Preoperative Decolonization Appears to Reduce the Risk of Infection in High-Risk Groups Undergoing Total Hip Arthroplasty
Abstract
:1. Introduction
2. Results
3. Methods
3.1. Study Design
3.2. Preoperative Decolonization
3.3. Surgical Technics
3.4. Data Collection
3.5. Infect Treatment
3.6. Statistics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Learmonth, I.D.; Young, C.; Rorabeck, C. The operation of the century: Total hip replacement. Lancet 2007, 370, 1508–1519. [Google Scholar] [CrossRef]
- Rupprecht, M.; Großterlinden, L.; Barvencik, F.; Gebauer, M.; Briem, D.; Rueger, J.; Lehmann, W. Periprosthetic fractures. Long-term results after plate osteosynthesis stabilization. Unfallchirurg 2008, 111, 812–820. (In German) [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Lau, E.; Ong, K.; Zhao, K.; Kelly, M.; Bozic, K.J. Future young patient demand for primary and revision joint replacement: National projections from 2010 to 2030. Clin. Orthop. Relat. Res. 2009, 467, 2606–2612. [Google Scholar] [CrossRef] [PubMed]
- Wetters, N.G.; Murray, T.G.; Moric, M.; Sporer, S.M.; Paprosky, W.G.; Della Valle, C.J. Risk factors for dislocation after revision total hip arthroplasty. Clin. Orthop. Relat. Res. 2013, 471, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Gundtoft, P.H.; Pedersen, A.B.; Varnum, C.; Overgaard, S. Increased Mortality After Prosthetic Joint Infection in Primary THA. Clin. Orthop. Relat. Res. 2017, 475, 2623–2631. [Google Scholar] [CrossRef]
- Otto-Lambertz, C.; Yagdiran, A.; Wallscheid, F.; Eysel, P.; Jung, N. Periprosthetic Infection in Joint Replacement. Dtsch. Arztebl. Int. 2017, 114, 347–353. [Google Scholar] [CrossRef]
- Zmistowski, B.; Karam, J.A.; Durinka, J.B.; Casper, D.S.; Parvizi, J. Periprosthetic Joint Infection Increases the Risk of One-Year Mortality. J. Bone Jt. Surg. Am. 2013, 95, 2177–2184. [Google Scholar] [CrossRef]
- Kapadia, B.H.; Berg, R.A.; Daley, J.A.; Fritz, J.; Bhave, A.; Mont, M.A. Periprosthetic joint infection. Lancet 2016, 387, 386–394. [Google Scholar] [CrossRef]
- Zimmerli, W.; Trampuz, A.; Ochsner, P.E. Prosthetic-joint infections. N. Engl. J. Med. 2004, 351, 1645–1654. [Google Scholar] [CrossRef]
- Koburger, T.; Hubner, N.O.; Braun, M.; Siebert, J.; Kramer, A. Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J. Antimicrob. Chemother. 2010, 65, 1712–1719. [Google Scholar] [CrossRef]
- Meyer, M.; Parik, L.; Leiß, F.; Renkawitz, T.; Grifka, J.; Weber, M. Hospital Frailty Risk Score Predicts Adverse Events in Primary Total Hip and Knee Arthroplasty. J. Arthroplast. 2020, 35, 3498–3504.e3. [Google Scholar] [CrossRef]
- Charlson, M.; Wells, M.T.; Ullman, R.; King, F.; Shmukler, C. The Charlson comorbidity index can be used prospectively to identify patients who will incur high futurecosts. PLoS ONE 2014, 9, e112479. [Google Scholar] [CrossRef]
- Rupp, M.; Kerschbaum, M.; Freigang, V.; Bärtl, S.; Baumann, F.; Trampuz, A.; Alt, V. PJI-TNM as new classification system for periprosthetic joint infections: An evaluation of 20 cases. Der Orthopäde 2021, 50, 198–206, Erratum in Der Orthopäde 2021, 50, 587–588. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Renkawitz, T.; Voellner, F.; Craiovan, B.; Greimel, F.; Worlicek, M.; Grifka, J.; Benditz, A. Revision Surgery in Total Joint Replacement Is Cost-Intensive. BioMed Res. Int. 2018, 2018, 8987104. [Google Scholar] [CrossRef] [PubMed]
- Izakovicova, P.; Borens, O.; Trampuz, A. Periprosthetic joint infection: Current concepts and outlook. EFORT Open Rev. 2019, 4, 482–494. [Google Scholar] [CrossRef]
- Haenle, M.; Skripitz, C.; Mittelmeier, W.; Skripitz, R. Economic Impact of Infected Total Knee Arthroplasty. Sci. World J. 2012, 2012, 196515. [Google Scholar] [CrossRef]
- De Jonge, S.W.; Boldingh, Q.J.; Solomkin, J.S.; Dellinger, E.P.; Egger, M.; Salanti, G.; Allegranzi, B.; Boermeester, M.A. Effect of postoperative continuation of antibiotic prophylaxis on the incidence of surgical site infection: A systematic review and meta-analysis. Lancet Infect Dis. 2020, 20, 1182–1192. [Google Scholar] [CrossRef]
- McDonald, M.; Grabsch, E.; Marshall, C.; Forbes, A. Single- versus multiple-dose antimicrobial prophylaxis for major surgery: A systematic review. Aust. N. Z. J. Surg. 1998, 68, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Holinka, J.; Windhager, R. Management of periprostetic infections. Orthopäde 2016, 45, 359–374. [Google Scholar] [CrossRef]
- Hübner, N.-O.; Siebert, J.; Kramer, A. Octenidine Dihydrochloride, a Modern Antiseptic for Skin, Mucous Membranes and Wounds. Ski. Pharmacol. Physiol. 2010, 23 (Suppl. S3), 244–258. [Google Scholar] [CrossRef]
- Shohat, N.; Bauer, T.; Buttaro, M.; Budhiparama, N.; Cashman, J.; Della Valle, C.J.; Drago, L.; Gehrke, T.; Marcelino Gomes, L.S.; Goswami, K.; et al. Hip and knee section, what is the definition of a periprosthetic joint infection (PJI) of the knee and the hip? Can the same criteria be used for both joints?: Proceedings of international consensus on orthopedic infections. J. Arthroplast. 2019, 34, S325–S327. [Google Scholar] [CrossRef] [PubMed]
- Allport, J.; Choudhury, R.; Bruce-Wootton, P.; Reed, M.; Tate, D.; Malviya, A. Efficacy of mupirocin, neomycin and octenidine for nasal Staphylococcus aureus decolonisation: A retrospective cohort study. Antimicrob. Resist. Infect. Control. 2022, 11, 5. [Google Scholar] [CrossRef]
- Culver, D.H.; Horan, T.C.; Gaynes, R.P.; Martone, W.J.; Jarvis, W.R.; Emori, T.G.; Banerjee, S.N.; Edwards, J.R.; Tolson, J.S.; Henderson, T.S.; et al. Surgical wound infection rates by wound class, operative procedure, and patient risk index. National Nosocomial Infections Surveillance System. Am. J. Med. 1991, 91, 152S–157S. [Google Scholar] [CrossRef]
- National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am. J. Infect. Control 2004, 32, 470–485. [Google Scholar] [CrossRef]
- Pauly, S.; Scheibel, M.; Trampuz, A. Low-grade-Infektionen. Arthroskopie 2016, 29, 159–163. [Google Scholar] [CrossRef]
- Renz, N.; Perka, C.; Trampuz, A. Management periprothetischer Infektionen des Kniegelenks. [Management of periprosthetic infections of the knee]. Orthopade 2016, 45, 65–71. [Google Scholar] [CrossRef]
- Webster, J.; Osborne, S. Preoperative bathing or showering with skin antiseptics to prevent surgical site infection. Cochrane Database Syst. Rev. 2015, 2015, CD004985. [Google Scholar] [CrossRef]
- Huang, S.S.; Septimus, E.; Kleinman, K.; Moody, J.; Hickok, J.; Heim, L.; Gombosev, A.; Avery, T.R.; Haffenreffer, K.; Shimelman, L.; et al. Chlorhexidine versus routine bathing to prevent multidrug-resistant organisms and all-cause bloodstream infections in general medical and surgical units (ABATE Infection trial): A cluster-randomised trial. Lancet 2019, 393, 1205–1215, Erratum in Lancet 2019, 393, 1204; Erratum in Lancet 2019, 394, 470. [Google Scholar] [CrossRef] [PubMed]
- Assadian, O. Octenidine dihydrochloride: Chemical characteristics and antimicrobial properties. J. Wound Care 2016, 25, S3–S6. [Google Scholar] [CrossRef] [PubMed]
- Climo, M.W.; Sepkowitz, K.A.; Zuccotti, G.; Fraser, V.J.; Warren, D.K.; Perl, T.M.; Speck, K.; Jernigan, J.A.; Robles, J.R.; Wong, E.S. The effect of daily bathing with chlorhexidine on the acquisition of methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and healthcare-associated bloodstream infections: Results of a quasi-experimental multicenter trial. Crit. Care Med. 2009, 37, 1858–1865. [Google Scholar] [CrossRef]
- Yiğit, Ş.; Akar, M.S. Periprosthetic infection risks and predictive value of HbA1c/albumin ratio for total joint arthroplasty in patients with diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 1869–1874. [Google Scholar] [CrossRef] [PubMed]
Risk Factor | Standard-of-Care Group | Preoperative Decolonisation | p-Value |
---|---|---|---|
Wound Classification | |||
clean | 1169 | 1711 | - |
ASA score | |||
1–2 | 72.97% (853/1169) | 71.13% (1217/1711) | 0.14 |
3–5 | 27.03% (316/1169) | 28.87% (494/1711) | |
Cut time in minutes | |||
0–120 min | 99.91% (1168/1169) | 100% (1711/1711) | 0.16 |
120+ min | 0.09% (1/1169) | ||
NHSN risk score | |||
0 | 72.97% (853/1169) | 71.13% (1217/1711) | 0.14 |
1 | 26.95% (315/1169) | 18.87% (494/1711) | |
2–3 | 0.02% (1/1169) | ||
age | 64.8 ± 11.6 | 63.8 ± 10.8 | 0.35 |
Gender (women) | 53.12% (621/1169) | 54.70 (936/1711) | 0.2 |
BMI | 28.6 ± 10.8 | 29.3 ± 11.2 | 0.28 |
diabetes | 82/1169 | 153/1711 | 0.03 |
Risk Factor | Standard-of-Care Group (18/1169) | Preoperative Decolonisation (17/1711) | p Value |
---|---|---|---|
ASA score | |||
1–2 | 0.59% (5/853) | 0.58% (7/1217) | 0.54 |
3–5 | 4.11% (13/316) | 2.02% (10/494) | 0.08 |
Charlson Comorbidity Index | |||
0 | 0/180 | 0.41% (1/241) | |
1–2 | 1.17% (8/682) | 0.80% (8/1002) | 0.22 |
3–4 | 3.04% (8/262) | 1.58% (6/376) | 0.11 |
>5 | 4.44% (2/45) | 2.17% (2/92) | 0.23 |
Cut time in minutes | |||
0–120 min | 1.46% (17/1168) | 0.99% (17/1711) | |
0–60 min | 3.49% (3/86) | 1.32% (2/152) | 0.2 |
60–75 min | 0.69% (2/289) | 0.71% (3/423) | 0.13 |
75–90 min | 1.14% (8/703) | 0.84% (9/1075) | 0.49 |
90–120 min | 4.44% (4/90) | 4.92% (3/61) | 0.64 |
120+ min | 100% (1/1) | 0.00% (0/0) | 0.45 |
NHSN risk score | |||
0 | 0.59% (5/853) | 0.58% (7/1217) | |
1 | 3.80% (12/316) | 2.02% (10/494) | 0.54 |
2–3 | 100% (1/1) | (0/0) | 0.13 |
Age | 64.8 ± 11.6 | 63.8 ± 10.8 | |
<60 | 0.50% (1/200) | 0.33% (1/301) | 0.77 |
<80 | 1.25% (10/802) | 0.98% (12/1228) | 0.57 |
>80 | 4.19% (7/167) | 2.19% (4/182) | 0.29 |
Gender | |||
w | 1.47% (9/ 613) | 0.98% (9/916) | 0.39 |
m | 1.59% (9/563) | 1.00% (8/795) | 0.49 |
BMI | 28.6 ± 10.8 | 29.3 ± 11.2 | |
<20 | 1.98% (5/252) | 1.31% (5/382) | 0.51 |
<30 | 1.11% (8/723) | 0.80% (8/995) | 0.64 |
>30 | 2.58% (5/194) | 1.20% (4/334) | 0.24 |
Diabetes (overall) | 7.01% (82/1169) | 8.94% (153/1711) | |
Infection with diabetes | 18.29% (15/82) | 8.49% (13/153) | 0.04 |
HbA1c < 6.5 | 9.80% (5/51) | 2.47% (3/121) | 0.02 |
HbA1c > 6.5 | 32.26% (10/31) | 30.30% (10/33) | 0.43 |
B | Exp (B) | 95% CI | p-Value | ||
---|---|---|---|---|---|
Decolonization | −0.48 | 0.62 | 0.32 | 1.21 | 0.158 |
ASA score > 2 | 1.62 | 5.07 | 2.51 | 10.25 | 0.000 |
B | Exp (B) | 95% CI | p-Value | ||
Decolonisation | −0.33 | 0.72 | 0.36 | 1.41 | 0.332 |
Charlson comorbidity index > 2 | 0.72 | 2.05 | 1.04 | 4.02 | 0.038 |
B | Exp (B) | 95% CI | p-Value | ||
Decolonization | −0.44 | 0.64 | 0.33 | 1.25 | 0.195 |
Cut time > 75 min | 0.2 | 1.22 | 0.58 | 2.56 | 0.593 |
B | Exp (B) | 95% CI | p-Value | ||
Decolonization | −0.48 | 0.62 | 0.32 | 1.21 | 0.158 |
NHSN risk score > 1 | 1.62 | 5.07 | 2.51 | 10.25 | 0.000 |
B | Exp (B) | 95% CI | p-Value | ||
Decolonization | −0.38 | 0.68 | 0.35 | 1.34 | 0.265 |
age > 80 y | 1.19 | 3.30 | 1.60 | 6.80 | 0.001 |
B | Exp (B) | 95% CI | p-Value | ||
Decolonization | −0.44 | 0.64 | 0.33 | 1.25 | 0.193 |
Gender (m) | 0.06 | 1.06 | 0.55 | 2.07 | 0.858 |
B | Exp (B) | 95% CI | p-Value | ||
Decolonization | −0.46 | 0.63 | 0.32 | 1.23 | 0.178 |
BMI > 30 | 0.46 | 1.59 | 0.74 | 3.41 | 0.237 |
B | Exp (B) | 95% CI | Sig. | ||
Decolonization | 4.59 | 98.45 | 37.88 | 255.91 | 0.000 |
Diabetes | −69.45 | 6.92 × 1031 | 1.79 × 1031 | 2.67 × 1030 | 0.000 |
Standard Group (Partly Mixed Flora) | Decolonisation Group (Partly Mixed Flora) |
---|---|
3× Enterococcus faecalis | 6× Staphylococcus aureus |
2× Escherichia coli | 7× Staphylococcus epidermidis |
3× Enterobaccter cloacae | 2× Escherichia coli |
1× Staphylococcus lugdunensis | 1× Enterococcus faecalis |
1× Streptococcus dysgalactiae | |
7× Staphylococcus aureus | |
8× Staphylococcus epidermidis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scharf, M.; Holzapfel, D.E.; Ehrnsperger, M.; Grifka, J. Preoperative Decolonization Appears to Reduce the Risk of Infection in High-Risk Groups Undergoing Total Hip Arthroplasty. Antibiotics 2023, 12, 877. https://doi.org/10.3390/antibiotics12050877
Scharf M, Holzapfel DE, Ehrnsperger M, Grifka J. Preoperative Decolonization Appears to Reduce the Risk of Infection in High-Risk Groups Undergoing Total Hip Arthroplasty. Antibiotics. 2023; 12(5):877. https://doi.org/10.3390/antibiotics12050877
Chicago/Turabian StyleScharf, Markus, Dominik Emanuel Holzapfel, Marianne Ehrnsperger, and Joachim Grifka. 2023. "Preoperative Decolonization Appears to Reduce the Risk of Infection in High-Risk Groups Undergoing Total Hip Arthroplasty" Antibiotics 12, no. 5: 877. https://doi.org/10.3390/antibiotics12050877
APA StyleScharf, M., Holzapfel, D. E., Ehrnsperger, M., & Grifka, J. (2023). Preoperative Decolonization Appears to Reduce the Risk of Infection in High-Risk Groups Undergoing Total Hip Arthroplasty. Antibiotics, 12(5), 877. https://doi.org/10.3390/antibiotics12050877