Analysis of Antibiotics in Bivalves by Ultra-High Performance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Validation
2.2. Application to Real Samples
3. Materials and Methods
3.1. Sampling
3.2. Chemicals, Reagents and Standard Solutions
3.3. Sample Extraction
3.4. UHPLC-ToF-MS Analysis
3.5. Method Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaw, S.; Thomas, K.V.; Hutchinson, T.H. Sources, Impacts and Trends of Pharmaceuticals in the Marine and Coastal Environment. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130572. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, E. Pharmaceuticals in the Environment: Expected and Unexpected Effects on Aquatic Fauna. Ann. N. Y. Acad. Sci. 2015, 1340, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.J.G.; Lino, C.M.; Meisel, L.M.; Pena, A. Selective Serotonin Re-Uptake Inhibitors (SSRIs) in the Aquatic Environment: An Ecopharmacovigilance Approach. Sci. Total Environ. 2012, 437, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.J.G.; Martins, M.C.; Pereira, A.M.P.T.; Gonzalez-rey, M.; Bebianno, M.J.; Lino, C.M.; Pena, A. Uptake, Accumulation and Metabolization of the Antidepressant Fl Uoxetine by Mytilus Galloprovincialis. Environ. Pollut. 2016, 213, 432–437. [Google Scholar] [CrossRef]
- Silva, L.J.G.; Pereira, A.M.P.T.; Rodrigues, H.; Meisel, L.M.; Lino, C.M.; Pena, A. SSRIs Antidepressants in Marine Mussels from Atlantic Coastal Areas and Human Risk Assessment. Sci. Total Environ. 2017, 603–604, 118–125. [Google Scholar] [CrossRef]
- Silva, L.J.G.; Pereira, M.P.T.; Meisel, L.M.; Lino, C.M.; Pena, A.; Pereira, A.M.P.T.; Meisel, L.M.; Lino, C.M.; Pena, A. Reviewing the Serotonin Reuptake Inhibitors (SSRIs) Footprint in the Aquatic Biota: Uptake, Bioaccumulation and Ecotoxicology. Environ. Pollut. 2015, 197, 127–143. [Google Scholar] [CrossRef]
- EAHC. Study on the Environmental Risks of Medicinal Products, Final Report Prepared for Executive Agency for Health and Consumers; Bio Intelligence Service: Paris, France, 2013. [Google Scholar]
- Baralla, E.; Demontis, M.P.; Dessì, F.; Varoni, M.V. An Overview of Antibiotics as Emerging Contaminants: Occurrence in Bivalves as Biomonitoring Organisms. Animals 2021, 11, 3239. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Decision (EU) 2018/840 of 5 June 2018 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council and Repealing Comm. Off. J. Eur. Union 2018, L 141, 9–12. [Google Scholar]
- Dodder, N.G.; Maruya, K.A.; Lee Ferguson, P.; Grace, R.; Klosterhaus, S.; La Guardia, M.J.; Lauenstein, G.G.; Ramirez, J. Occurrence of Contaminants of Emerging Concern in Mussels (Mytilus Spp.) along the California Coast and the Influence of Land Use, Storm Water Discharge, and Treated Wastewater Effluent. Mar. Pollut. Bull. 2014, 81, 340–346. [Google Scholar] [CrossRef]
- Cerveny, D.; Turek, J.; Grabic, R.; Golovko, O.; Koba, O.; Fedorova, G.; Grabicova, K.; Zlabek, V.; Randak, T. Young-of-the-Year Fish as a Prospective Bioindicator for Aquatic Environmental Contamination Monitoring. Water Res. 2016, 103, 334–342. [Google Scholar] [CrossRef]
- Alvarez-Muñoz, D.; Huerta, B.; Fernandez-Tejedor, M.; Rodríguez-Mozaz, S.; Barceló, D. Multi-Residue Method for the Analysis of Pharmaceuticals and Some of Their Metabolites in Bivalves. Talanta 2015, 136, 174–182. [Google Scholar] [CrossRef] [PubMed]
- McEneff, G.; Barron, L.; Kelleher, B.; Paull, B.; Quinn, B. The Determination of Pharmaceutical Residues in Cooked and Uncooked Marine Bivalves Using Pressurised Liquid Extraction, Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2013, 405, 9509–9521. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Zhang, R.; Liang, Y.; Wu, L.; Zhang, Y.; Mu, Z.; Deng, P.; Yang, L.; Zhou, Z.; Yu, Z. Concentrations and Health Risks of Heavy Metals in Five Major Marketed Marine Bivalves from Three Coastal Cities in Guangxi, China. Ecotoxicol. Environ. Saf. 2021, 223, 112562. [Google Scholar] [CrossRef]
- Ding, J.; Sun, C.; Li, J.; Shi, H.; Xu, X.; Ju, P.; Jiang, F.; Li, F. Microplastics in Global Bivalve Mollusks: A Call for Protocol Standardization. J. Hazard. Mater. 2022, 438, 129490. [Google Scholar] [CrossRef]
- Barbosa, I.d.S.; Brito, G.B.; dos Santos, G.L.; Santos, L.N.; Teixeira, L.S.G.; Araujo, R.G.O.; Korn, M.G.A. Multivariate Data Analysis of Trace Elements in Bivalve Molluscs: Characterization and Food Safety Evaluation. Food Chem. 2019, 273, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Strehse, J.S.; Maser, E. Marine Bivalves as Bioindicators for Environmental Pollutants with Focus on Dumped Munitions in the Sea: A Review. Mar. Environ. Res. 2020, 158, 105006. [Google Scholar] [CrossRef] [PubMed]
- Rodil, R.; Villaverde-de-Sáa, E.; Cobas, J.; Quintana, J.B.; Cela, R.; Carro, N. Legacy and Emerging Pollutants in Marine Bivalves from the Galician Coast (NW Spain). Environ. Int. 2019, 129, 364–375. [Google Scholar] [CrossRef]
- Freitas, A.; Barbosa, J.; Ramos, F. Multi-Residue and Multi-Class Method for the Determination of Antibiotics in Bovine Muscle by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. Meat Sci. 2014, 98, 58–64. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the Performance of Analytical Methods for Residues of Pharmacologically Active Substances Used in Food-Producing Animals and on the Interpretation of Results as Well as on the Methods To be used for sampling and repealing Decisions 2002/657/EC and 98/179/EC. Off. J. Eur. Union 2021, 180, 84–109. [Google Scholar]
- European Commission. Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. Off. J. Eur. Union 2010, L 15, 1–72. [Google Scholar]
- EMA. Validation of Analytical Procedures: ICH Guidelines Q2(R2); ICH: Geneva, Switzerland, 2022; Volume EMA/CHMP/I. [Google Scholar]
- Straub, J. An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters. Antibiotics 2013, 2, 115–162. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Muñoz, D.; Rodríguez-Mozaz, S.; Maulvault, A.L.; Tediosi, A.; Fernández-Tejedor, M.; Van den Heuvel, F.; Kotterman, M.; Marques, A.; Barceló, D. Occurrence of Pharmaceuticals and Endocrine Disrupting Compounds in Macroalgaes, Bivalves, and Fish from Coastal Areas in Europe. Environ. Res. 2015, 143, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, L.M.; Nobile, M.; Malandra, R.; Panseri, S.; Arioli, F. Occurrence of Antibiotics in Mussels and Clams from Various FAO Areas. Food Chem. 2018, 240, 16–23. [Google Scholar] [CrossRef] [PubMed]
Spiking Level | Recovery | Precision | Linearity (r2) | LoD | LoQ | Ccalfa | Max Δppm | U (%) | ||
---|---|---|---|---|---|---|---|---|---|---|
(µg kg−1) | (%) | Intra-Day RSD (%) | Inter-Day RSD (%) | (µg kg−1) | (µg kg−1) | (µg kg−1) | ||||
Amoxicillin | 25 | 116.4 | 16.4 | 12.6 | 0.9995 | 3.31 | 10.00 | 63.67 | 1.99 | 20 |
50 | 119.5 | 14.8 | 22.6 | |||||||
100 | 96.9 | 11.7 | 17.9 | |||||||
Ampicillin | 25 | 104.9 | 9.8 | 14.8 | 0.9987 | 6.38 | 19.30 | 61.01 | 1.60 | 21 |
50 | 109.9 | 14.5 | 22.1 | |||||||
100 | 90.5 | 9.4 | 14.4 | |||||||
Benzylpenicillin | 25 | 83.2 | 14.1 | 14.1 | 0.9922 | 11.80 | 35.80 | 66.23 | −1.20 | 26 |
50 | 85.2 | 19.8 | 19.8 | |||||||
100 | 80.7 | 13.9 | 13.9 | |||||||
Cefalonium | 10 | 81.4 | 8.7 | 13.2 | 0.9835 | 3.05 | 9.7 | 24.12 | 1.21 | 18 |
20 | 99.5 | 15.1 | 23.0 | |||||||
40 | 94.9 | 8.8 | 13.5 | |||||||
Cefapirin | 25 | 83.9 | 10.7 | 16.2 | 0.9912 | 11.90 | 36.20 | 61.28 | 0.33 | 20 |
50 | 94.1 | 16.4 | 24.9 | |||||||
100 | 84.3 | 9.7 | 14.7 | |||||||
Cefazolin | 25 | 77.6 | 10.1 | 15.4 | 0.9950 | 8.81 | 26.70 | 61.82 | 2.56 | 18 |
50 | 82.2 | 13.6 | 20.8 | |||||||
100 | 78.6 | 10.1 | 15.4 | |||||||
Cefoperazon | 25 | 76.3 | 9.0 | 13.6 | 0.9902 | 7.48 | 22.70 | 62.25 | −1.30 | 16 |
50 | 90.6 | 11.3 | 17.1 | |||||||
100 | 84.5 | 10.5 | 16.0 | |||||||
Cefquinome | 25 | 82.5 | 8.9 | 13.5 | 0.9934 | 11.50 | 34.90 | 62.00 | −3.22 | 20 |
50 | 91.8 | 15.5 | 23.6 | |||||||
100 | 84.2 | 10.3 | 15.7 | |||||||
Cephalexin | 25 | 115.5 | 12.7 | 19.4 | 0.9957 | 8.20 | 24.80 | 62.83 | 1.55 | 22 |
50 | 116.4 | 15.2 | 23.1 | |||||||
100 | 91.6 | 11.0 | 16.8 | |||||||
Chlortetracycline | 50 | 100.0 | 9.1 | 13.8 | 0.9983 | 10.40 | 31.50 | 121.73 | 2.71 | 15 |
100 | 101.2 | 15.9 | 24.1 | |||||||
200 | 84.3 | 9.3 | 14.2 | |||||||
Cinoxacin | 50 | 112.5 | 11.7 | 17.9 | 0.9953 | 17.10 | 51.90 | 122.35 | −1.20 | 21 |
100 | 109.6 | 14.8 | 22.5 | |||||||
200 | 83.8 | 9.6 | 14.6 | |||||||
Ciprofloxacin | 50 | 103.8 | 10.0 | 15.2 | 0.9987 | 8.92 | 27.00 | 124.37 | −0.99 | 17 |
100 | 100.5 | 16.1 | 24.5 | |||||||
200 | 84.8 | 10.5 | 15.9 | |||||||
Danofloxacin | 50 | 91.3 | 8.9 | 13.6 | 0.9993 | 6.62 | 20.10 | 121.98 | 1.26 | 21 |
100 | 94.4 | 14.5 | 22.5 | |||||||
200 | 80.6 | 9.4 | 14.4 | |||||||
Dicloxacillin | 150 | 104.7 | 14.1 | 21.4 | 0.9929 | 45.00 | 136.00 | 380.97 | 3.01 | 21 |
300 | 108.0 | 15.4 | 23.4 | |||||||
600 | 98.1 | 11.6 | 17.6 | |||||||
Doxycycline | 50 | 70.0 | 13.2 | 20.1 | 0.9927 | 22.60 | 68.60 | 133.49 | 1.32 | 21 |
100 | 76.0 | 14.9 | 22.6 | |||||||
200 | 84.4 | 14.4 | 21.9 | |||||||
Enoxacin | 50 | 95.9 | 13.8 | 13.8 | 0.9994 | 6.16 | 18.70 | 133.93 | 1.54 | 14 |
100 | 93.5 | 24.0 | 24.4 | |||||||
200 | 76.8 | 14.6 | 14.6 | |||||||
Enrofloxacin | 50 | 107.5 | 10.7 | 16.3 | 0.9994 | 6.16 | 18.70 | 125.73 | −3.01 | 20 |
100 | 112.3 | 15.5 | 23.6 | |||||||
200 | 91.8 | 11.0 | 16.8 | |||||||
epi-Chlortetracycline | 50 | 83.8 | 9.2 | 13.9 | 0.9981 | 11.10 | 33.30 | 124.95 | −2.11 | 18 |
100 | 88.7 | 15.4 | 23.4 | |||||||
200 | 78.6 | 10.7 | 16.3 | |||||||
epi-Tetracyclin | 50 | 95.0 | 15.5 | 23.6 | 0.9717 | 11.90 | 36.40 | 135.23 | 2.21 | 23 |
100 | 97.2 | 18.3 | 27.8 | |||||||
200 | 76.8 | 15.1 | 23.0 | |||||||
Flumequine | 100 | 88.7 | 10.3 | 15.7 | 0.9958 | 30.70 | 93.20 | 251.20 | 3.04 | 22 |
200 | 93.4 | 12.0 | 18.3 | |||||||
400 | 83.4 | 11.0 | 16.7 | |||||||
Marbofloxacin | 75 | 95.1 | 9.1 | 13.9 | 0.9983 | 15.50 | 47.10 | 188.32 | 0.34 | 15 |
150 | 98.4 | 15.0 | 22.9 | |||||||
300 | 80.2 | 11.0 | 16.7 | |||||||
Nafcillin | 150 | 81.2 | 1.9 | 2.9 | 0.9943 | 54.10 | 164.00 | 315.52 | 0.47 | 6 |
300 | 44.1 | 2.4 | 3.6 | |||||||
600 | 29.8 | 2.2 | 3.4 | |||||||
Nalidixic acid | 50 | 106.5 | 10.9 | 16.5 | 0.9961 | 15.60 | 47.40 | 124.09 | −0.88 | 2214 |
100 | 124.1 | 16.0 | 24.4 | |||||||
200 | 92.4 | 10.3 | 15.7 | |||||||
Norfloxacin | 50 | 97.9 | 9.6 | 14.6 | 0.9920 | 7.10 | 21.50 | 122.53 | −0.23 | 16 |
100 | 98.3 | 16.6 | 25.2 | |||||||
200 | 82.7 | 9.7 | 14.7 | |||||||
Ofloxacin | 50 | 97.8 | 10.0 | 15.2 | 0.9983 | 10.30 | 31.10 | 123.62 | 1.51 | 22 |
100 | 99.6 | 16.0 | 24.4 | |||||||
200 | 82.1 | 10.1 | 15.4 | |||||||
Oxacillin | 150 | 86.8 | 10.5 | 15.9 | 0.9922 | 57.90 | 175.00 | 363.22 | 2.09 | 20 |
300 | 94.9 | 13.5 | 20.5 | |||||||
600 | 82.3 | 9.0 | 13.8 | |||||||
Oxolinic acid | 150 | 123.1 | 9.1 | 13.9 | 0.9958 | 45.80 | 139.00 | 365.37 | 0.83 | 18 |
300 | 113.3 | 13.1 | 20.0 | |||||||
600 | 88.7 | 9.4 | 14.2 | |||||||
Oxytetracycline | 50 | 86.1 | 6.7 | 10.3 | 0.9931 | 20.80 | 63.10 | 128.73 | −2.43 | 16 |
100 | 82.7 | 11.5 | 17.4 | |||||||
200 | 79.0 | 12.3 | 18.8 | |||||||
Sulfachloropyridazine | 50 | 97.7 | 8.7 | 13.2 | 0.9962 | 14.70 | 44.60 | 135.71 | 1.61 | 20 |
100 | 85.2 | 15.1 | 23.0 | |||||||
200 | 92.0 | 15.3 | 23.3 | |||||||
Sulfadiazine | 50 | 112.6 | 8.4 | 12.8 | 0.9970 | 12.90 | 39.10 | 114.93 | 1.56 | 11 |
100 | 105.1 | 7.6 | 11.6 | |||||||
200 | 89.9 | 6.4 | 9.8 | |||||||
Sulfadimethoxine | 50 | 77.9 | 11.2 | 17.1 | 0.9972 | 12.60 | 38.20 | 132.49 | 1.09 | 20 |
100 | 78.2 | 6.7 | 10.2 | |||||||
200 | 87.6 | 13.9 | 21.2 | |||||||
Sulfadimidin | 50 | 113.8 | 6.4 | 9.7 | 0.9953 | 16.10 | 48.70 | 116.96 | −0.98 | 11 |
100 | 104.4 | 4.7 | 7.2 | |||||||
200 | 92.1 | 7.3 | 11.1 | |||||||
Sulfadoxine | 50 | 116.6 | 5.0 | 7.6 | 0.9984 | 9.50 | 28.80 | 121.42 | −0.96 | 12 |
100 | 107.4 | 4.6 | 7.0 | |||||||
200 | 92.6 | 9.2 | 14.0 | |||||||
Sulfapyridin | 50 | 115.6 | 6.0 | 9.1 | 0.9984 | 9.42 | 28.50 | 118.25 | 1.29 | 17 |
100 | 109.3 | 7.0 | 10.7 | |||||||
200 | 92.8 | 7.8 | 11.9 | |||||||
Sulfaquinoxaline | 50 | 77.2 | 13.4 | 20.4 | 0.9902 | 23.80 | 72.00 | 136.85 | −0.89 | 22 |
100 | 91.0 | 9.0 | 13.8 | |||||||
200 | 80.1 | 15.8 | 24.1 | |||||||
Sulfathiazole | 50 | 77.6 | 10.2 | 15.6 | 0.9953 | 16.10 | 48.70 | 126.70 | 1.77 | 15 |
100 | 82.4 | 14.1 | 21.5 | |||||||
200 | 87.4 | 11.5 | 17.4 | |||||||
Sulfisomidine | 50 | 109.1 | 6.7 | 10.2 | 0.9929 | 19.80 | 60.00 | 115.85 | −0.69 | 13 |
100 | 109.6 | 10.0 | 15.2 | |||||||
200 | 89.6 | 6.8 | 10.4 | |||||||
Sulfisoxazole | 50 | 115.3 | 8.1 | 12.4 | 0.9981 | 10.30 | 31.10 | 130.27 | −0.99 | 20 |
100 | 107.2 | 11.2 | 17.0 | |||||||
200 | 103.7 | 13.0 | 19.8 | |||||||
Tetracycline | 50 | 95.1 | 8.7 | 13.3 | 0.9975 | 4.43 | 13.40 | 129.85 | 1.79 | 18 |
100 | 77.5 | 15.2 | 23.2 | |||||||
200 | 90.7 | 12.8 | 19.5 | |||||||
Tilmicosin | 25 | 92.6 | 12.6 | 19.1 | 0.9969 | 7.11 | 21.60 | 60.92 | 1.91 | 15 |
50 | 93.6 | 15.1 | 22.9 | |||||||
100 | 77.8 | 9.4 | 14.3 | |||||||
Trimethoprim | 25 | 108.7 | 9.0 | 13.7 | 0.9950 | 8.28 | 25.10 | 59.98 | −0.93 | 19 |
50 | 106.1 | 12.7 | 19.3 | |||||||
100 | 83.4 | 8.6 | 13.0 | |||||||
Tylosin A | 50 | 93.4 | 12.5 | 19.1 | 0.9978 | 11.30 | 34.10 | 121.90 | 0.98 | 15 |
100 | 97.3 | 17.0 | 25.9 | |||||||
200 | 83.9 | 9.4 | 14.3 | |||||||
Valnemulin | 25 | 85.0 | 15.4 | 23.4 | 0.9990 | 4.15 | 12.60 | 65.18 | 1.85 | 22 |
50 | 96.9 | 16.3 | 24.8 | |||||||
100 | 86.7 | 13.0 | 19.8 |
Time (min) | % A | % B |
---|---|---|
0 | 97 | 3 |
2 | 97 | 3 |
5 | 40 | 60 |
9 | 0 | 100 |
10 | 97 | 3 |
11 | 97 | 3 |
Antibiotic | Molecular | Mass (Da) | [M+H]+ (Da) | RT (min) |
---|---|---|---|---|
Formula | ||||
Amoxicillin | C16H19N3O5S | 365.10454 | 366.11182 | 3.6 |
Ampicillin | C16H19N3O4S | 349.10963 | 350.11690 | 4.2 |
Benzylpenicillin | C16H18N2O4S | 334.09873 | 335.10601 | 4.4 |
Cefalonium | C20H18N4O5S2 | 458.5110 | 459.5180 | 4.1 |
Cefapirin | C17H17N3O6S2 | 423.05588 | 424.06316 | 4.0 |
Cefazolin | C14H14N8O4S3 | 454.03002 | 455.03729 | 4.6 |
Cefoperazon | C25H27N9O8S2 | 645.14240 | 646.14968 | 4.9 |
Cefquinome | C23H24N6O5S2 | 528.12496 | 529.13224 | 3.9 |
Cephalexin | C16H17N3O4S | 347.09398 | 348.10125 | 4.2 |
Chlortetracycline | C22H23ClN2O8 | 478.11429 | 479.12157 | 4.6 |
Cinoxacin | C12H10N2O5 | 262.05897 | 263.06625 | 5.0 |
Ciprofloxacin | C17H18FN3O3 | 331.13322 | 332.14050 | 4.4 |
Danofloxacin | C19H20FN3O3 | 357.14887 | 358.15615 | 4.4 |
Dicloxacillin | C19H17Cl2N3O5S | 469.02660 | 470.03387 | 6.2 |
Doxycycline | C22H24N2O8 | 444.15327 | 445.16054 | 4.9 |
Enoxacin | C15H17FN4O3 | 320.12847 | 321.13575 | 4.3 |
Enrofloxacin | C19H22FN3O3 | 359.16452 | 360.17180 | 4.5 |
epi-Chlortetracyclin | C22H23ClN2O8 | 478.11429 | 479.12157 | 4.4 |
epi-Tetracyclin | C22H24N2O8 | 444.15327 | 445.16054 | 4.3 |
Flumequine | C14H12FNO3 | 261.08012 | 262.08740 | 5.7 |
Marbofloxacin | C17H19FN4O4 | 362.13903 | 363.14631 | 4.3 |
Nafcillin | C21H22N2O5S | 414.12494 | 415.13222 | 6.0 |
Nalidixic acid | C12H12N2O3 | 232.08479 | 233.09207 | 5.6 |
Norfloxacin | C16H18FN3O3 | 319.13322 | 320.14050 | 4.3 |
Ofloxacin | C18H20FN3O4 | 361.14378 | 362.15106 | 4.3 |
Oxacillin | C19H19N3O5S | 401.10454 | 402.11182 | 5.8 |
Oxolinic acid | C13H11NO5 | 261.06372 | 262.07100 | 5.2 |
Oxytetracycline | C22H24N2O9 | 460.14818 | 461.15546 | 4.1 |
Sulfachloropyridazine | C10H9ClN4O2S | 284.01348 | 285.02075 | 4.9 |
Sulfadiazine | C10H10N4O2S | 250.05245 | 251.05972 | 4.0 |
Sulfadimethoxine | C12H14N4O4S | 310.07358 | 311.08085 | 5.3 |
Sulfadimidin | C12H14N4O2S | 278.08375 | 279.09102 | 4.6 |
Sulfadoxine | C12H14N4O4S | 310.07358 | 311.08085 | 5.0 |
Sulfapyridin | C11H11N3O2S | 249.05720 | 250.06447 | 4.2 |
Sulfaquinoxaline | C14H12N4O2S | 300.06810 | 301.07537 | 5.3 |
Sulfathiazole | C9H9N3O2S2 | 255.01362 | 256.02090 | 4.2 |
Sulfisomidine | C12H14N4O2S | 278.08375 | 279.09102 | 3.9 |
Sulfisoxazole | C11H13N3O3S | 267.06776 | 268.07504 | 5.1 |
Tetracycline | C22H24N2O8 | 444.15327 | 445.16054 | 4.5 |
Tilmicosin | C46H80N2O13 | 868.56604 | 869.57332 | 4.9 |
Trimethoprim | C14H18N4O3 | 290.13789 | 291.14517 | 4.3 |
Tylosin A | C46H77NO17 | 915.51915 | 916.52643 | 5.3 |
Valnemulin | C31H52N2O5S | 564.35970 | 565.36697 | 5.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, A.M.P.T.; Freitas, A.; Pena, A.; Silva, L.J.G. Analysis of Antibiotics in Bivalves by Ultra-High Performance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry. Antibiotics 2023, 12, 913. https://doi.org/10.3390/antibiotics12050913
Pereira AMPT, Freitas A, Pena A, Silva LJG. Analysis of Antibiotics in Bivalves by Ultra-High Performance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry. Antibiotics. 2023; 12(5):913. https://doi.org/10.3390/antibiotics12050913
Chicago/Turabian StylePereira, André M. P. T., Andreia Freitas, Angelina Pena, and Liliana J. G. Silva. 2023. "Analysis of Antibiotics in Bivalves by Ultra-High Performance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry" Antibiotics 12, no. 5: 913. https://doi.org/10.3390/antibiotics12050913
APA StylePereira, A. M. P. T., Freitas, A., Pena, A., & Silva, L. J. G. (2023). Analysis of Antibiotics in Bivalves by Ultra-High Performance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry. Antibiotics, 12(5), 913. https://doi.org/10.3390/antibiotics12050913