Antifungals: From Pharmacokinetics to Clinical Practice
Abstract
:1. The Fungi among Us and Their Characteristics
2. Antifungal Drugs and Clinical Use
2.1. Polyene Antifungals
2.2. Flucytosine
2.3. Griseofulvin
2.4. Imidazoles
2.5. Triazole Compounds
2.6. Terbinafine
2.7. Echinocandins
3. Pharmacogenomics and Therapeutic Drug Monitoring
3.1. Polyenes
3.2. Azoles
3.3. Terbinafine
3.4. Echinocandins
3.5. Griseofulvin
3.6. Flucytosine
4. Development of Resistance to Antifungals
5. Development of New Antifungals
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lücking, R.; Aime, M.C.; Robbertse, B.; Miller, A.N.; Aoki, T.; Ariyawansa, H.A.; Cardinali, G.; Crous, P.W.; Druzhinina, I.S.; Geiser, D.M.; et al. Fungal taxonomy and sequence-based nomenclature. Nat. Microbiol. 2021, 6, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Jefferys, E. A scheme for the numerical classification of fungi. Bull. Br. Mycol. Soc. 1972, 6, 25–29. [Google Scholar] [CrossRef]
- Gilliland, R.B. Yeast classification. J. Inst. Brew. 1971, 77, 276–284. [Google Scholar] [CrossRef]
- Henrici, A.T. The Yeasts Genetics, Cytology, Variation, Classification and Identification. Bacteriol. Rev. 1941, 5, 97–179. [Google Scholar] [CrossRef]
- Talbot, P.H.B. Fungi with a plasmodial thallus division myxomycota: Slime-moulds Affinity with Other Organisms. In Principles of Fungal Taxonomy; Palgrave: London, UK, 1971; pp. 99–108. [Google Scholar]
- Ainsworth, G.C.; Hawksworth, D.L.; Kirk, P.M.; Sutton, B.C.; Pegler, D.N. Ainsworth & Bisby’s Dictionary of the Fungi, 6th ed.; Commonwealth Agricultural Bureaux [for the] Commonwealth Mycological Institute: Kew, UK, 1971. [Google Scholar]
- Kurtzman, C.P.; Mateo, R.Q.; Kolecka, A.; Theelen, B.; Robert, V.; Boekhout, T. Advances in yeast systematics and phylogeny and their use as predictors of biotechnologically important metabolic pathways. FEMS Yeast Res. 2015, 15, fov050. [Google Scholar] [CrossRef]
- Hawksworth, D.L. Fungi and international biodiversity initiatives. Biodivers. Conserv. 1997, 6, 661–668. [Google Scholar] [CrossRef]
- Gow, N.A.R.; Latge, J.-P.; Munro, C.A. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol. Spectr. 2017, 5, 28513415. [Google Scholar] [CrossRef]
- Garcia-Rubio, R.; De Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2020, 10, 2993. [Google Scholar] [CrossRef]
- Sant, D.; Tupe, S.; Ramana, C.; Deshpande, M. Fungal cell membrane-promising drug target for antifungal therapy. J. Appl. Microbiol. 2016, 121, 1498–1510. [Google Scholar] [CrossRef]
- Marr, K.A.; Carter, R.A.; Crippa, F.; Wald, A.; Corey, L. Epidemiology and Outcome of Mould Infections in Hematopoietic Stem Cell Transplant Recipients. Clin. Infect. Dis. 2002, 909, 909–926. [Google Scholar] [CrossRef]
- Husain, S.; Tollemar, J.G.; Dominguez, E.A.; Baumgarten, K.; Humar, A.; Paterson, D.; Wagener, M.M.; Kusne, S.; Singh, N. Changes in the spectrum and risk factors for invasive candidiasis in liver transplant recipients: Prospective, multicenter, case-controlled study. Transplantation 2003, 75, 2023–2029. [Google Scholar] [CrossRef] [PubMed]
- Kett, D.H.; Azoulay, E.; Echeverria, P.M.; Vincent, J.-L. Candida bloodstream infections in intensive care units: Analysis of the extended prevalence of infection in intensive care unit study. Crit. Care Med. 2011, 39, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Koehler, P.; Stecher, M.; Cornely, O.; Vehreschild, M.; Bohlius, J.; Wisplinghoff, H.; Vehreschild, J. Morbidity and mortality of candidaemia in Europe: An epidemiologic meta-analysis. Clin. Microbiol. Infect. 2019, 25, 1200–1212. [Google Scholar] [CrossRef]
- Bassetti, M.; Giacobbe, D.R.; Vena, A.; Trucchi, C.; Ansaldi, F.; Antonelli, M.; Adamkova, V.; Alicino, C.; Almyroudi, M.-P.; Atchade, E.; et al. Incidence and outcome of invasive candidiasis in intensive care units (ICUs) in Europe: Results of the EUCANDICU project. Crit. Care 2019, 23, 219. [Google Scholar] [CrossRef] [PubMed]
- Morrell, M.; Fraser, V.J.; Kollef, M.H. Delaying the Empiric Treatment of Candida Bloodstream Infection until Positive Blood Culture Results Are Obtained: A Potential Risk Factor for Hospital Mortality. Antimicrob. Agents Chemother. 2005, 49, 3640–3645. [Google Scholar] [CrossRef] [PubMed]
- Schelenz, S.; Owens, K.; Guy, R.; Rautemaa-Richardson, R.; Manuel, R.J.; Richardson, M.; Moore, C.; Enoch, D.A.; Micallef, C.; Howard, P.; et al. National mycology laboratory diagnostic capacity for invasive fungal diseases in 2017: Evidence of sub-optimal practice. J. Infect. 2019, 79, 167–173. [Google Scholar] [CrossRef]
- Fioriti, S.; Brescini, L.; Pallotta, F.; Canovari, B.; Morroni, G.; Barchiesi, F. Antifungal Combinations against Candida Species: From Bench to Bedside. J. Fungi 2022, 8, 1077. [Google Scholar] [CrossRef]
- Thompson, G.R.; Lewis, J.S. Pharmacology and clinical use of voriconazole. Expert Opin. Drug Metab. Toxicol. 2009, 6, 83–94. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef]
- Poissy, J.; Rouzé, A.; Cornu, M.; Nseir, S.; Sendid, B. The Changing Landscape of Invasive Fungal Infections in ICUs: A Need for Risk Stratification to Better Target Antifungal Drugs and the Threat of Resistance. J. Fungi 2022, 8, 946. [Google Scholar] [CrossRef]
- Vasileiou, E.; Apsemidou, A.; Vyzantiadis, T.-A.; Tragiannidis, A. Invasive candidiasis and candidemia in pediatric and neonatal patients: A review of current guidelines. Curr. Med. Mycol. 2018, 4, 28–33. [Google Scholar] [CrossRef] [PubMed]
- CDC. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019. [Google Scholar]
- Jacobs, S.E.; Jacobs, J.L.; Dennis, E.K.; Taimur, S.; Rana, M.; Patel, D.; Gitman, M.; Patel, G.; Schaefer, S.; Iyer, K.; et al. Candida auris Pan-Drug-Resistant to Four Classes of Antifungal Agents. Antimicrob. Agents Chemother. 2022, 66, e0005322. [Google Scholar] [CrossRef] [PubMed]
- Bidaud, A.L.; Botterel, F.; Chowdhary, A.; Dannaoui, E. In Vitro Antifungal Combination of Flucytosine with Amphotericin B, Voriconazole, or Micafungin against Candida auris Shows No Antagonism. Antimicrob. Agents Chemother. 2019, 63, e01393-19. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, W.J.; Marr, K.A.; Anaissie, E.J.; Azie, N.; Quan, S.-P.; Meier-Kriesche, H.-U.; Apewokin, S.; Horn, D.L. Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH Alliance registry. J. Infect. 2012, 65, 453–464. [Google Scholar] [CrossRef]
- Brissaud, O.; Guichoux, J.; Harambat, J.; Tandonnet, O.; Zaoutis, T. Invasive fungal disease in PICU: Epidemiology and risk factors. Ann. Intensiv. Care 2012, 2, 6. [Google Scholar] [CrossRef]
- van Paassen, J.; Russcher, A.; In’t Veld-Van Wingerden, A.W.; Verweij, P.E.; Kuijper, E.J. Emerging Aspergillosis by Azole-Resistant Aspergillus Fumigatus at an Intensive Care Unit in the Netherlands, 2010 to 2013. Eurosurveillance 2016, 21, 30300. [Google Scholar] [CrossRef]
- Maertens, J. History of the development of azole derivatives. Clin. Microbiol. Infect. 2004, 10, 1–10. [Google Scholar] [CrossRef]
- Patterson, T.F.; Thompson, G.R., III; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef]
- Park, S.Y.; Yoon, J.-A.; Kim, S.-H. Voriconazole-refractory invasive aspergillosis. Korean J. Intern. Med. 2017, 32, 805–812. [Google Scholar] [CrossRef]
- Shin, D.H.; Yoo, S.-J.; Jun, K.I.; Kim, H.; Kang, C.K.; Song, K.-H.; Choe, P.G.; Park, W.B.; Bang, J.-H.; Kim, E.S.; et al. Short course of voriconazole therapy as a risk factor for relapse of invasive pulmonary aspergillosis. Sci. Rep. 2020, 10, 16078. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Cortés Luna, J.; Russi, J.A. Echinocandins. Rev. Chil. Infect. 2011, 28, 529–536. [Google Scholar]
- Fromtling, R.A. Overview of Medically Important Antifungal Azole Derivatives. Clin. Microbiol. Rev. 1988, 1, 187–217. [Google Scholar] [CrossRef]
- Smith, E.B. History of antifungals. J. Am. Acad. Dermatol. 1990, 23, 776–778. [Google Scholar] [CrossRef] [PubMed]
- Bajadt, S.; Singhf, S.; Singhj, M. Development of Liposomal Amphotericin B Formulation. J. Microencapsul. 1998, 15, 137–138. [Google Scholar]
- Carrillo-Muñoz, A.-J.; Giusiano, G.; Cárdenes, D.; Hernández-Molina, J.-M.; Eraso, E.; Quindós, G.; Guardia, C.; del Valle, O.; Tur-Tur, C.; Guarro, J. Terbinafine susceptibility patterns for onychomycosis-causative dermatophytes and Scopulariopsis brevicaulis. Int. J. Antimicrob. Agents 2008, 31, 540–543. [Google Scholar] [CrossRef]
- Szymański, M.; Chmielewska, S.; Czyżewska, U.; Malinowska, M.; Tylicki, A. Echinocandins—Structure, mechanism of action and use in antifungal therapy. J. Enzym. Inhib. Med. Chem. 2022, 37, 876–894. [Google Scholar] [CrossRef]
- Aris, P.; Wei, Y.; Mohamadzadeh, M.; Xia, X. Griseofulvin: An Updated Overview of Old and Current Knowledge. Molecules 2022, 27, 7034. [Google Scholar] [CrossRef]
- Vermesa, A.; Guchelaar, H.-J.; Dankertb, J. Flucytosine: A Review of Its Pharmacology, Clinical Indications, Pharmacokinetics, Toxicity and Drug Interactions. J. Antimicrob. Chemother. 2000, 46, 171–179. [Google Scholar] [CrossRef]
- Dutcher, J.D. The Discovery and Development of Amphotericin B. Dis. Chest 1968, 54, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Al-Khikani, F.H.O. Amphotericin B, the Wonder of Today’s Pharmacology Science: Persisting Usage for More Than Seven Decades. Pharm. Biomed. Res. 2020, 6, 173–180. [Google Scholar] [CrossRef]
- Chen, S.; Sorrell, T. Antifungal Agents. MJA 2007, 187, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Lepak, A.J.; Andes, D. Antifungal Pharmacokinetics and Pharmacodynamics. Cold Spring Harb. Perspect. Med. 2014, 5, a019653. [Google Scholar] [CrossRef] [PubMed]
- Cavassin, F.B.; Baú-Carneiro, J.L.; Vilas-Boas, R.R.; Queiroz-Telles, F. Sixty years of Amphotericin B: An Overview of the Main Antifungal Agent Used to Treat Invasive Fungal Infections. Infect. Dis. Ther. 2021, 10, 115–147. [Google Scholar] [CrossRef] [PubMed]
- Vriens, K.; Kumar, P.T.; Struyfs, C.; Cools, T.L.; Spincemaille, P.; Kokalj, T.; Sampaio-Marques, B.; Ludovico, P.; Lammertyn, J.; Cammue, B.P.A.; et al. Increasing the Fungicidal Action of Amphotericin B by Inhibiting the Nitric Oxide-Dependent Tolerance Pathway. Oxidative Med. Cell. Longev. 2017, 2017, 4064628. [Google Scholar] [CrossRef]
- Zhong, X.; Yang, J.; Liu, H.; Yang, Z.; Luo, P. Potential lipid-based strategies of amphotericin B designed for oral administration in clinical application. Drug Deliv. 2023, 30, 2161671. [Google Scholar] [CrossRef]
- Pyrpasopoulou, A.; Iosifidis, E.; Antachopoulos, C.; Roilides, E. Antifungal drug dosing adjustment in critical patients with invasive fungal infections. J. Emerg. Crit. Care Med. 2019, 3, 1–16. [Google Scholar] [CrossRef]
- Downes, K.J.; Fisher, B.T.; Zane, N.R. Administration and Dosing of Systemic Antifungal Agents in Pediatric Patients. Pediatr. Drugs 2020, 22, 165–188. [Google Scholar] [CrossRef]
- Ho, J.; Fowler, P.; Heidari, A.; Johnson, R.H. Intrathecal Amphotericin B: A 60-Year Experience in Treating Coccidioidal Meningitis. Clin. Infect. Dis. 2016, 64, 519–524. [Google Scholar] [CrossRef]
- Groll, A.H.; Roilides, E.M.; Walsh, T.J. New Developments in Pediatric Antifungal Pharmacology. Pediatr. Infect. Dis. J. 2022, 41, e530–e533. [Google Scholar] [CrossRef] [PubMed]
- Groll, A.H.; Piscitelli, S.C.; Walsh, T.J. Clinical Pharmacology of Systemic Antifungal Agents: A Comprehensive Review of Agents in Clinical Use, Current Investigational Compounds, and Putative Targets for Antifungal Drug Development. Adv. Pharm. 1998, 44, 343–500. [Google Scholar] [CrossRef]
- Loyse, A.; Dromer, F.; Day, J.; Lortholary, O.; Harrison, T.S. Flucytosine and cryptococcosis: Time to urgently address the worldwide accessibility of a 50-year-old antifungal. J. Antimicrob. Chemother. 2013, 68, 2435–2444. [Google Scholar] [CrossRef] [PubMed]
- Miot, J.; Leong, T.; Takuva, S.; Parrish, A.; Dawood, H. Cost-effectiveness analysis of flucytosine as induction therapy in the treatment of cryptococcal meningitis in HIV-infected adults in South Africa. BMC Health Serv. Res. 2021, 21, 305. [Google Scholar] [CrossRef]
- Gentles, J.C. The Treatment and Prophylaxis of Ringworm. In Human and Animal Mycology: In Proceedings of the VII Congress of ISHAM, Jerusalem, Israel, 11–16 March 1979; Excerpta Medica: Amsterdam, The Netherlands, 1980; pp. 3–8. [Google Scholar]
- Araujo, O.E.; Flowers, F.P.; King, M.M. Griseofulvin: A New look at an Old Drug. DlCP Ann. Pharm. 1990, 24, 851–855. [Google Scholar] [CrossRef]
- Drouhet, E.; Dupont, B. Evolution of Antifungal Agents: Past, Present, and Future. Clin. Infect. Dis. 1987, 9, S4–S14. [Google Scholar] [CrossRef]
- Woolley, D. Some biological effects produced by benzimidazole and their reversal by purines. J. Biol. Chem. 1944, 152, 225–232. [Google Scholar] [CrossRef]
- Shadomy, S. In Vitro Antifungal Activity of Clotrimazole (Bay b 5097). Infect. Immun. 1971, 4, 143–148. [Google Scholar] [CrossRef]
- Fothergill, A.W. Miconazole: A historical perspective. Expert Rev. Anti-Infect. Ther. 2006, 4, 171–175. [Google Scholar] [CrossRef]
- Heel, R.; Brogden, R.; Speight, T.; Avery, G. Econazole: A Review of Its Antifungal Activity and Therapeutic Efficacy. Drugs 1978, 16, 177–201. [Google Scholar] [CrossRef]
- Loose, D.S.; Kan, P.B.; Hirst, M.A.; Marcus, R.A.; Feldman, D. Ketoconazole blocks adrenal steroidogenesis by inhibiting cytochrome P450-dependent enzymes. J. Clin. Investig. 1983, 71, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Dismukes, W.E. Introduction to Antifungal Drugs. Clin. Infect. Dis. 2000, 30, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.H.; Zimmerman, H.J.; Benson, G.D.; Ishak, K.G. Hepatic Injury Associated With Ketoconazole Therapy. Gastroenterology 1984, 86, 503–513. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency’s Committee on Medicinal Products for Human Use Suspension of Marketing Authorisations for Oral Ketoconazole Benefit of Oral Ketoconazole Does Not Outweigh Risk of Liver Injury in Fungal Infections On 25 July 2013, the European Medicines Agency’s Committee on Medicinal Products for Human Use; 2013. Available online: https://www.ema.europa.eu/en/news/european-medicines-agency-recommends-suspension-marketing-authorisations-oral-ketoconazole (accessed on 30 April 2023).
- Arndt, C.A.S.; Walsh, T.J.; McCully, C.L.; Balis, F.; Pizzo, P.A.; Poplack, D.G. Fluconazole Penetration into Cerebrospinal Fluid: Implications for Treating Fungal Infections of the Central Nervous System. J. Infect. Dis. 1988, 157, 178–179. [Google Scholar] [CrossRef] [PubMed]
- E Stott, K.; Hope, W. Pharmacokinetics–pharmacodynamics of antifungal agents in the central nervous system. Expert Opin. Drug Metab. Toxicol. 2018, 14, 803–815. [Google Scholar] [CrossRef]
- Humphrey, M.J.; Jevons, S.; Tarbit, M.H.; Troke, P.F.; Andrews, R.J.; Brammer, K.W.; Marriott, M.S.; Richardson, K. Pharma-cokinetic Evaluation of UK-49,858, a Metabolically Stable Triazole Antifungal Drug, in Animals and Humans. Antimicrob. Agents Chemother. 1985, 28, 648–653. [Google Scholar] [CrossRef]
- Denning, D.W.; Bromley, M.J. How to bolster the antifungal pipeline. Science 2015, 347, 1414–1416. [Google Scholar] [CrossRef]
- Saag, M.S.; Dismukes, W.E. Azole Antifungal Agents: Emphasis on New Triazoles. Antimicrob. Agents Chemother. 1988, 32, 1–8. [Google Scholar] [CrossRef]
- McKinsey, D.S.; Wheat, L.J.; Cloud, G.A.; Pierce, M.; Black, J.R.; Bamberger, D.M.; Goldman, M.; Thomas, C.J.; Gutsch, H.M.; Moskovitz, B.; et al. Itraconazole Prophylaxis for Fungal Infections in Patients with Advanced Human Immunodeficiency Virus Infection: Randomized, Placebo-Controlled, Double-Blind Study. Clin. Infect. Dis. 1999, 28, 1049–1056. [Google Scholar] [CrossRef]
- Greer, N.D. Voriconazole: The Newest Triazole Antifungal Agent. Bayl. Univ. Med. Cent. Proc. 2003, 16, 241–248. [Google Scholar] [CrossRef]
- Russell, E.; Lewis Pharm, D. Current Concepts in Antifungal Pharmacology. Mayo Clin. Proc. 2011, 86, 805–817. [Google Scholar] [CrossRef]
- van der Linden, J.W.M.; Camps, S.M.T.; Kampinga, G.A.; Arends, J.P.A.; Debets-Ossenkopp, Y.J.; Haas, P.J.A.; Rijnders, B.J.A.; Kuijper, E.J.; van Tiel, F.H.; Varga, J.; et al. Aspergillosis due to Voriconazole Highly Resistant Aspergillus fumigatus and Recovery of Genetically Related Resistant Isolates From Domiciles. Clin. Infect. Dis. 2013, 57, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Lestrade, P.P.; Bentvelsen, R.; Schauwvlieghe, A.F.A.D.; Schalekamp, S.; Van Der Velden, W.J.F.M.; Kuiper, E.J.; Van Paassen, J.; Van Der Hoven, B.; Van Der Lee, H.A.; Melchers, W.J.G.; et al. Voriconazole Resistance and Mortality in Invasive Aspergillosis: A Multicenter Retrospective Cohort Study. Clin. Infect. Dis. 2018, 68, 1463–1471. [Google Scholar] [CrossRef]
- Rosowski, E.E.; He, J.; Huisken, J.; Keller, N.P.; Huttenlocher, A. Efficacy of Voriconazole against Aspergillus Fumigatus Infection Depends on Host Immune Function. Antimicrob. Agents Chemother. 2020, 64, e00917-19. [Google Scholar] [CrossRef]
- Pilmis, B.; Garcia-Hermoso, D.; Alanio, A.; Catherinot, E.; Scemla, A.; Jullien, V.; Bretagne, S.; Lortholary, O. Failure of voriconazole therapy due to acquired azole resistance in Aspergillus fumigatus in a kidney transplant recipient with chronic necrotizing aspergillosis. Am. J. Transplant. 2018, 18, 2352–2355. [Google Scholar] [CrossRef]
- Maertens, J.A.; Rahav, G.; Lee, D.-G.; Ponce-De-León, A.; Cristina, I.; Sánchez, R.; Klimko, N.; Sonet, A.; Haider, S.; Diego Vélez, J.; et al. Posaconazole versus Voriconazole for Primary Treatment of Invasive Aspergillosis: A Phase 3, Randomised, Controlled, Non-Inferiority Trial. Lancet 2021, 397, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Kurakado, S.; Matsumoto, Y.; Sugita, T. Efficacy of Posaconazole against Rhizopus oryzae Infection in Silkworm. Med. Mycol. J. 2021, 62, 53–57. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Yao, Y.; Hu, J.; Hu, J.; Xiao, X.; Zhao, Y. Pharmacokinetic/Pharmacodynamic Analysis the Probability of Target Attainment of Posaconazole against Mucorales Species in Patients with Mucormycosis. Pharmacol. Pharm. 2020, 11, 71–78. [Google Scholar] [CrossRef]
- Darkes, M.J.M.; Scott, L.J.; Goa, K.L.; Abdel-Rahman, S.M.; Roberts, D.T. Terbinafine: A Review of Its Use in Onychomycosis in Adults. Am. J. Clin. Dermatol. 2003, 4, 39–65. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, X.; Yang, M.; González, U.; Lin, X.; Hua, X.; Xue, S.; Zhang, M.; Bennett, C. Systemic antifungal therapy for tinea capitis in children. Cochrane Database Syst. Rev. 2016, 2016, CD004685. [Google Scholar] [CrossRef]
- Di Mambro, T.; Guerriero, I.; Aurisicchio, L.; Magnani, M.; Marra, E. The Yin and Yang of Current Antifungal Therapeutic Strategies: How Can We Harness Our Natural Defenses? Front. Pharmacol. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Balkovec, J.M.; Hughes, D.L.; Masurekar, P.S.; Sable, C.A.; Schwartz, R.E.; Singh, S.B. Discovery and development of first in class antifungal caspofungin (CANCIDAS®)—A case study. Nat. Prod. Rep. 2013, 31, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S. Micafungin: A sulfated echinocandin. J. Antibiot. 2009, 62, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, J.A.; Sobel, J.D. Reviews Of Anti-infective Agents: Anidulafungin: A Novel Echinocandin. Clin. Infect. Dis. 2006, 43, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R.; Soriano, A.; Skoutelis, A.; Vazquez, J.A.; Honore, P.M.; Horcajada, J.P.; Spapen, H.; Bassetti, M.; Ostrosky-Zeichner, L.; Das, A.F.; et al. Rezafungin Versus Caspofungin in a Phase 2, Randomized, Double-blind Study for the Treatment of Candidemia and Invasive Candidiasis: The STRIVE Trial. Clin. Infect. Dis. 2020, 73, e3647–e3655. [Google Scholar] [CrossRef]
- Wiederhold, N.P. Echinocandin Resistance in Candida Species: A Review of Recent Developments. Curr. Infect. Dis. Rep. 2016, 18, 42. [Google Scholar] [CrossRef]
- Dudiuk, C.; Macedo, D.; Leonardelli, F.; Theill, L.; Cabeza, M.S.; Gamarra, S.; Garcia-Effron, G. Molecular Confirmation of the Relationship between Candida guilliermondii Fks1p Naturally Occurring Amino Acid Substitutions and Its Intrinsic Reduced Echinocandin Susceptibility. Antimicrob. Agents Chemother. 2017, 61, e02644-16. [Google Scholar] [CrossRef]
- Iyer, K.R.; Revie, N.M.; Fu, C.; Robbins, N.; Cowen, L.E. Treatment strategies for cryptococcal infection: Challenges, advances and future outlook. Nat. Rev. Genet. 2021, 19, 454–466. [Google Scholar] [CrossRef]
- García-García, I.; Borobia, A.M. Current approaches and future strategies for the implementation of pharmacogenomics in the clinical use of azole antifungal drugs. Expert Opin. Drug Metab. Toxicol. 2021, 17, 509–514. [Google Scholar] [CrossRef]
- Relling, M.V.; Klein, T.E.; Gammal, R.S.; Whirl-Carrillo, M.; Hoffman, J.M.; Caudle, K.E. The Clinical Pharmacogenetics Implementation Consortium: 10 Years Later. Clin. Pharmacol. Ther. 2019, 107, 171–175. [Google Scholar] [CrossRef]
- Miller, M.A.; Lee, Y.M. Applying Pharmacogenomics to Antifungal Selection and Dosing: Are We There Yet? Curr. Fungal Infect. Rep. 2020, 14, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Vena, A.; Munoz, P.; Mateos, M.; Guinea, J.; Galar, A.; Pea, F.; Alvarez-Uria, A.; Escribano, P.; Bouza, E. Therapeutic Drug Monitoring of Antifungal Drugs: Another Tool to Improve Patient Outcome? Infect. Dis. Ther. 2020, 9, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Toussaint, B.; Lanternier, F.; Woloch, C.; Fournier, D.; Launay, M.; Billaud, E.; Dannaoui, E.; Lortholary, O.; Jullien, V. An ultra performance liquid chromatography-tandem mass spectrometry method for the therapeutic drug monitoring of isavuconazole and seven other antifungal compounds in plasma samples. J. Chromatogr. B 2017, 1046, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Z.; Wang, S. Advances in antifungal drug measurement by liquid chromatography-mass spectrometry. Clin. Chim. Acta 2019, 491, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Yasu, T.; Nomura, Y.; Gando, Y.; Matsumoto, Y.; Sugita, T.; Kosugi, N.; Kobayashi, M. High-Performance Liquid Chromatography for Ultra-Simple Determination of Plasma Voriconazole Concentration. J. Fungi 2022, 8, 1035. [Google Scholar] [CrossRef]
- Clarke, W.; Molinaro, R.; Bachmann, L.; Botelho, J.; Cao, Z.; French, D.; Garg, S.; Gawoski, J.; Grant, R. C62-A Liquid Chromatography-Mass Spectrometry Methods; Approved Guideline; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014. [Google Scholar]
- Miller, W.G. The role of proficiency testing in achieving standardization and harmonization between laboratories. Clin. Biochem. 2009, 42, 232–235. [Google Scholar] [CrossRef]
- Vogeser, M.; Schuster, C.; Rockwood, A.L. A proposal to standardize the description of LC–MS-based measurement methods in laboratory medicine. Clin. Mass Spectrom. 2019, 13, 36–38. [Google Scholar] [CrossRef]
- Meletiadis, J.; Chanock, S.; Walsh, T.J. Human Pharmacogenomic Variations and Their Implications for Antifungal Efficacy. Clin. Microbiol. Rev. 2006, 19, 763–787. [Google Scholar] [CrossRef]
- McKeny, P.T.; Nessel, T.A.; Zito, P.M. Antifungal Antibiotics; [Updated 31 October 2022]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Li, Y.; Theuretzbacher, U.; Clancy, C.J.; Nguyen, M.H.; Derendorf, H. Pharmacokinetic/Pharmacodynamic Profile of Posaconazole. Clin. Pharmacokinet. 2010, 49, 379–396. [Google Scholar] [CrossRef]
- Gómez-López, A. Antifungal therapeutic drug monitoring: Focus on drugs without a clear recommendation. Clin. Microbiol. Infect. 2020, 26, 1481–1487. [Google Scholar] [CrossRef]
- Ashbee, H.R.; Barnes, R.A.; Johnson, E.M.; Richardson, M.D.; Gorton, R.; Hope, W.W. Therapeutic drug monitoring (TDM) of antifungal agents: Guidelines from the British Society for Medical Mycology. J. Antimicrob. Chemother. 2013, 69, 1162–1176. [Google Scholar] [CrossRef] [PubMed]
- Park, W.B.; Kim, N.-H.; Kim, K.-H.; Lee, S.H.; Nam, W.-S.; Yoon, S.H.; Song, K.-H.; Choe, P.G.; Kim, N.J.; Jang, I.-J.; et al. The Effect of Therapeutic Drug Monitoring on Safety and Efficacy of Voriconazole in Invasive Fungal Infections: A Randomized Controlled Trial. Clin. Infect. Dis. 2012, 55, 1080–1087. [Google Scholar] [CrossRef]
- Takesue, Y.; Hanai, Y.; Oda, K.; Hamada, Y.; Ueda, T.; Mayumi, T.; Matsumoto, K.; Fujii, S.; Takahashi, Y.; Miyazaki, Y.; et al. Clinical Practice Guideline for the Therapeutic Drug Monitoring of Voriconazole in Non-Asian and Asian Adult Patients: Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. Clin. Ther. 2022, 44, 1604–1623. [Google Scholar] [CrossRef] [PubMed]
- Orssaud, C.; Guillemain, R.; Lillo le Louet, A. Toxic Optic Neuropathy Due to Voriconazole: Possible Potentiation by Reduction of CYP2C19 Activity. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7823–7828. [Google Scholar] [PubMed]
- Desai, A.; Kovanda, L.; Kowalski, D.; Lu, Q.; Townsend, R.; Bonate, P.L. Population Pharmacokinetics of Isavuconazole from Phase 1 and Phase 3 (SECURE) Trials in Adults and Target Attainment in Patients with Invasive Infections Due to Aspergillus and Other Filamentous Fungi. Antimicrob. Agents Chemother. 2016, 60, 5483–5491. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Baldelli, S.C.; Märtson, A.-G.M.; Stocker, S.; Alffenaar, J.-W.; Cattaneo, D.; Marriott, D.J.F.F. Therapeutic Drug Monitoring of the Echinocandin Antifungal Agents: Is There a Role in Clinical Practice? A Position Statement of the Anti-Infective Drugs Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther. Drug Monit. 2021, 44, 198–214. [Google Scholar] [CrossRef] [PubMed]
- Stolmeier, D.A.; Stratman, H.B.; Mcintee, T.J.; Stratman, E.J. Utility of Laboratory Test Result Monitoring in Patients Taking Oral Terbinafine or Griseofulvin for Dermatophyte Infections. JAMA Dermatol. 2018, 154, 1409. [Google Scholar] [CrossRef]
- Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L.E. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chem. Rev. 2020, 121, 3390–3411. [Google Scholar] [CrossRef]
- Rybak, J.M.; Fortwendel, J.R.; Rogers, P.D. Emerging threat of triazole-resistant Aspergillus fumigatus. J. Antimicrob. Chemother. 2018, 74, 835–842. [Google Scholar] [CrossRef]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Genet. 2022, 20, 557–571. [Google Scholar] [CrossRef]
- Hossain, C.M.; Ryan, L.K.; Gera, M.; Choudhuri, S.; Lyle, N.; Ali, K.A.; Diamond, G. Antifungals and Drug Resistance. Encyclopedia 2022, 2, 1722–1737. [Google Scholar] [CrossRef]
- Kolwijck, E.; van der Hoeven, H.; de Sévaux, R.; ten Oever, J.; Rijstenberg, L.L.; van der Lee, H.A.L.; Zoll, J.; Melchers, W.J.G.; Verweij, P.E. Voriconazole-Susceptible and Voriconazole-Resistant Aspergillus fumigatus Coinfection. Am. J. Respir. Crit. Care Med. 2016, 193, 927–928. [Google Scholar] [CrossRef]
- Kumar, A.; Nair, R.; Kumar, M.; Banerjee, A.; Chakrabarti, A.; Rudramurthy, S.M.; Bagga, R.; Gaur, N.A.; Mondal, A.K.; Prasad, R. Assessment of antifungal resistance and associated molecular mechanism in Candida albicans isolates from different cohorts of patients in North Indian state of Haryana. Folia Microbiol. 2020, 65, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Geber, A.; Hitchcock, C.A.; Swartz, J.E.; Pullen, F.S.; Marsden, K.E.; Kwon-Chung, K.J.; Bennett, J.E. Deletion of the Candida glabrata ERG3 and ERG11 genes: Effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob. Agents Chemother. 1995, 39, 2708–2717. [Google Scholar] [CrossRef] [PubMed]
- Robbins, N.; Cowen, L.E. Antifungal drug resistance: Deciphering the mechanisms governing multidrug resistance in the fungal pathogen Candida glabrata. Curr. Biol. 2021, 31, R1520–R1523. [Google Scholar] [CrossRef]
- Posch, W.; Blatzer, M.; Wilflingseder, D.; Lass-Flörl, C. Aspergillus terreus: Novel lessons learned on amphotericin B resistance. Med. Mycol. 2018, 56, S73–S82. [Google Scholar] [CrossRef]
- Lockhart, S.R. Candida auris and multidrug resistance: Defining the new normal. Fungal Genet. Biol. 2019, 131, 103243. [Google Scholar] [CrossRef]
- Chaabane, F.; Graf, A.; Jequier, L.; Coste, A.T. Review on Antifungal Resistance Mechanisms in the Emerging Pathogen Candida auris. Front. Microbiol. 2019, 10, 2788. [Google Scholar] [CrossRef]
- Yu, Y.; Albrecht, K.; Groll, J.; Beilhack, A. Innovative therapies for invasive fungal infections in preclinical and clinical development. Expert Opin. Investig. Drugs 2020, 29, 961–971. [Google Scholar] [CrossRef]
- Delma, F.Z.; Al-Hatmi, A.M.S.; Brüggemann, R.J.M.; Melchers, W.J.G.; de Hoog, S.; Verweij, P.E.; Buil, J.B. Molecular Mechanisms of 5-Fluorocytosine Resistance in Yeasts and Filamentous Fungi. J. Fungi 2021, 7, 909. [Google Scholar] [CrossRef]
- Billmyre, R.B.; Clancey, S.A.; Li, L.X.; Doering, T.L.; Heitman, J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis in Cryptococcus. Nat. Commun. 2020, 11, 127. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health; Centers for Disease Control and Prevention; HIV Medicine Association of the Infectious Diseases Society of America Panel. Guidelines for the Prevention and Treatment of Opportunistic Infections in Adults and Adolescents with HIV. Available online: https://www.idsociety.org/practice-guideline/prevention-and-treatment-of-opportunistic-infections-among-adults-and-adolescents/ (accessed on 30 April 2023).
- Ruma, Y.N.; Keniya, M.V.; Tyndall, J.D.A.; Monk, B.C. Characterisation of Candida parapsilosis CYP51 as a Drug Target Using Saccharomyces cerevisiae as Host. J. Fungi 2022, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, L.; Lv, Q.; Yan, L.; Wang, Y.; Jiang, Y. The Fungal CYP51s: Their Functions, Structures, Related Drug Resistance, and Inhibitors. Front. Microbiol. 2019, 10, 691. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Shaw, D.; Joshi, H.; Singh, S.; Chakrabarti, A.; Rudramurthy, S.M.; Ghosh, A.K. Mechanisms of azole antifungal resistance in clinical isolates of Candida tropicalis. PLoS ONE 2022, 17, e0269721. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Prakash, A.; Sharma, C.; Kordalewska, M.; Kumar, A.; Sarma, S.; Tarai, B.; Singh, A.; Upadhyaya, G.; Upadhyay, S.; et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: Role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J. Antimicrob. Chemother. 2018, 73, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cantero, A.; López-Fernández, L.; Guarro-Artigas, J.; Capilla, J. Azole resistance mechanisms in Aspergillus: Update and recent advances. Int. J. Antimicrob. Agents 2019, 55, 105807. [Google Scholar] [CrossRef] [PubMed]
- Fraczek, M.; Bromley, M.; Buied, A.; Moore, C.B.; Rajendran, R.; Rautemaa, R.; Ramage, G.; Denning, D.; Bowyer, P. The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus. J. Antimicrob. Chemother. 2013, 68, 1486–1496. [Google Scholar] [CrossRef]
- Wiederhold, N.P. Review of the Novel Investigational Antifungal Olorofim. J. Fungi 2020, 6, 122. [Google Scholar] [CrossRef]
- Webb, B.J.; Ferraro, J.P.; Rea, S.; Kaufusi, S.; Goodman, B.E.; Spalding, J. Epidemiology and Clinical Features of Invasive Fungal Infection in a US Health Care Network. Open Forum Infect. Dis. 2018, 5, ofy187. [Google Scholar] [CrossRef]
- Yang, Q.; Xie, J.; Cai, Y.; Wang, N.; Wang, Y.; Zhang, L.; Li, Y.; Yu, J.; Li, Y.; Wang, H.; et al. Efficacy and Safety of Combination Antifungals as Empirical, Preemptive, and Targeted Therapies for Invasive Fungal Infections in Intensive-Care Units. Infect. Drug Resist. 2022, 15, 5331–5344. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, C.; Takesue, Y.; Matsumoto, K.; Ikegame, K.; Enoki, Y.; Uchino, M.; Miyazaki, T.; Izumikawa, K.; Takada, T.; Okinaka, K.; et al. Echinocandins versus non-echinocandins for empirical antifungal therapy in patients with hematological disease with febrile neutropenia: A systematic review and meta-analysis. J. Infect. Chemother. 2020, 26, 596–603. [Google Scholar] [CrossRef]
- Novak, A.R.; Bradley, M.E.; Kiser, T.H.; Mueller, S.W. Azole-Resistant Aspergillus and Echinocandin-Resistant Candida: What Are the Treatment Options? Curr. Fungal Infect. Rep. 2020, 14, 141–152. [Google Scholar] [CrossRef]
- Ben-Ami, R. Systemic Antifungal Therapy for Invasive Pulmonary Infections. J. Fungi 2023, 9, 144. [Google Scholar] [CrossRef]
- Campitelli, M.; Zeineddine, N.; Samaha, G.; Maslak, S. Combination Antifungal Therapy: A Review of Current Data. J. Clin. Med. Res. 2017, 9, 451–456. [Google Scholar] [CrossRef]
- Houšť, J.; Spížek, J.; Havlíček, V. Antifungal Drugs. Metabolites 2020, 10, 106. [Google Scholar] [CrossRef]
- Gintjee, T.J.; Donnelley, M.A.; Thompson, G.R. Aspiring Antifungals: Review of Current Antifungal Pipeline Developments. J. Fungi 2020, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Howard, K.C.; Dennis, E.K.; Watt, D.S.; Garneau-Tsodikova, S. A comprehensive overview of the medicinal chemistry of antifungal drugs: Perspectives and promise. Chem. Soc. Rev. 2020, 49, 2426–2480. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wang, L.; Lü, Y.; Yue, C. Development and research progress of anti-drug resistant fungal drugs. J. Infect. Public Health 2022, 15, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Hoenigl, M.; Sprute, R.; Egger, M.; Arastehfar, A.; Cornely, O.A.; Krause, R.; Lass-Flörl, C.; Prattes, J.; Spec, A.; Thompson, G.R.; et al. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs 2021, 81, 1703–1729. [Google Scholar] [CrossRef]
- Bellmann, R.; Smuszkiewicz, P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection 2017, 45, 737–779. [Google Scholar] [CrossRef]
- Seyedmousavi, S.; Chang, Y.C.; Law, D.; Birch, M.; Rex, J.H.; Kwon-Chung, K.J. Efficacy of Olorofim (F901318) against Aspergillus Fumigatus, A. Nidulans, and A. Tanneri in Murine Models of Profound Neutropenia and Chronic Granulomatous Disease. Antimicrob. Agents Chemother. 2019, 24, e00129-19. [Google Scholar] [CrossRef] [PubMed]
- O’shaughnessy, E.; Yasinskaya, Y.; Dixon, C.; Higgins, K.; Moore, J.; Reynolds, K.; Ampel, N.M.; Angulo, D.; Blair, J.E.; Catanzaro, A.; et al. FDA Public Workshop Summary—Coccidioidomycosis (Valley Fever): Considerations for Development of Antifungal Drugs. Clin. Infect. Dis. 2021, 74, 2061–2066. [Google Scholar] [CrossRef]
- Alkhazraji, S.; Gebremariam, T.; Alqarihi, A.; Gu, Y.; Mamouei, Z.; Singh, S.; Wiederhold, N.P.; Shaw, K.J.; Ibrahim, A.S. Fosmanogepix (APX001) Is Effective in the Treatment of Immunocompromised Mice Infected with Invasive Pulmonary Scedosporiosis or Disseminated Fusariosis. Antimicrob. Agents Chemother. 2020, 64, e01735-19. [Google Scholar] [CrossRef]
- Nicola, A.M.; Albuquerque, P.; Paes, H.C.; Fernandes, L.; Costa, F.F.; Kioshima, E.S.; Abadio, A.K.R.; Bocca, A.L.; Felipe, M.S. Antifungal drugs: New insights in research & development. Pharmacol. Ther. 2019, 195, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Cass, L.; Murray, A.; Davis, A.; Woodward, K.; Albayaty, M.; Ito, K.; Strong, P.; Ayrton, J.; Brindley, C.; Prosser, J.; et al. Safety and nonclinical and clinical pharmacokinetics of PC945, a novel inhaled triazole antifungal agent. Pharmacol. Res. Perspect. 2020, 9, e00690. [Google Scholar] [CrossRef]
- Sobel, J.D.; Donders, G.; Degenhardt, T.; Person, K.; Curelop, S.; Ghannoum, M.; Brand, S.R. Efficacy and Safety of Oteseconazole in Recurrent Vulvovaginal Candidiasis. NEJM Évid. 2022, 1, EVIDoa2100055. [Google Scholar] [CrossRef]
- Maione, A.; Mileo, A.; Pugliese, S.; Siciliano, A.; Cirillo, L.; Carraturo, F.; de Alteriis, E.; De Falco, M.; Guida, M.; Galdiero, E. VT-1161—A Tetrazole for Management of Mono- and Dual-Species Biofilms. Microorganisms 2023, 11, 237. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.R.; Fothergill, A.W.; Iqbal, N.; Bolden, C.B.; Grossman, N.T.; Garvey, E.P.; Brand, S.R.; Hoekstra, W.J.; Schotzinger, R.J.; Ottinger, E.; et al. The Investigational Fungal Cyp51 Inhibitor VT-1129 Demonstrates Potent In Vitro Activity against Cryptococcus neoformans and Cryptococcus gattii. Antimicrob. Agents Chemother. 2016, 60, 2528–2531. [Google Scholar] [CrossRef] [PubMed]
- Wiederhold, N.P.; Najvar, L.K.; Garvey, E.P.; Brand, S.R.; Xu, X.; Ottinger, E.A.; Alimardanov, A.; Cradock, J.; Behnke, M.; Hoekstra, W.J.; et al. The Fungal Cyp51 Inhibitor VT-1129 Is Efficacious in an Experimental Model of Cryptococcal Meningitis. Antimicrob. Agents Chemother. 2018, 62, e01071-18. [Google Scholar] [CrossRef]
Site of Action | Class of Drug | Examples | Mechanism of Action |
---|---|---|---|
Loss of cell membrane integrity | Polyenes | Amphotericin B deoxycholate, Liposomal amphotericin B, Nystatin, Natamycin | Binds to ergosterol, a specific steroid-alcohol of fungi. The polyene-ergosterol complex creates pores in the fungal cell membrane, leading to electrolyte leakage, cell lysis and cell death [39]. |
Azoles: | Ketoconazole, miconazole, clotrimazole, itraconazole, isavuconazonium sulfate (isavuconazole), fluconazole, voriconazole, posaconazole | Non-competitive inhibitors of the fungal enzyme lanosterol 14-alpha-demethylase, a rate-limiting enzyme in the fungal biosynthetic pathway of ergosterol. This action destabilizes the fungal cell membrane, causing cell content leakage, lysis and cell death [31,37]. | |
Allylamines | Terbinafine | Inhibitor of the squalene epoxidase involved in the conversion of squalene to lanosterol, a precursor of ergosterol and cholesterol [40]. | |
Loss of cell wall integrity | Echinocandins | Caspofungin, Micafungin, Anidulafungin | Inhibitor of 1,3-β-glucan synthase [41]. |
Mitotic inhibitors | Griseofulvin | Mitotic inhibitor that binds to polymerized fungal microtubules, inhibiting de-polymerization and leading to the failure of fungal cell replication [42]. | |
Pyrimidine antimetabolite | Flucytosin | Inhibitor of nucleic acid synthesis [43]. |
Standard Dose (mg/kg) | Bioavailability (%) | Protein Binding (%) | Metabolism (CYP) | Excretion (% Not Metabolized) | Vd (L/kg) | CL (mL/h/kg) | t/2 (h) | Tmax (h) | Renal Impairment | Hepatic Impairment | |
---|---|---|---|---|---|---|---|---|---|---|---|
Polyenes: | |||||||||||
Amphotericin B (liposomal) | 3–4 mg/kg per day (5 mg/kg for mucormycosis, or even 10 mg/kg for Mucorales infections of the CNS) | - | 95–99 | - | Renal (20–33); hepatic (40–43) | 0.05–2.2 | 1–23 | 13–24 | 4 | No dose adjustment; consider nephrotoxicity | No dose adjustment; consider hepatotoxicity |
Azoles | |||||||||||
Fluconazole | Intravenous: loading dose 12 mg/kg once Maintenance dose 6 mg/kg once daily Oral: depends on clinical indication | 90 | 11–12 | 3A4 (10%) | Renal (64–90) | 0.6–0.8 | 15–24 | 27–37 | 0.5–1 | Dose reduction (by 50% for GFR 11–50 mL/min) | No relevant hepatic metabolism; consider hepatotoxicity |
Itraconazole | Loading dose 200 mg b.i.d. Maintenance dose 200 mg once daily—200 mg b.i.d | 55; depends on the pH | 99 | 3A4 (active metabolite-hydroxytroconazole) | Hepatic—54% in feces (3–35 in urine) | 11 | Dose-dependent | 15–42 | 2.5 | No dose reduction; enhanced dose during continuous renal replacement therapy | Consider dose reduction; TDM |
Voriconazole | Intravenous: loading dose 6 mg/kg b.i.d. on Day 1 Maintenance dose 4 mg/kg b.i.d. Oral: loading dose 400 mg b.i.d. on Day 1 Maintenance dose 200 mg b.i.d. | 90–96; affected by food | 51–67 | 2C19/2C9/3A4 | Hepatic (<2; more than 80% metabolite in urine) | 4.6 | 100 | 6–12 | 1–2 | Standard dose; consider SBECD accumulation during i.v. infusion | Mild to moderate: 50% dose reduction; TDM recommended |
Posaconazole | Oral suspension: therapeutic dose 200 mg q.i.d. or 400 mg b.i.d Prophylaxis 200 mg t.i.d. Tablet formulation: loading dose 300 mg b.i.d. on Day 1 Maintenance dose 300 mg once daily Intravenous: loading dose 300 mg b.i.d. on Day 1; maintenance dose 300 mg once daily | Variable; affected by food and low pH | >98 | Glucoronidation via UGT | Hepatic—77% in the stool | 3.7–20 | 100–485 | 15–35 | 3–6.3 | No dose adjustment; in intravenous formulation, avoid because of SBECD accumulation, when GFR < 50 mL/min | No dose adjustment |
Isovuconazole | Intravenous: loading dose 200 mg t.i.d. on Day 1 and Day 2 Maintenance dose 200 mg once daily Oral: loading dose 200 mg t.i.d. on Day 1 and Day 2 Maintenance dose 200 mg once daily | >98; unaffected by pH or food | >99 | 3A4/3A5; Glucoronidation via UGT | Hepatic—46% in feces (45 in urine) | 6.5 | 30–70 | 80–130 | 2 | Standard dose | Mild to moderate: enhanced levels; no dose reduction recommended by the manufacturer |
Echinocandins | |||||||||||
Anidulafungin | Loading dose 200 (Tinf, 180 min), maintenance dose 100 (Tinf, 90 min) | - | 99 | Spontaneous degradation in plasma | Hepatic (chemical hydrolysis) (10) | 0.6 | 15 | 40–50 | - | No dose adjustment | Slightly lowered concentrations; no dose adjustment recommended |
Caspofungin | Loading dose 70, maintenance dose 50 (70 if body weight >80 kg) | - | 92.4–96.5 | Independent CYP | Renal (chemical hydrolysis) (1.4) | 0.3–2 | 10 | 8 | - | No dose adjustment | Enhanced exposure in moderate hepatic impairment; dose reduction |
Micafungin | 50 for prophylaxis, 100 for candidaemia, 150 for oesophageal candidiasis | - | >99 | 3A | Hepatic (chemical hydrolysis) (<1) | 0.3 | 12 | 13–20 | - | No dose adjustment | Slightly lowered concentrations; contra-indicated in European SmPC |
Flucytosine | 25–37.5 mg/kg 4 times per day | 90 | 3–4 | Minimum | Renal (>99) | 0.4–0.8 | - | 3–6 | - | Dose reduction guided by glomerular filtration rate | Flucytosine should be avoided because of hepatotoxicity; no effect on pharmacokinetics because of renal elimination |
PK/PD Features | Recommendation for TDM | TDM Protocol | Comments | |
---|---|---|---|---|
Polyene: Amphothecin B in lipid/liposomal formulations |
|
|
|
|
Triazoles: | ||||
Fluconazole |
|
|
|
|
Isavuconazole |
|
|
|
|
Itraconazole |
|
|
|
|
Voriconazole |
|
|
|
|
Posaconazole |
|
|
|
|
Echinocandins |
|
|
| |
Flucytosine |
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmo, A.; Rocha, M.; Pereirinha, P.; Tomé, R.; Costa, E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics 2023, 12, 884. https://doi.org/10.3390/antibiotics12050884
Carmo A, Rocha M, Pereirinha P, Tomé R, Costa E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics. 2023; 12(5):884. https://doi.org/10.3390/antibiotics12050884
Chicago/Turabian StyleCarmo, Anália, Marilia Rocha, Patricia Pereirinha, Rui Tomé, and Eulália Costa. 2023. "Antifungals: From Pharmacokinetics to Clinical Practice" Antibiotics 12, no. 5: 884. https://doi.org/10.3390/antibiotics12050884
APA StyleCarmo, A., Rocha, M., Pereirinha, P., Tomé, R., & Costa, E. (2023). Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics, 12(5), 884. https://doi.org/10.3390/antibiotics12050884