 0.76 |
Exposed | 25 | 96 (88.3, 100) | 28 | 89.3 (77.8, 100) | 0.36 | ||
Treated | 20 | 100 (-) | 27 | 92.6 (82.7, 100) | 0.21 | ||
Danofloxacin | ≥1 | Unexposed | 29 | 86.2 (73.7, 98.8) | 20 | 80 (47.5, 100) | 0.71 |
Exposed | 25 | 88 (75.3, 100) | 28 | 60.7 (42.6, 78.8) | 0.03 | ||
Treated | 20 | 100 (-) | 27 | 92.6 (82.7, 100) | 0.21 |
Antimicrobial Drug Tested | MIC (µg/mL) Breakpoint | Status | Group | Individual | p | ||
---|---|---|---|---|---|---|---|
N | % Resistant (95% CI) | N | % Resistant (95% CI) | ||||
Gentamicin | ≥16 | Unexposed | 29 | 75.9 (48.5, 100) | 20 | 70 (27.9, 100) | 0.82 |
Exposed | 25 | 96 (88.3, 100) | 28 | 85.7 (70.1, 100) | 0.25 | ||
Treated | 20 | 100 (-) | 27 | 92.6 (82.7, 100) | 0.21 | ||
Neomycin | ≥8 | Unexposed | 29 | 89.7 (78.6, 100) | 20 | 90 (76.9, 100) | 0.97 |
Exposed | 25 | 96 (88.3, 100) | 28 | 89.3 (77.8, 100) | 0.36 | ||
Treated | 20 | 100 (-) | 27 | 96.3 (89.2, 100) | 0.38 | ||
Spectinomycin | ≥64 | Unexposed | 29 | 41.4 (23.5, 59.3) | 20 | 65 (33.6, 96.4) | 0.22 |
Exposed | 25 | 44 (3.6, 84.4) | 28 | 67.9 (50.6, 85.2) | 0.29 | ||
Treated | 20 | 60 (22.9, 97.1) | 27 | 59.3 (33.3, 85.3) | 0.97 | ||
Trimethoprim– sulfamethoxazole | >256 | Unexposed | 29 | 79.3 (52.7, 100) | 20 | 90 (76.9, 100) | 0.47 |
Exposed | 25 | 88 (75.3, 100) | 28 | 78.6 (63.4, 93.8) | 0.36 | ||
Treated | 20 | 95 (85.5, 100) | 27 | 96.3 (89.2, 100) | 0.83 | ||
Sulphadimethoxine | ≥64 | Unexposed | 29 | 89.7 (78.6, 100) | 20 | 95 (85.5, 100) | 0.50 |
Exposed | 25 | 100 (-) | 28 | 92.9 (83.3, 100) | 0.17 | ||
Treated | 20 | 100 (-) | 27 | 96.3 (89.2, 100) | 0.38 |
Variable | Ceftiofur | |
---|---|---|
MIC Ratio (95% CI) | p | |
Intercept | 1.29 (0.36, 4.68) | 0.69 |
Unexposed | Referent | |
Exposed | 0.51 (0.04, 6.69) | 0.61 |
Pre-Exposure | Referent | |
1–3 DPE | 0.28 (0.08, 1.04) | 0.06 |
4–14 DPE | 0.33 (0.07, 1.49) | 0.15 |
Exposed × Pre-Exposure | Referent | |
Exposed × 1–3 DPE | 3.52 (0.21, 59.81) | 0.38 |
Exposed × 4–14 DPE | 50.86 (3.55, 729.21) | <0.01 |
Variable | Ceftiofur | Danofloxacin | ||
---|---|---|---|---|
MIC Ratio (95% CI) | p | MIC Ratio (95% CI) | p | |
Intercept | 0.90 (0.30, 2.65) | 0.84 | 0.17 (0.06, 0.53) | <0.01 |
Unexposed | Referent | Referent | ||
Exposed | 2.58 (0.50, 13.32) | 0.26 | 5.18 (0.97, 27.66) | 0.05 |
Pre-Exposure | Referent | Referent | ||
1–3 DPE | 2.42 (0.99, 5.90) | 0.05 | ||
4–7 DPE | 4.77 (0.45, 50.81) | 0.20 | ||
7–14 DPE | 47.41 (11.03, 203.82) | <0.01 | ||
1–5 DPE | 64.70 (9.74, 429.85) | <0.01 | ||
6–14 DPE | 16.81 (0.70, 403.82) | 0.08 | ||
Exposed × Pre-Exposure | Referent | Referent | ||
Exposed × 1–3 DPE | 0.25 (0.03, 1.82) | 0.17 | ||
Exposed × 4–7 DPE | 0.87 (0.03, 29.49) | 0.94 | ||
Exposed × 7–14 DPE | 0.01 (0.001, 0.19) | <0.01 | ||
Exposed × 1–5 DPE | 0.03 (0.003, 0.22) | <0.01 | ||
Exposed × 6–14 DPE | 0.09 (0.003, 2.48) | 0.15 |
Variable | Gentamicin | Florfenicol | ||
---|---|---|---|---|
MIC Ratio (95% CI) | p | MIC Ratio (95% CI) | p | |
Intercept | 0.56 (0.23, 1.37) | 0.20 | 5.28 (1.89, 14.75) | <0.01 |
Unexposed | Referent | Referent | ||
Exposed | 39.11 (10.17, 150.38) | <0.01 | 4.36 (1.05, 18.03) | 0.04 |
Pre-Exposure | Referent | Referent | ||
1–3 DPE | 87.79 (10.04, 767.83) | <0.01 | ||
4–14 DPE | 77.94 (12.91, 470.42) | <0.01 | ||
1–5 DPE | 8.43 (1.14, 62.39) | 0.04 | ||
6–14 DPE | 4.07 (1.12, 14.80) | 0.03 | ||
Exposed × Pre-Exposure | Referent | Referent | ||
Exposed × 1–5 DPE | 0.06 (0.004, 0.73) | 0.03 | ||
Exposed × 6–14 DPE | 0.54 (0.06, 4.89) | 0.58 | ||
Exposed × 1–3 DPE | 0.01 (0.001, 0.17) | <0.01 | ||
Exposed × 4–14 DPE | 0.17 (0.007, 4.11) | 0.28 |
Antimicrobial Drug Tested | Variable Level | Exposed | Unexposed | Exposed–Unexposed | |||
---|---|---|---|---|---|---|---|
MIC (95% CI) | p | MIC (95% CI) | p | MIC Difference (95% CI) | p | ||
Ceftiofur | Pre-Exposure | 0.66 (−0.82, 2.14) | 0.38 | 1.29 (−0.37, 2.96) | 0.13 | −0.64 (−2.85, 1.58) | 0.57 |
1–3 DPE | 0.66 (−0.29, 1.61) | 0.18 | 0.37 (0.26, 0.48) | <0.01 | 0.29 (−0.67, 1.25) | 0.55 | |
4–14 DPE | 11.05 (1.59, 20.49) | 0.02 | 0.43 (0.14, 0.72) | <0.01 | 10.62 (1.17, 20.07) | 0.03 |
Antimicrobial Drug Tested | Variable Level | Exposed | Unexposed | Exposed–Unexposed | |||
---|---|---|---|---|---|---|---|
MIC (95% CI) | p | MIC (95% CI) | p | MIC Difference (95% CI) | p | ||
Ceftiofur | Pre-Exposure | 2.31 (−0.56, 5.23) | 0.12 | 0.90 (−0.08, 1.86) | 0.07 | 1.42 (−1.63, 4.47) | 0.36 |
1–3 DPE | 1.39 (−0.23, 3.01) | 0.09 | 2.17 (0.59, 3.76) | 0.01 | −0.78(−3.01, 1.45) | 0.49 | |
4–7 DPE | 9.65 (−5.06, 24.36) | 0.19 | 4.28 (−6.89, 15.45) | 0.45 | 5.37 (−12.87, 23.61) | 0.56 | |
8–14 DPE | 1.27 (−0.75, 3.29) | 0.22 | 42.52 (−33.86, 118.91) | 0.28 | −41.26 (−117.59, 35.08) | 0.29 | |
Danofloxacin | Pre-Exposure | 0.89 (−0.21, 1.98) | 0.11 | 0.17 (−0.02, 0.36) | 0.08 | 0.72 (−0.39, 1.83) | 0.21 |
1–5 DPE | 1.48 (−0.16, 3.13) | 0.07 | 11.06 (−9.70, 31.82) | 0.29 | −9.58 (−30.40, 11.25) | 0.37 | |
6–14 DPE | 0.39 (−0.79, 1.57) | 0.52 | 2.87 (−3.47, 9.21) | 0.37 | −1.60 (−8.02, 4.82) | 0.66 | |
Gentamicin | Pre-Exposure | 21.83 (−0.10, 43.76) | 0.05 | 0.56 (0.06, 1.06) | 0.03 | 21.27 (−0.67, 43.21) | 0.06 |
1–3 DPE | 21.83 (−15.09, 58.74) | 0.25 | 49.00 (−62.54, 160.54) | 0.39 | −27.17 (−144.66, 90.32) | 0.65 | |
4–14 DPE | 289.50 (−260.86, 839.86) | 0.30 | 43.50 (−34.66, 121.66) | 0.28 | 246.00 (−309.88, 801.88) | 0.39 | |
Florfenicol | Pre-Exposure | 22.99 (0.45, 45.52) | 0.05 | 5.28 (−0.15, 10.70) | 0.06 | 17.71 (−5.47, 40.88) | 0.13 |
1–5 DPE | 10.97 (−0.02, 21.96) | 0.05 | 44.48 (−9.11, 98.07) | 0.10 | −33.51 (−88.22, 21.19) | 0.23 | |
6–14 DPE | 50.25 (−9.98, 110.47) | 0.10 | 21.50 (0.53, 42.46) | 0.04 | 28.75 (−35.02, 92.52) | 0.38 |
Antimicrobial Drug Tested | MIC (µg/mL) Breakpoint | Status | N | Group | N | Individual |
---|---|---|---|---|---|---|
% Resistant (95% CI) | % Resistant (95% CI) | |||||
Ampicillin | ≥16 | Unexposed | 27 | 7.4 (0, 17.3) | 24 | 16.7 (1.4, 31.9) |
Exposed | 22 | 13.6 (0, 28.3) | 26 | 3.8 (0, 11.4) | ||
Treated | 17 | 29.4 (7.1, 51.7) | 24 | 20.8 (4.2, 37.4) | ||
Florfenicol | ≥8 | Unexposed | 27 | 33.3 (15.6, 51.1) | 24 | 50 (29.6, 70.4) |
Exposed | 22 | 45.5 (25.7, 65.2) | 26 | 42.3 (22.9, 61.7) | ||
Treated | 17 | 41.2 (17.8, 64.6) | 24 | 37.5 (17.7, 57.3) | ||
Gamithromycin | ≥8 | Unexposed | 27 | 92.6 (82.7, 100) | 24 | 91.7 (80.4, 100) |
Exposed | 22 | 86.4 (71.7, 100) | 26 | 88.5 (75.9, 100) | ||
Treated | 17 | 94.1 (82.6, 100) | 24 | 66.7 (47.4, 85.9) | ||
Penicillin | >8 | Unexposed | 27 | 11.1 (0, 22.9) | 24 | 16.7 (1.4, 31.9) |
Exposed | 22 | 22.7 (5.2, 40.2) | 26 | 11.5 (0, 24.1) | ||
Treated | 17 | 23.5 (3.3, 43.7) | 24 | 20.8 (4.2, 37.4) | ||
Tetracycline | ≥8 | Unexposed | 27 | 100 (-) | 24 | 100 (-) |
Exposed | 22 | 90.9 (78.9, 100) | 26 | 100 (-) | ||
Treated | 17 | 100 (-) | 24 | 100 (-) | ||
Tiamulin | ≥32 | Unexposed | 27 | 59.2 (40.4, 78.1) | 24 | 79.2 (62.6, 95.8) |
Exposed | 22 | 81.8 (65.3, 98.3) | 26 | 100 (-) | ||
Treated | 17 | 70.6 (48.3, 92.9) | 24 | 62.5 (42.7, 82.3) | ||
Tildipirosin | >16 | Unexposed | 27 | 0 (-) | 24 | 0 (-) |
Exposed | 22 | 0 (-) | 26 | 0 (-) | ||
Treated | 17 | 0 (-) | 24 | 0 (-) | ||
Tilmicosin | >16 | Unexposed | 27 | 96.3 (89, 100) | 24 | 87.5 (73.9, 100) |
Exposed | 22 | 86.3 (71.7, 100) | 26 | 96.1 (88.6, 100) | ||
Treated | 17 | 82.4 (63.7, 100) | 24 | 91.7 (80.4, 100) | ||
Tulathromycin | ≥32 | Unexposed | 27 | 92.6 (82.7, 100) | 24 | 88.5 (76.2, 100) |
Exposed | 22 | 86.3 (72, 100) | 26 | 85.7 (72.8, 98.7) | ||
Treated | 17 | 76.5 (56.3, 96.6) | 24 | 68 (49.7, 86.3) | ||
Tylosin | ≥16 | Unexposed | 27 | 92.6 (82.7, 100) | 24 | 95.8 (82.1, 100) |
Exposed | 22 | 86.4 (71.7, 100) | 26 | 88.5 (75.9, 100) | ||
Treated | 17 | 76.5 (55.7, 97.3) | 24 | 84 (68.1, 98.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breen, M.J.; Williams, D.R.; Abdelfattah, E.M.; Karle, B.M.; Byrne, B.A.; Lehenbauer, T.W.; Aly, S.S. Effect of Group Housing of Preweaned Dairy Calves: Health and Fecal Commensal Antimicrobial Resistance Outcomes. Antibiotics 2023, 12, 1019. https://doi.org/10.3390/antibiotics12061019
Breen MJ, Williams DR, Abdelfattah EM, Karle BM, Byrne BA, Lehenbauer TW, Aly SS. Effect of Group Housing of Preweaned Dairy Calves: Health and Fecal Commensal Antimicrobial Resistance Outcomes. Antibiotics. 2023; 12(6):1019. https://doi.org/10.3390/antibiotics12061019
Chicago/Turabian StyleBreen, Martin J., Deniece R. Williams, Essam M. Abdelfattah, Betsy M. Karle, Barbara A. Byrne, Terry W. Lehenbauer, and Sharif S. Aly. 2023. "Effect of Group Housing of Preweaned Dairy Calves: Health and Fecal Commensal Antimicrobial Resistance Outcomes" Antibiotics 12, no. 6: 1019. https://doi.org/10.3390/antibiotics12061019
APA StyleBreen, M. J., Williams, D. R., Abdelfattah, E. M., Karle, B. M., Byrne, B. A., Lehenbauer, T. W., & Aly, S. S. (2023). Effect of Group Housing of Preweaned Dairy Calves: Health and Fecal Commensal Antimicrobial Resistance Outcomes. Antibiotics, 12(6), 1019. https://doi.org/10.3390/antibiotics12061019