Prevalence of Antibiotic-Resistant Seafood-Borne Pathogens in Retail Seafood Sold in Malaysia: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Literature Search and Eligible Studies
2.2. Retail Samples Analyzed
2.2.1. Fish
2.2.2. Mollusks
2.2.3. Crustaceans
2.2.4. Cephalopods
2.3. Pathogens
2.3.1. Fish
2.3.2. Mollusks
2.3.3. Crustaceans
2.3.4. Cephalopods
2.4. Antibiotic Resistance
2.4.1. Fish
2.4.2. Mollusks
2.4.3. Crustaceans
2.4.4. Cephalopods
3. Discussion
4. Materials and Methods
4.1. Stage 1: Definition of Terms
4.2. Stage 2: Developing Research Questions
- Are there seafood-borne pathogens in retail seafood sold in Malaysia?
- Are these pathogens resistant to antibiotics?
- What is the prevalence of antibiotic-resistant seafood-borne pathogens in retail seafood sold in Malaysia?
4.3. Stage 3: Identifying Relevant Primary Studies
4.4. Stage 4: Selection and Screening of Relevant Primary Studies
- primary study carried out in Malaysia;
- retail seafood samples were purchased from hyper-, super-, or wet markets;
- types of antibiotics used were stated;
- total number of samples (population) and positive samples were stated;
- method of isolation and identification of seafood-borne pathogens.
- primary studies involved diseased seafood;
- processed seafood products;
- studies involving only isolation and characterization;
- studies involving pathogens from culture environment fish farms or ponds;
- the studies were led by authors from other countries with Malaysian co-author(s).
4.5. Stage 5: Data Extraction
4.6. Stage 6: Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noger-Huet, É.; Vagner, M.; Le Grand, F.; Graziano, N.; Bideau, A.; Brault-Favrou, M.; Churlaud, C.; Bustamante, P.; Lacoue-Labarthe, T. Risk and benefit assessment of seafood consumption harvested from the Pertuis Charentais region of France. Environ. Pollut. 2022, 292, 118388. [Google Scholar] [CrossRef] [PubMed]
- Odeyemi, O.A.; Burke, C.M.; Bolch, C.C.J.; Stanley, R. Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. Int. J. Food Microbiol. 2018, 280, 87–99. [Google Scholar] [CrossRef]
- Guardone, L.; Tinacci, L.; Armani, A.; Trevisani, M. Residues of veterinary drugs in fish and fish products: An analysis of RASFF data over the last 20 years. Food Control 2022, 135, 108780. [Google Scholar] [CrossRef]
- Odeyemi, O.; Somorin, Y.; Ateba, C.; Onyeaka, H.; Anyogu, A. Pathogens associated with seafood exports from southeast asia to the European Union: Analysis of the Rapid Alert System for Food and Feed (1997–2020). Bulg. J. Vet. Med. 2022. [Google Scholar] [CrossRef]
- Dey, D.; Chowdhury, S.; Sen, R. Insight into recent advances on nanotechnology-mediated removal of antibiotic resistant bacteria and genes. J. Water Process Eng. 2023, 52, 103535. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Boziaris, I.S.; Mireles DeWitt, C.A. Chapter 32-Pathogens and their sources in freshwater fish, sea finfish, shellfish, and algae. In Present Knowledge in Food Safety; Knowles, M.E., Anelich, L.E., Boobis, A.R., Popping, B., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 471–492. [Google Scholar] [CrossRef]
- Himanshu, R.; Prudencio, C.; da Costa, A.C.; Leal, E.; Chang, C.-M.; Pandey, R.P. Systematic Surveillance and Meta-Analysis of Antimicrobial Resistance and Food Sources from China and the USA. Antibiotics 2022, 11, 1471. [Google Scholar] [CrossRef]
- Ma, J.-Y.; Zhu, X.-K.; Hu, R.-G.; Qi, Z.-Z.; Sun, W.-C.; Hao, Z.-P.; Cong, W.; Kang, Y.-H. A systematic review, meta-analysis and meta-regression of the global prevalence of foodborne Vibrio spp. infection in fishes: A persistent public health concern. Mar. Pollut. Bull. 2023, 187, 114521. [Google Scholar] [CrossRef]
- Hamidiyan, N.; Salehi-Abargouei, A.; Rezaei, Z.; Dehghani-Tafti, R.; Akrami-Mohajeri, F. The prevalence of Listeria spp. food contamination in Iran: A systematic review and meta-analysis. Food Res. Int. 2018, 107, 437–450. [Google Scholar] [CrossRef]
- Odeyemi, O.A. Incidence and prevalence of Vibrio parahaemolyticus in seafood: A systematic review and meta-analysis. SpringerPlus 2016, 5, 464. [Google Scholar] [CrossRef]
- Sani, N.A.; Odeyemi, O.A. Occurrence and prevalence of Cronobacter spp. in plant and animal derived food sources: A systematic review and meta-analysis. SpringerPlus 2015, 4, 545. [Google Scholar] [CrossRef]
- Spaur, M.; Davis, B.J.K.; Kivitz, S.; DePaola, A.; Bowers, J.C.; Curriero, F.C.; Nachman, K.E. A systematic review of post-harvest interventions for Vibrio parahaemolyticus in raw oysters. Sci. Total Environ. 2020, 745, 140795. [Google Scholar] [CrossRef] [PubMed]
- Gonzales-Barron, U.; Thébault, A.; Kooh, P.; Watier, L.; Sanaa, M.; Cadavez, V. Strategy for systematic review of observational studies and meta-analysis modelling of risk factors for sporadic foodborne diseases. Microb. Risk Anal. 2021, 17, 100082. [Google Scholar] [CrossRef]
- Hussain, N.; Hussain, F.; Bhandari, M.; Morshed, S. Systematic reviews and meta-analysis. Evid.-Based Orthop. 2011, 20, 57–59. [Google Scholar]
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to perform a meta-analysis with R: A practical tutorial. BMJ Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Bizzini, M. Systematic review and meta-analysis: A primer. Int. J. Sport. Phys. Ther. 2012, 7, 493. [Google Scholar]
- Tober, M. PubMed, ScienceDirect, Scopus or Google Scholar–Which is the best search engine for an effective literature research in laser medicine? Med. Laser Appl. 2011, 26, 139–144. [Google Scholar] [CrossRef]
- Ministry of Higher Education. The National Higher Education Strategic Plan Beyond 2020; Ministry of Higher Education Malaysia Putrajaya: Kuala Lumpur, Malaysia, 2007.
- Amran, F.H.; Rahman, I.K.A.; Salleh, K.; Ahmad, S.N.S.; Haron, N.H. Funding Trends of Research Universities in Malaysia. Procedia-Soc. Behav. Sci. 2014, 164, 126–134. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Ahmad, A.; Rahim, N.F.M.; Said, N.S.M.; Alnawajha, M.M.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Ismail, N.I.; Hasan, H.A. Aquaculture in Malaysia: Water-related environmental challenges and opportunities for cleaner production. Environ. Technol. Innov. 2021, 24, 101913. [Google Scholar] [CrossRef]
- Pigłowski, M. Hazards in Seafood Notified in the Rapid Alert System for Food and Feed (RASFF) in 1996–2020. Water 2023, 15, 548. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA J. 2015, 13, 3991. [Google Scholar] [CrossRef]
- Li, T.-H.; Chiu, C.-H.; Chen, W.-C.; Chen, C.-M.; Hsu, Y.-M.; Chiou, S.-S.; Chiou, C.-S.; Chang, C.-C. Consumption of groundwater as an independent risk factor of Salmonella Choleraesuis infection: A case-control study in Taiwan. J. Environ. Health 2009, 72, 28–32. [Google Scholar] [PubMed]
- Budiati, T.; Rusul, G.; Wan-Abdullah, W.N.; Arip, Y.M.; Ahmad, R.; Thong, K.L. Prevalence, antibiotic resistance and plasmid profiling of Salmonella in catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from wet markets and ponds in Malaysia. Aquaculture 2013, 372–375, 127–132. [Google Scholar] [CrossRef]
- Novoslavskij, A.; Terentjeva, M.; Eizenberga, I.; Valciņa, O.; Bartkevičs, V.; Bērziņš, A. Major foodborne pathogens in fish and fish products: A review. Ann. Microbiol. 2016, 66, 1–15. [Google Scholar]
- Rahimi, E.; Shakerian, A.; Falavarjani, A.G. Prevalence and antimicrobial resistance of Salmonella isolated from fish, shrimp, lobster, and crab in Iran. Comp. Clin. Pathol. 2013, 22, 59–62. [Google Scholar] [CrossRef]
- Ponce, E.; Khan, A.A.; Cheng, C.-M.; Summage-West, C.; Cerniglia, C.E. Prevalence and characterization of Salmonella enterica serovar Weltevreden from imported seafood. Food Microbiol. 2008, 25, 29–35. [Google Scholar] [CrossRef]
- Hatha, A.M.; Lakshmanaperumalsamy, P. Prevalence of Salmonellain fish and crustaceans from markets in Coimbatore, South India. Food Microbiol. 1997, 14, 111–116. [Google Scholar] [CrossRef]
- Shabarinath, S.; Kumar, H.S.; Khushiramani, R.; Karunasagar, I.; Karunasagar, I. Detection and characterization of Salmonella associated with tropical seafood. Int. J. Food Microbiol. 2007, 114, 227–233. [Google Scholar] [CrossRef]
- Basti, A.A.; Misaghi, A.; Salehi, T.Z.; Kamkar, A. Bacterial pathogens in fresh, smoked and salted Iranian fish. Food Control 2006, 17, 183–188. [Google Scholar] [CrossRef]
- Alexopoulos, A.; Plessas, S.; Voidarou, C.; Noussias, H.; Stavropoulou, E.; Mantzourani, I.; Tzora, A.; Skoufos, I.; Bezirtzoglou, E. Microbial ecology of fish species ongrowing in Greek sea farms and their watery environment. Anaerobe 2011, 17, 264–266. [Google Scholar] [CrossRef]
- Hudecová, K.; Buchtová, H.; Steinhauserová, I. Effects of modified atmosphere packaging on the microbiological properties of fresh common carp (Cyprinus carpio L.). Acta Vet. Brno 2010, 79, 93–100. [Google Scholar] [CrossRef]
- Chatterjee, S.; Haldar, S. Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J. Mar. Sci. Res. Dev. S 2012, 1, 1–7. [Google Scholar]
- Baker-Austin, C.; Stockley, L.; Rangdale, R.; Martinez-Urtaza, J. Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: A European perspective. Environ. Microbiol. Rep. 2010, 2, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Bibi, F.; Qaisrani, S.N.; Ahmad, A.N.; Akhtar, M.; Khan, B.N.; Ali, Z. Occurrence of Salmonella in freshwater fishes: A review. J. Anim. Plant Sci. 2015, 25, 303–310. [Google Scholar]
- Letchumanan, V.; Chan, K.-G.; Lee, L.-H. Vibrio parahaemolyticus: A review on the pathogenesis, prevalence, and advance molecular identification techniques. Front. Microbiol. 2014, 5, 705. [Google Scholar] [CrossRef]
- Jakšić, S.; Uhitil, S.; Petrak, T.; Bažulić, D.; Karolyi, L.G. Occurrence of Vibrio spp. in sea fish, shrimps and bivalve molluscs harvested from Adriatic sea. Food Control 2002, 13, 491–493. [Google Scholar] [CrossRef]
- Koralage, M.S.G.; Alter, T.; Pichpol, D.; Strauch, E.; Zessin, K.-H.; Huehn, S. Prevalence and molecular characteristics of Vibrio spp. isolated from preharvest shrimp of the North Western Province of Sri Lanka. J. Food Prot. 2012, 75, 1846–1850. [Google Scholar] [CrossRef]
- Sperling, L.; Alter, T.; Huehn, S. Prevalence and antimicrobial resistance of Vibrio spp. in retail and farm shrimps in Ecuador. J. Food Prot. 2015, 78, 2089–2092. [Google Scholar] [CrossRef]
- Ahmed, H.A.; El Bayomi, R.M.; Hussein, M.A.; Khedr, M.H.; Remela, E.M.A.; El-Ashram, A.M. Molecular characterization, antibiotic resistance pattern and biofilm formation of Vibrio parahaemolyticus and V. cholerae isolated from crustaceans and humans. Int. J. Food Microbiol. 2018, 274, 31–37. [Google Scholar] [CrossRef]
- Papadopoulou, C.; Economou, E.; Zakas, G.; Salamoura, C.; Dontorou, C.; Apostolou, J. Microbiological and pathogenic contaminants of seafood in Greece. J. Food Qual. 2007, 30, 28–42. [Google Scholar] [CrossRef]
- Davies, A.R.; Capell, C.; Jehanno, D.; Nychas, G.J.; Kirby, R.M. Incidence of foodborne pathogens on European fish. Food Control 2001, 12, 67–71. [Google Scholar] [CrossRef]
- Roque, A.; Lopez-Joven, C.; Lacuesta, B.; Elandaloussi, L.; Wagley, S.; Furones, M.D.; Ruiz-Zarzuela, I.; de Blas, I.; Rangdale, R.; Gomez-Gil, B. Detection and identification of tdh-and trh-positive Vibrio parahaemolyticus strains from four species of cultured bivalve molluscs on the Spanish Mediterranean Coast. Appl. Environ. Microbiol. 2009, 75, 7574–7577. [Google Scholar] [CrossRef] [PubMed]
- Biasizzo, M.; Kirbiš, A.; Marinšek, J. Bacterial contamination of shellfish in Slovenia. Slov. Vet. Res. 2005, 42, 83–87. [Google Scholar]
- Oliveira, J.; Cunha, A.; Castilho, F.; Romalde, J.; Pereira, M. Microbial contamination and purification of bivalve shellfish: Crucial aspects in monitoring and future perspectives–A mini-review. Food Control 2011, 22, 805–816. [Google Scholar] [CrossRef]
- Moreno Roldan, E.; Rodríguez, E.E.; Vicente, C.N.; Navajas, M.F.C.; Abril, O.M. Microbial contamination of bivalve mollusks used for human consumption. J. Food Saf. 2011, 31, 257–261. [Google Scholar] [CrossRef]
- Chamosa, L.S.; Álvarez, V.E.; Nardelli, M.; Quiroga, M.P.; Cassini, M.H.; Centrón, D. Lateral antimicrobial resistance genetic transfer is active in the open environment. Sci. Rep. 2017, 7, 513. [Google Scholar] [CrossRef]
- Schar, D.; Klein, E.Y.; Laxminarayan, R.; Gilbert, M.; Van Boeckel, T.P. Global trends in antimicrobial use in aquaculture. Sci. Rep. 2020, 10, 21878. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. The genus Aeromonas: Taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 2010, 23, 35–73. [Google Scholar] [CrossRef]
- Vila, J.; Ruiz, J.; Gallardo, F.; Vargas, M.; Soler, L.; Figueras, M.J.; Gascon, J. Aeromonas spp. and traveler’s diarrhea: Clinical features and antimicrobial resistance. Emerg. Infect. Dis. 2003, 9, 552. [Google Scholar] [CrossRef]
- Ebmeyer, S.; Kristiansson, E.; Larsson, D.J. The mobile FOX AmpC beta-lactamases originated in Aeromonas allosaccharophila. Int. J. Antimicrob. Agents 2019, 54, 798–802. [Google Scholar] [CrossRef]
- Hassan, H.; Bakar Sade, A.; Sabbir Rahman, M. Malaysian hypermarket retailing development and expansion. Int. J. Retail Distrib. Manag. 2013, 41, 584–595. [Google Scholar] [CrossRef]
- Ekundayo, T.C.; Igere, B.E.; Iwu, C.D.; Oluwafemi, Y.D.; Tiamiyu, A.M.; Adesina, I.A.; Anuoluwa, I.A.; Ekundayo, E.A.; Bello, O.O.; Olaniyi, O.O.; et al. Prevalence of Laribacter hongkongensis in food and environmental matrices: A systematic review and meta-analysis. Food Microbiol. 2022, 107, 104089. [Google Scholar] [CrossRef] [PubMed]
- Gonzales-Barron, U.; Butler, F. The use of meta-analytical tools in risk assessment for food safety. Food Microbiol. 2011, 28, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Rostamian, M.; Kooti, S.; Mohammadi, B.; Salimi, Y.; Akya, A. A systematic review and meta-analysis of Listeria monocytogenes isolated from human and non-human sources: The antibiotic susceptibility aspect. Diagn. Microbiol. Infect. Dis. 2022, 102, 115634. [Google Scholar] [CrossRef] [PubMed]
- Radu, S.; Elhadi, N.; Hassan, Z.; Rusul, G.; Lihan, S.; Fifadara, N.; Yuherman; Purwati, E. Characterization of Vibrio vulnificus isolated from cockles (Anadara granosa): Antimicrobial resistance, plasmid profiles and random amplification of polymorphic DNA analysis. FEMS Microbiol. Lett. 1998, 165, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Radu, S.; Ahmad, N.; Ling, F.H.; Reezal, A. Prevalence and resistance to antibiotics for Aeromonas species from retail fish in Malaysia. Int. J. Food Microbiol. 2003, 81, 261–266. [Google Scholar] [CrossRef]
- Chen, C.-H.; Shimada, T.; Elhadi, N.; Radu, S.; Nishibuchi, M. Phenotypic and genotypic characteristics and epidemiological significance of ctx+ strains of Vibrio cholerae isolated from seafood in Malaysia. Appl. Environ. Microbiol. 2004, 70, 1964–1972. [Google Scholar] [CrossRef]
- Haifa-Haryani, W.O.; Amatul-Samahah, M.A.; Azzam-Sayuti, M.; Chin, Y.K.; Zamri-Saad, M.; Natrah, I.; Amal, M.N.A.; Satyantini, W.H.; Ina-Salwany, M.Y. Prevalence, Antibiotics Resistance and Plasmid Profiling of Vibrio spp. Isolated from Cultured Shrimp in Peninsular Malaysia. Microorganisms 2022, 10, 1851. [Google Scholar] [CrossRef]
- Letchumanan, V.; Pusparajah, P.; Tan, L.T.; Yin, W.F.; Lee, L.H.; Chan, K.G. Occurrence and Antibiotic Resistance of Vibrio parahaemolyticus from Shellfish in Selangor, Malaysia. Front. Microbiol. 2015, 6, 1417. [Google Scholar] [CrossRef]
- Letchumanan, V.; Yin, W.F.; Lee, L.H.; Chan, K.G. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia. Front. Microbiol. 2015, 6, 33. [Google Scholar] [CrossRef]
- Sing, C.K.; Khan, M.Z.I.; Daud, H.H.M.; Aziz, A.R. Prevalence of Salmonella sp in African Catfish (Clarias gariepinus) obtained from farms and wet markets in Kelantan, Malaysia and their antibiotic resistance. Sains Malays. 2016, 45, 1597–1602. [Google Scholar]
- Tan, C.W.; Malcolm, T.T.; Kuan, C.H.; Thung, T.Y.; Chang, W.S.; Loo, Y.Y.; Premarathne, J.M.; Ramzi, O.B.; Norshafawatie, M.F.; Yusralimuna, N. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from short mackerels (Rastrelliger brachysoma) in Malaysia. Front. Microbiol. 2017, 8, 1087. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.H.; Ab Mutalib, N.S.; Law, J.W.; Wong, S.H.; Letchumanan, V. Discovery on Antibiotic Resistance Patterns of Vibrio parahaemolyticus in Selangor Reveals Carbapenemase Producing Vibrio parahaemolyticus in Marine and Freshwater Fish. Front. Microbiol. 2018, 9, 2513. [Google Scholar] [CrossRef] [PubMed]
- Othman, B.R.; Kuan, C.H.; Mohammed, A.S.; Cheah, Y.K.; Tan, C.W.; New, C.Y.; Thung, T.Y.; San Chang, W.; Loo, Y.Y.; Nakaguchi, Y.; et al. Occurrence of methicillin-resistant Staphylococcus aureus in raw shellfish at retail markets in Malaysia and antibacterial efficacies of black seed (Nigella sativa) oil against MRSA. Food Control 2018, 90, 324–331. [Google Scholar] [CrossRef]
- Chilek, T.Z.T.; Yusoff, N.A.S.M.; Ahmad, F.; Zamri, A.I.; Ismail, N.; Razak, S.B.A. Prevalence and antimicrobial susceptibility testing of Vibrio parahaemolyticus isolated from peeled blood cockles (Anadara granosa) sold in Kuala Terengganu. Asian J. Agric. Biol. 2019, 7, 69–75. [Google Scholar]
- Tan, C.W.; Rukayadi, Y.; Hasan, H.; Thung, T.Y.; Lee, E.; Rollon, W.D.; Hara, H.; Kayali, A.Y.; Nishibuchi, M.; Radu, S. Prevalence and antibiotic resistance patterns of Vibrio parahaemolyticus isolated from different types of seafood in Selangor, Malaysia. Saudi J. Biol. Sci. 2020, 27, 1602–1608. [Google Scholar] [CrossRef]
- Venggadasamy, V.; Tan, L.T.-H.; Law, J.W.-F.; Ser, H.-L.; Letchumanan, V.; Pusparajah, P. Incidence, Antibiotic Susceptibility and Characterization of Vibrio parahaemolyticus Isolated from Seafood in Selangor, Malaysia. Prog. Microbes Mol. Biol. 2021, 4, a0000233. [Google Scholar] [CrossRef]
Retail Seafood | Prevalence/Effect Size 95% CI | Heterogeneity | |||
---|---|---|---|---|---|
Q Value | df | I2 | p-Value | ||
Prevalence of antibiotic-resistant pathogens in retail seafood in Malaysia | |||||
Overall prevalence | 55.7% (95% CI: 0.46–0.65) | 443.73 | 27 | 93.9 | 0 |
Prevalence based on seafood types | |||||
Fish | 62.7% (95% CI: 0.52–0.73) | 61.2 | 10 | 83.7 | 0 |
Mollusks | 47.5% (95% CI: 0.35–0.61) | 98.3 | 10 | 89.8 | 0 |
Crustaceans | 55.5% (95% CI: 0.48–0.52) | 172 | 4 | 97.6 | 0 |
Cephalopods | 80.0% (95% CI: 0.64–0.90) | NC | NC | NC | NC |
Antibiotics | [14] | [15] | [16] | [17] | [18] | [19] | [20] | [21] | [22] | [23] | [24] | [25] | [26] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amikacin | √ | √ | √ | √ | √ | √ | √ | ||||||
Amoxicillin/clavulanic acid | √ | √ | √ | ||||||||||
Ampicillin | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||
Ampicillin-sulbactam | √ | √ | √ | √ | √ | √ | |||||||
Azithromycin | √ | ||||||||||||
Bacitracin | √ | ||||||||||||
Carbenicillin | √ | √ | |||||||||||
Cefazolin | √ | ||||||||||||
Cefepime | √ | √ | |||||||||||
Cefoperazone | √ | ||||||||||||
Cefotaxime | √ | √ | √ | √ | √ | √ | |||||||
Cefoxitin | √ | ||||||||||||
Ceftaroline | √ | ||||||||||||
Ceftazidime | √ | √ | √ | √ | √ | √ | √ | √ | |||||
Ceftriaxone | √ | √ | |||||||||||
Cefuroxime | √ | √ | |||||||||||
Cephalothin | √ | √ | √ | ||||||||||
Ceftazidime | √ | ||||||||||||
Chloramphenicol | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |
Ciprofloxacin | √ | √ | √ | √ | √ | √ | |||||||
Clarythromycin | √ | ||||||||||||
Clindamycin | √ | √ | |||||||||||
Doxycycline | √ | √ | |||||||||||
Erythromycin | √ | √ | √ | ||||||||||
Gentamicin | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||
Imipenem | √ | √ | √ | √ | √ | √ | |||||||
Kanamycin | √ | √ | √ | √ | √ | √ | √ | ||||||
Levofloxacin | √ | √ | √ | √ | √ | √ | √ | ||||||
Linezolid | √ | ||||||||||||
Meropenem | √ | √ | |||||||||||
Nalidixic acid | √ | √ | √ | √ | √ | √ | √ | ||||||
Norfloxacin | √ | √ | |||||||||||
Ofloxacin | √ | √ | |||||||||||
Oxytetracycline | √ | √ | √ | √ | |||||||||
Penicillin | √ | √ | √ | √ | √ | √ | |||||||
Piperacillin | √ | ||||||||||||
Piperacillin-tazobactam | √ | ||||||||||||
Quinupristin/dalfopristin | √ | ||||||||||||
Rifampicin | √ | √ | |||||||||||
Spectinomycin | √ | ||||||||||||
Streptomycin | √ | √ | √ | √ | √ | ||||||||
Sulfamethoxazole/trimethoprim | √ | √ | √ | √ | √ | √ | √ | ||||||
Teicoplanin | √ | ||||||||||||
Tetracycline | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |
Tobramycin | √ | ||||||||||||
Trimethoprim | √ |
Retail Seafood | Prevalence/Effect Size 95% CI | Heterogeneity | |||
---|---|---|---|---|---|
Q Value | df | I2 | p-Value | ||
Prevalence of antibiotic resistance based on pathogens and type of seafood | |||||
Fish (overall prevalence) | 22.2% (95% CI: 0.15–0.32) | 943.6 | 26 | 97.2 | 0 |
Aeromonas | 51% (95% CI: 0.33–0.69) | 197.7 | 13 | 93.4 | 0 |
Salmonella | 59.9% (95% CI: 0.32–0.82) | 15.21 | 4 | 67.1 | 0.009 |
Vibrio | 10.2% (95% CI: 0.06–0.18) | 774 | 18 | 97.6 | 0 |
Mollusks (overall prevalence) | 10.5% (95% CI: 0.07–0.16) | 1719 | 28 | 98.4 | 0 |
Vibrio | 10.2% (95% CI: 0.07–0.15) | 1661.8 | 28 | 98.3 | 0 |
MRSA | 70.9% (95% CI: 0.36–0.92) | 6.7 | 3 | 55.27 | 0.082 |
Crustaceans (overall prevalence) | 23.4% (95% CI: 0.15–0.34) | 578.8 | 24 | 95.8 | 0 |
Vibrio | 47.5% (95% CI: 0.35–0.61) | 98.3 | 10 | 89.8 | 0 |
Cephalopods (overall prevalence) | 67.2% (95% CI: 0.22–0.94) | 94.1 | 12 | 87.2 | 0 |
Vibrio | 67.2% (95% CI: 0.22–0.94) | 94.1 | 12 | 87.2 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odeyemi, O.A.; Amin, M.; Dewi, F.R.; Kasan, N.A.; Onyeaka, H.; Stratev, D.; Odeyemi, O.A. Prevalence of Antibiotic-Resistant Seafood-Borne Pathogens in Retail Seafood Sold in Malaysia: A Systematic Review and Meta-Analysis. Antibiotics 2023, 12, 829. https://doi.org/10.3390/antibiotics12050829
Odeyemi OA, Amin M, Dewi FR, Kasan NA, Onyeaka H, Stratev D, Odeyemi OA. Prevalence of Antibiotic-Resistant Seafood-Borne Pathogens in Retail Seafood Sold in Malaysia: A Systematic Review and Meta-Analysis. Antibiotics. 2023; 12(5):829. https://doi.org/10.3390/antibiotics12050829
Chicago/Turabian StyleOdeyemi, Omowale A., Muhamad Amin, Fera R. Dewi, Nor Azman Kasan, Helen Onyeaka, Deyan Stratev, and Olumide A. Odeyemi. 2023. "Prevalence of Antibiotic-Resistant Seafood-Borne Pathogens in Retail Seafood Sold in Malaysia: A Systematic Review and Meta-Analysis" Antibiotics 12, no. 5: 829. https://doi.org/10.3390/antibiotics12050829
APA StyleOdeyemi, O. A., Amin, M., Dewi, F. R., Kasan, N. A., Onyeaka, H., Stratev, D., & Odeyemi, O. A. (2023). Prevalence of Antibiotic-Resistant Seafood-Borne Pathogens in Retail Seafood Sold in Malaysia: A Systematic Review and Meta-Analysis. Antibiotics, 12(5), 829. https://doi.org/10.3390/antibiotics12050829