Anaerobic Gram-Negative Bacteria: Role as a Reservoir of Antibiotic Resistance
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Resistance in Anaerobic Gram-Negative Bacteria
2.2. Genotypic Resistance in Anaerobic Gram-Negative Bacteria
3. Discussion
4. Materials and Methods
4.1. Population under Study
4.2. Sample Processing
4.3. Antimicrobial Susceptibility Testing
4.4. Genotypic Characterization and Detection of Antimicrobial Resistance Determinants
4.5. DNA Extraction
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Angrup, A.; Sood, A.; Ray, P.; Bala, K. Clinical Anaerobic Infections in an Indian Tertiary Care Hospital: A Two-Year Retrospective Study. Anaerobe 2021, 73, 102482. [Google Scholar] [CrossRef] [PubMed]
- Finegold, S.M. Anaerobic Gram-Negative Bacilli. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; Volume 20. Available online: https://www.ncbi.nlm.nih.gov/books/NBK8438/ (accessed on 8 May 2023).
- Veloo, A.C.M.; Baas, W.H.; Haan, F.J.; Coco, J.; Rossen, J.W. Prevalence of Antimicrobial Resistance Genes in Bacteroides spp. and Prevotella spp. Dutch Clinical Isolates. Clin. Microbiol. Infect. 2019, 25, 1156.e9–1156.e13. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Angrup, A.; Ray, P.; Bala, K. Comparative Evaluation of Agar Dilution and Broth Microdilution by Commercial and In-House Plates for Bacteroides fragilis Group: An Economical and Expeditious Approach for Resource-Limited Settings. Anaerobe 2021, 71, 353–358. [Google Scholar] [CrossRef]
- Sharma, V.; Sood, A.; Ray, P.; Angrup, A. Comparative genomics reveals the evolution of antimicrobial resistance in Bacteroides nordii. Microb. Pathog. 2022, 173, 105811. [Google Scholar] [CrossRef]
- Von Wintersdorff, C.J.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.; Wolffs, P.F. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef]
- Sood, A.; Ray, P.; Angrup, A. Phenotypic and Genotypic Antimicrobial Resistance in Clinical Anaerobic Isolates from India. JAC-Antimicrob. Resist. 2021, 3, 1–9. [Google Scholar] [CrossRef]
- Gajdács, M.; Spengler, G.; Urbán, E. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology? Antibiotics 2017, 6, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Sharma, V.; Ray, P.; Angrup, A. Can beta-lactamase resistance genes in anaerobic Gram-negative gut bacteria transfer to gut aerobes? J. Antibiot. 2023, 76, 355–359, Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Hecht, D.W.; Citron, D.M.; Dzink-Fox, J.; Gregory, W.W.; Jacobus, N.V.; Jenkins, S.G.; Rosenblatt, J.E.; Svhuetz, A.N.; Wexler, H. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard—Eighth Edition. CLSI Document M11-A8. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite. Clin. Lab. Stand. Inst. 2012, 32, 1–38. [Google Scholar]
- Sood, A.; Ray, P.; Angrup, A. Antimicrobial Susceptibility Testing of Anaerobic Bacteria: In Routine and Research. Anaerobe 2022, 75, 102559. [Google Scholar] [CrossRef]
- Ferløv-Schwensen, S.A.; Sydenham, T.V.; Hansen, K.C.M.; Hoegh, S.V.; Justesen, U.S. Prevalence of Antimicrobial Resistance and the CfiA Resistance Gene in Danish Bacteroides fragilis Group Isolates since 1973. Int. J. Antimicrob. Agents 2017, 50, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.L.; Derby, P.; Abratt, V.R. In-Vitro Antibiotic Susceptibility and Molecular Analysis of Anaerobic Bacteria Isolated in Cape Town, South Africa. J. Antimicrob. Chemother. 1998, 42, 245–248. [Google Scholar] [CrossRef]
- Nagy, E.; Urbán, E. Antimicrobial Susceptibility of Bacteroides fragilis Group Isolates in Europe: 20years of Experience. Clin. Microbiol. Infect. 2011, 17, 371–379. [Google Scholar] [CrossRef]
- Veloo, A.C.M.; Tokman, H.B.; Jean-Pierre, H.; Dumont, Y.; Jeverica, S.; Lienhard, R.; Novak, A.; Rodloff, A.; Rotimi, V.; Wybo, I.; et al. Antimicrobial Susceptibility Profiles of Anaerobic Bacteria, Isolated from Human Clinical Specimens, within Different European and Surrounding Countries. A Joint ESGAI Study. Anaerobe 2020, 61, 102111. [Google Scholar] [CrossRef]
- Cobo, F.; Rodríguez-Granger, J.; Pérez-Zapata, I.; Sampedro, A.; Aliaga, L.; Navarro-Marí, J.M. Antimicrobial Susceptibility and Clinical Findings of Significant Anaerobic Bacteria in Southern Spain. Anaerobe 2019, 59, 49–53. [Google Scholar] [CrossRef]
- Maraki, S.; Mavromanolaki, V.E.; Stafylaki, D.; Kasimati, A. Surveillance of Antimicrobial Resistance in Recent Clinical Isolates of Gram-Negative Anaerobic Bacteria in a Greek University Hospital. Anaerobe 2020, 62, 102173. [Google Scholar] [CrossRef] [PubMed]
- Forbes, J.D.; Kus, J.V.; Patel, S.N. Antimicrobial Susceptibility Profiles of Invasive Isolates of Anaerobic Bacteria from a Large Canadian Reference Laboratory: 2012–2019. Anaerobe 2021, 70, 102386. [Google Scholar] [CrossRef]
- Hastey, C.J.; Boyd, H.; Schuetz, A.N.; Anderson, K.; Citron, D.M.; Dzink-Fox, J.; Hackel, M.; Hecht, D.W.; Jacobus, N.V.; Jenkins, S.G.; et al. Changes in the Antibiotic Susceptibility of Anaerobic Bacteria from 2007–2009 to 2010–2012 Based on the CLSI Methodology. Anaerobe 2016, 42, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Snydman, D.R.; Jacobus, N.V.; McDermott, L.A.; Goldstein, E.J.C.; Harrell, L.; Jenkins, S.G.; Newton, D.; Patel, R.; Hecht, D.W. Trends in Antimicrobial Resistance among Bacteroides Species and Parabacteroides Species in the United States from 2010–2012 with Comparison to 2008–2009. Anaerobe 2017, 43, 21–26. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.F.; Xie, X.L.; Xiao, M.; Yang, Y.; Zhang, G.; Zhang, J.; Duan, J.; Meng, S.; Zhang, Q.; et al. Evaluation of VITEK MS, Clin-ToF-II MS, Autof MS 1000 and VITEK 2 ANC Card for Identification of Bacteroides fragilis Group Isolates and Antimicrobial Susceptibilities of These Isolates in a Chinese University Hospital. J. Microbiol. Immunol. Infect. 2019, 52, 456–464. [Google Scholar] [CrossRef]
- Yanyan, W.; Yanqiu, H.; Sufang, G.; Quan, F.; Junrui, W. Analysis on the Distribution and Drug Resistance Features of Anaerobes Isolated from Clinical Infectious Specimens. Natl. Med. J. China 2018, 98, 2894–2898. [Google Scholar]
- Yim, J.; Lee, Y.; Kim, M.; Seo, Y.H.; Kim, W.H.; Yong, D.; Jeong, S.H.; Lee, K.; Chong, Y. Erratum: Antimicrobial Susceptibility of Clinical Isolates of Bacteroides fragilis Group Organisms Recovered from 2009 to 2012 in a Korean Hospital. Ann. Lab. Med. 2015, 35, 94–98, https://doi.org/10.3343/Alm.2015.35.1.94; Erratum in Ann. Lab. Med. 2015, 35, 666. [Google Scholar] [CrossRef]
- Liu, C.Y.; Huang, Y.T.; Liao, C.H.; Yen, L.C.; Lin, H.Y.; Hsueh, P.R. Increasing Trends in Antimicrobial Resistance among Clinically Important Anaerobes and Bacteroides fragilis Isolates Causing Nosocomial Infections: Emerging Resistance to Carbapenems. Antimicrob. Agents Chemother. 2008, 52, 3161–3168. [Google Scholar] [CrossRef]
- Ng, L.S.Y.; Kwang, L.L.; Rao, S.; Tan, T.Y. Anaerobic Bacteraemia Revisited: Species and Susceptibilities. Ann. Acad. Med. Singap. 2015, 44, 13–18. [Google Scholar] [CrossRef]
- Sethi, S.; Shukla, R.; Bala, K.; Gautam, V.; Angrup, A.; Ray, P. Emerging Metronidazole Resistance in Bacteroides spp. and Its Association with the Nim Gene: A Study from North India. J. Glob. Antimicrob. Resist. 2019, 16, 210–214. [Google Scholar] [CrossRef]
- Katsandri, A.; Avlamis, A.; Pantazatou, A.; Houhoula, D.P.; Papaparaskevas, J. Dissemination of nim-Class Genes, Encoding Nitroimidazole Resistance, among Different Species of Gram-Negative Anaerobic Bacteria Isolated in Athens, Greece. J. Antimicrob. Chemother. 2006, 58, 705–706. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.D.; Liao, C.H.; Lin, Y.T.; Sheng, W.H.; Hsueh, P.R. Trends in the Susceptibility of Commonly Encountered Clinically Significant Anaerobes and Susceptibilities of Blood Isolates of Anaerobes to 16 Antimicrobial Agents, Including Fidaxomicin and Rifaximin, 2008–2012, Northern Taiwan. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 2041–2052. [Google Scholar] [CrossRef]
- Alauzet, C.; Lozniewski, A.; Marchandin, H. Metronidazole Resistance and nim Genes in Anaerobes: A Review. Anaerobe 2019, 55, 40–53. [Google Scholar] [CrossRef]
- Lee, Y.; Park, Y.J.; Kim, M.N.; Uh, Y.; Kim, M.S.; Lee, K. Multicenter Study of Antimicrobial Susceptibility of Anaerobic Bacteria in Korea in 2012. Ann. Lab. Med. 2015, 35, 479–486. [Google Scholar] [CrossRef]
- Sóki, J.; Eitel, Z.; Urbán, E.; Nagy, E. Molecular Analysis of the Carbapenem and Metronidazole Resistance Mechanisms of Bacteroides Strains Reported in a Europe-Wide Antibiotic Resistance Survey. Int. J. Antimicrob. Agents 2013, 41, 122–125. [Google Scholar] [CrossRef]
- Hedberg, M.; Institutet, K. ESCMID STUDY GROUP REPORT Antimicrobial Susceptibility of Bacteroides fragilis Group Isolates in Europe. Clin. Microbiol. Infect. 2003, 9, 475–488. [Google Scholar] [CrossRef] [PubMed]
- Phillips, I.; King, A.; Nord, C.E.; Hoffstedt, B. Antibiotic Sensitivity of the Bacteroides fragilis Group in Europe. Eur. J. Clin. Microbiol. Infect. Dis. 1992, 11, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Meggersee, R.; Abratt, V. The Occurrence of Antibiotic Resistance Genes in Drug Resistant Bacteroides fragilis Isolates from Groote Schuur Hospital, South Africa. Anaerobe 2015, 32, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gal, M.; Brazier, J.S. Metronidazole Resistance in Bacteroides Spp. Carrying nim Genes and the Selection of Slow-Growing Metronidazole-Resistant Mutants. J. Antimicrob. Chemother. 2004, 54, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Treviño, M.; Areses, P.; Dolores Peñalver, M.; Cortizo, S.; Pardo, F.; Luisa Pérez del Molino, M.; García-Riestra, C.; Hernández, M.; Llovo, J.; Regueiro, B.J. Susceptibility Trends of Bacteroides fragilis Group and Characterisation of Carbapenemase-Producing Strains by Automated REP-PCR and MALDI TOF. Anaerobe 2012, 18, 37–43. [Google Scholar] [CrossRef]
- Akhi, M.T.; Ghotaslou, R.; Alizadeh, N.; Yekani, M.; Beheshtirouy, S.; Asgharzadeh, M.; Pirzadeh, T.; Memar, M.Y. Nim Gene-Independent Metronidazole-Resistant Bacteroides fragilis in Surgical Site Infections. GMS Hyg. Infect. Control 2017, 12, Doc13. [Google Scholar] [CrossRef]
- Sheikh, S.O.; Jabeen, K.; Qaiser, S.; Ahsan, S.T.; Khan, E.; Zafar, A. High rate of non-susceptibility to metronidazole and clindamycin in anaerobic isolates: Data from a clinical laboratory from Karachi, Pakistan. Anaerobe 2015, 33, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Vishwanath, S.; Shenoy, P.A.; Chawla, K. Antimicrobial Resistance Profile and Nim Gene Detection among Bacteroides fragilis Group Isolates in a University Hospital in South India. J. Glob. Infect. Dis. 2019, 11, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Wybo, I.; Van den Bossche, D.; Soetens, O.; Vekens, E.; Vandoorslaer, K.; Claeys, G.; Glupczynski, Y.; Ieven, M.; Melin, P.; Nonhoff, C.; et al. Fourth Belgian Multicentre Survey of Antibiotic Susceptibility of Anaerobic Bacteria. J. Antimicrob. Chemother. 2014, 69, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E. ECCMID. In Proceedings of the Multi-Drug Resistance among Anaerobes, Vienna, Austria, 22–25 April 2017. [Google Scholar]
- Shafquat, Y.; Jabeen, K.; Farooqi, J.; Mehmood, K.; Irfan, S.; Hasan, R.; Zafar, A. Antimicrobial Susceptibility against Metronidazole and Carbapenem in Clinical Anaerobic Isolates from Pakistan. Antimicrob. Resist. Infect. Control 2019, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Becker, S.; Sóki, J.; Urbán, E.; Kostrzewa, M. Differentiation of Division I (CfiA-Negative) and Division II (CfiA-Positive) Bacteroides Fragilis Strains by Matrix-Assisted Laser Desorption/Ionization Time of-Flight Mass Spectrometry. J. Med. Microbiol. 2011, 60, 1584–1590. [Google Scholar] [CrossRef]
- Ogane, K. Antimicrobial Susceptibility and Prevalence of Resistance Genes in Bacteroides fragilis Isolated from Blood Culture Bottles in Two Tertiary Care Hospitals in Japan. Anaerobe 2020, 64, 102215. [Google Scholar] [CrossRef]
- Rasmussen, B.A.; Gluzman, Y.; Tally, F.P. Cloning and Sequencing of the Class B Beta-Lactamase Gene (CcrA) from Bacteroides fragilis TAL3636. Antimicrob. Agents Chemother. 1990, 34, 1590. [Google Scholar] [CrossRef] [PubMed]
- Podglajen, I.; Breuil, J.; Casin, I.; Collatz, E. Genotypic Identification of Two Groups within the Species Bacteroides fragilis by Ribotyping and by Analysis of PCR-Generated Fragment Patterns and Insertion Sequence Content. J. Bacteriol. 1995, 177, 5270–5275. [Google Scholar] [CrossRef]
- Edwards, R.; Greenwood, D. An Investigation of Beta-Lactamases from Clinical Isolates of Bacteroides Species. J. Med. Microbiol. 1992, 36, 89–95. [Google Scholar] [CrossRef]
- Bayley, D.P.; Rocha, E.R.; Smith, C.J. Analysis of CepA and Other Bacteroides fragilis Genes Reveals a Unique Promoter Structure. FEMS Microbiol. Lett. 2000, 193, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Boente, R.F.; Ferreira, L.Q.; Falcão, L.S.; Miranda, K.R.; Guimarães, P.L.S.; Santos-Filho, J.; Vieira, J.M.B.D.; Barroso, D.E.; Emond, J.P.; Ferreira, E.O.; et al. Detection of Resistance Genes and Susceptibility Patterns in Bacteroides and Parabacteroides Strains. Anaerobe 2010, 16, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.B.; Parker, A.C.; Smith, C.J. Cloning and Characterization of the Endogenous Cephalosporinase Gene, CepA, from Bacteroides fragilis Reveals a New Subgroup of Ambler Class A Beta-Lactamases. Antimicrob. Agents Chemother. 1993, 37, 2391–2400. [Google Scholar] [CrossRef]
- Thompson, J.S.; Malamy, M.H. Sequencing the Gene for an Imipenem-Cefoxitin-Hydrolyzing Enzyme (CfiA) from Bacteroides fragilis TAL2480 Reveals Strong Similarity between CfiA and Bacillus Cereus Beta-Lactamase II. J. Bacteriol. 1990, 172, 2584–2593. [Google Scholar] [CrossRef]
- Gutacker, M.; Valsangiacomo, C.; Bernasconi, M.V.; Piffaretti, J. RecA and GlnA Sequences Separate the Bacteroides fragilis Population into Two Genetic Divisions Associated with the Antibiotic Resistance Genotypes CepA and cfiA. J Med Microbiol. 2002, 51, 123–130. [Google Scholar] [CrossRef]
- Goldstein, E.J.C.; Citron, D.M. Resistance Trends in Antimicrobial Susceptibility of Anaerobic Bacteria, Part I. Clin. Microbiol. Newsl. 2011, 33, 1–8. [Google Scholar] [CrossRef]
- Nakano, V.; do Nascimento e Silva, A.; Merino, V.R.C.; Wexler, H.M.; Avila-Campos, M.J. Antimicrobial Resistance and Prevalence of Resistance Genes in Intestinal Bacteroidales Strains. Clinics 2011, 66, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Podglajen, I.; Breuil, J.; Collatz, E. Insertion of a Novel DNA Sequence, IS 1186, Upstream of the Silent Carbapenemase Gene CfiA, Promotes Expression of Carbapenem Resistance in Clinical Isolates of Bacteroides fragilis. Mol. Microbiol. 1994, 12, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Sóki, J.; Fodor, E.; Hecht, D.W.; Edwards, R.; Rotimi, V.O.; Kerekes, I.; Urbán, E.; Nagy, E. Molecular Characterization of Imipenem-Resistant, CfiA-Positive Bacteroides fragilis Isolates from the USA, Hungary and Kuwait. J. Med. Microbiol. 2004, 53, 413–419. [Google Scholar] [CrossRef]
- Kato, N.; Yamazoe, K.; Han, C.G.; Ohtsubo, E. New Insertion Sequence Elements in the Upstream Region of CfiA in Imipenem-Resistant Bacteroides fragilis Strains. Antimicrob. Agents Chemother. 2003, 47, 979. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xia, R.; Han, N.; Xu, H. Genetic Diversity Analyses of Class 1 Integrons and Their Associated Antimicrobial Resistance Genes in Enterobacteriaceae Strains Recovered from Aquatic Habitats in China. Lett. Appl. Microbiol. 2011, 52, 667–675. [Google Scholar] [CrossRef] [PubMed]
Genus (n = 11) | Species (n = 38) | (n = 200) | Percentage |
---|---|---|---|
Anaerobic Gram-Negative Bacilli (n = 157; 78.5%) | |||
Bacteroides spp. (n = 73; 36.5%) | B. fragilis | 47 | 23.5% |
B. intestinalis | 2 | 1.0% | |
B. nordii | 1 | 0.5% | |
B. ovatus | 8 | 4.0% | |
B. pyogenes | 2 | 1.0% | |
B. thetaiotaomicron | 8 | 4.0% | |
B. uniformis | 3 | 1.5% | |
B. vulgatus | 2 | 1.0% | |
Fusobacterium spp. (n = 31; 15.5%) | F. canifelinum | 1 | 0.5% |
F. mortiferum | 6 | 3.0% | |
F. naviforme | 2 | 1.0% | |
F. necrophorum | 2 | 1.0% | |
F. nucleatum | 5 | 2.5% | |
F. peridonticum | 1 | 0.5% | |
F. ulcerans | 3 | 1.5% | |
F. varium | 11 | 5.5% | |
Prevotella spp. (n = 30; 15%) | P. bergensis | 2 | 1.0% |
P. bivia | 10 | 5.0% | |
P. buccae | 3 | 1.5% | |
P. copri | 2 | 1.0% | |
P. denticola | 3 | 1.5% | |
P. histicola | 2 | 1.0% | |
P. intermedia | 1 | 0.5% | |
P. loescheii | 1 | 0.5% | |
P. melaninogenica | 3 | 1.5% | |
P. oris | 3 | 1.5% | |
Alistipes spp. (n = 2; 1%) | A. shahii | 2 | 1.0% |
Anaerobiospirillum spp. (n = 1; 0.5%) | A. succiniciproducens | 1 | 0.5% |
Bilophilia spp. (n = 2; 1%) | B. wadsworthia | 2 | 1.0% |
Parabacteroides spp. (n = 1; 0.5%) | P. distasonis | 1 | 0.5% |
Porphyromonas spp. (n = 5; 2.5%) | P. somerae | 5 | 2.5% |
Sutterella spp. (n = 12; 6%) | S. wadsworthensis | 12 | 6.0% |
Anaerobic Gram-Negative Cocci (n = 43; 21.5%) | |||
Acidaminococcus spp. (n = 8; 4%) | A. intestini | 8 | 4.0% |
Veillonella spp. (n = 35; 17.5%) | V. atypica | 2 | 1.0% |
V. dispar | 6 | 3.0% | |
V. parvula | 23 | 11.5% | |
V. ratti | 3 | 1.5% | |
V. varium | 1 | 0.5% |
Species | No. of Resistant Strains (n) | Prevalence of Antimicrobial Resistance Genes (n) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CLI | MTZ | TZP | IPM | CHL | FOX | ermF | nim | IS1186 | cepA | cfiA | IS up | cat | cfxA | |
Breakpoint mg/L | ≥4 | ≥16 | ≥32/4 | ≥8 | ≥16 | ≥32 | ||||||||
B. fragilis (47) | 22 | 26 | 21 | 1 | 0 | 21 | 22 | 32 | 0 | 13 | 20 | 0 | 0 | 17 |
B. intestinalis (2) | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B. nordii (1) | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
B. ovatus (8) | 4 | 0 | 0 | 0 | 0 | 3 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 3 |
B. pyogenes (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B. thetaiotaomicron (8) | 7 | 1 | 8 | 0 | 0 | 5 | 7 | 1 | 0 | 6 | 0 | 0 | 0 | 3 |
B. uniformis (3) | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
B. vulgatus (2) | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
Species | No. of Resistant Strains (n) | Prevalence of Antimicrobial Resistance Genes (n) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CLI | MTZ | TZP | IPM | CHL | FOX | ermF | nim | IS1186 | cepA | cfiA | IS up | cat | cfxA | |
Breakpoint mg/L | ≥4 | ≥16 | ≥32/4 | ≥8 | ≥16 | ≥32 | ||||||||
F. canifelinum (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F. mortiferum (6) | 3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F. naviforme (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F. necrophorum (2) | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F. nucleatum (5) | 1 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
F. peridonticum (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F. ulcerans (3) | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
F. varium (11) | 5 | 0 | 2 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Species | No. of Resistant Strains (n) | Prevalence of Antimicrobial Resistance Genes (n) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CLI | MTZ | TZP | IPM | CHL | FOX | ermF | nim | IS1186 | cepA | cfiA | IS up | cat | cfxA | |
Breakpoint mg/L | ≥4 | ≥16 | ≥32/4 | ≥8 | ≥16 | ≥32 | ||||||||
P. bergenis (2) | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P. bivia (10) | 6 | 3 | 0 | 0 | 0 | 4 | 6 | 2 | 0 | 0 | 0 | 0 | 0 | 4 |
P. buccae (3) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P. copri (2) | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P. denticola (3) | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
P. histicola (2) | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P. intermedia (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P. loescheii (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P. melaninogenica (3) | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
P. oris (3) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Species | No. of Resistant Strains (n) | Prevalence of Antimicrobial Resistance Genes (n) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CLI | MTZ | TZP | IPM | CHL | FOX | ermF | nim | IS1186 | cepA | cfiA | IS up | cat | cfxA | |
Breakpoint mg/L | ≥4 | ≥16 | ≥32/4 | ≥8 | ≥16 | ≥32 | ||||||||
V. atypica (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V. dispar (6) | 0 | 2 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
V. parvula (23) | 3 | 13 | 18 | 0 | 0 | 7 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 5 |
V. ratti (3) | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V. varium (1) | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Species | No. of Resistant Strains (n) | Prevalence of Antimicrobial Resistance Genes (n) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CLI | MTZ | TZP | IPM | CHL | FOX | ermF | nim | IS1186 | cepA | cfiA | IS up | cat | cfxA | |
Breakpoint mg/L | ≥4 | ≥16 | ≥32/4 | ≥8 | ≥16 | ≥32 | ||||||||
A. intestini (8) | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A. shahii (2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A. succiniciproducens (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B. wadsworthia (2) | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P. distasonis (1) | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P. somerae (5) | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S. wadsworthensis (12) | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
Drug | No. | R (%) | Bacteroides spp. (n = 73) | Fusobacterium spp. (n = 31) | Prevotella spp. (n = 30) | Veillonella spp. (n = 35) | Others (n = 31) |
---|---|---|---|---|---|---|---|
CLI | 67 | (33.5%) | 36 (49.3%) | 12 (38.7%) | 11 (36.7%) | 3 (8.6%) | 5 (16.1%) |
MTZ | 58 | (29%) | 30 (41.1%) | 1 (3.2%) | 3 (10%) | 17(48.6%) | 7 (22.6%) |
TZP | 55 | (27.5%) | 30 (41.1%) | 3 (9.7) | 0 (0%) | 20 (57.1%) | 2 (6.5%) |
IPM | 1 | (0.5%) | 1 (1.4%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
CHL | 0 | (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
FOX | 53 | (26.5%) | 32 (43.8%) | 3 (9.7%) | 8 (26.7%) | 8 (22.9%) | 2 (6.5%) |
Genes | No. | R (%) | Bacteroides spp. (n = 73) | Fusobacterium spp. (n = 31) | Prevotella spp. (n = 30) | Veillonella spp. (n = 35) | Others (n = 31) |
ermF | 67 | (33.5%) | 36 (49.3%) | 12 (38.7%) | 11 (36.6%) | 3 (8.6%) | 5 (16.1%) |
nim | 48 | (24%) | 36 (49.3%) | 1 (3.2%) | 2 (6.7%) | 2 (5.7%) | 7 (22.6%) |
IS1186 | 0 | (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
cepA | 19 | (9.5%) | 19 (26.0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
cfiA | 20 | (10%) | 20 (27.4%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
IS up | 0 | (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
cat | 0 | (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
cfxA | 43 | (21.5%) | 26 (35.6%) | 3 (9.7%) | 8 (26.7%) | 6 (17.1%) | 0 (0%) |
Antimicrobial Agent | Association of Antimicrobial Resistant Phenotypes and Genotypes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Genes | PR | GR | PR+/GR+ | PR−/GR− | PR+/GR− | PR−/GR+ | Agreement | IS1186 | cfiAIS | Agreement | |
p-Value | p-Value | ||||||||||
Clindamycin | ermF | 67 | 67 | 67 | 133 | 0 | 0 | <0.05 | 0 | 0 | <0.05 |
Metronidazole | nimE | 58 | 48 | 35 | 129 | 23 | 13 | <0.05 | 0 | 0 | <0.05 |
Piperacillin–tazobactam | cepA | 55 | 19 | 19 | 145 | 36 | 0 | <0.05 | 0 | 0 | <0.05 |
Imipenem | cfiA | 1 | 20 | 1 | 180 | 0 | 19 | >0.9999 | 0 | 0 | <0.05 |
Chloramphenicol | cat | 0 | 0 | 0 | 200 | 0 | 0 | <0.05 | 0 | 0 | <0.05 |
Cefoxitin | cfxA | 53 | 43 | 42 | 146 | 11 | 1 | <0.05 | 0 | 0 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sood, A.; Ray, P.; Angrup, A. Anaerobic Gram-Negative Bacteria: Role as a Reservoir of Antibiotic Resistance. Antibiotics 2023, 12, 942. https://doi.org/10.3390/antibiotics12050942
Sood A, Ray P, Angrup A. Anaerobic Gram-Negative Bacteria: Role as a Reservoir of Antibiotic Resistance. Antibiotics. 2023; 12(5):942. https://doi.org/10.3390/antibiotics12050942
Chicago/Turabian StyleSood, Anshul, Pallab Ray, and Archana Angrup. 2023. "Anaerobic Gram-Negative Bacteria: Role as a Reservoir of Antibiotic Resistance" Antibiotics 12, no. 5: 942. https://doi.org/10.3390/antibiotics12050942
APA StyleSood, A., Ray, P., & Angrup, A. (2023). Anaerobic Gram-Negative Bacteria: Role as a Reservoir of Antibiotic Resistance. Antibiotics, 12(5), 942. https://doi.org/10.3390/antibiotics12050942