Antimicrobial Resistance of Escherichia coli Isolates from Livestock and the Environment in Extensive Smallholder Livestock Production Systems in Ethiopia
Abstract
:1. Introduction
2. Results
2.1. Occurrence of E. coli and E. coli O157:H7
2.2. Occurrence of Antimicrobial Resistance in E. coli
2.3. Multiple Antimicrobial Resistance
2.4. Antimicrobial Resistance among E. coli O157:H7 Isolates
2.5. Risk Factors for the Occurrence of Antimicrobial Resistance Phenotypes
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Study Design and Sample Size Determination
4.3. Sample Collection and Pre-Enrichment Procedure
4.4. Isolation and Identification of E. coli
4.5. Antimicrobial Susceptibility Test
4.6. Data Analysis
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. GLASS|Global Antimicrobial Resistance Surveillance System (GLASS) 2020; World Health Organization (WHO): Geneva, Switzerland, 2020. [Google Scholar]
- Iwu-Jaja, C.J.; Jaca, A.; Jaja, I.F.; Jordan, P.; Bhengu, P.; Iwu, C.D.; Okeibunor, J.; Karamagi, H.; Tumusiime, P.; Fuller, W.; et al. Preventing and managing antimicrobial resistance in the African region: A scoping review protocol. PLoS ONE 2021, 16, e0254737. [Google Scholar] [CrossRef] [PubMed]
- World Bank. Drug-Resistant Infections: A Threat to Our Economic Future; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Jasovsky, D.; Littmann, J.; Zorzet, A.; Cars, O. Antimicrobial Resistance; S. Karger AG: Basel, Swtizerland, 2010; Volume 6. [Google Scholar]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef] [PubMed]
- Lepper, H.C.; Woolhouse, M.E.J.; van Bunnik, B.A.D. The Role of the Environment in Dynamics of Antibiotic Resistance in Humans and Animals: A Modelling Study. Antibiotics 2022, 11, 1361. [Google Scholar] [CrossRef]
- Woolhouse, M.; Ward, M.; van Bunnik, B.; Farrar, J. Antimicrobial resistance in humans, livestock and the wider environment. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140083. [Google Scholar] [CrossRef] [PubMed]
- Berglund, B. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect. Ecol. Epidemiol. 2015, 5, 28564. [Google Scholar] [CrossRef]
- Mukherjee, A.; Cho, S.; Scheftel, J.; Jawahir, S.; Smith, K.; Diez-Gonzalez, F. Soil survival of Escherichia coli O157:H7 acquired by a child from garden soil recently fertilized with cattle manure. J. Appl. Microbiol. 2006, 101, 429–436. [Google Scholar] [CrossRef]
- Berg, E.S.; Wester, A.L.; Ahrenfeldt, J.; Mo, S.S.; Slettemeås, J.S.; Steinbakk, M.; Samuelsen, Ø.; Grude, N.; Simonsen, G.S.; Løhr, I.H.; et al. Norwegian patients and retail chicken meat share cephalosporin-resistant Escherichia coli and IncK/bla CMY-2 resistance plasmids. Clin. Microbiol. Infect. 2017, 23, 407.e9–407.e15. [Google Scholar] [CrossRef]
- Johnson, J.R.; Clabots, C.; Kuskowski, M.A. Multiple-Host Sharing, Long-Term Persistence, and Virulence of Escherichia coli Clones from Human and Animal Household Members. J. Clin. Microbiol. 2008, 46, 4078–4082. [Google Scholar] [CrossRef]
- Ercumen, A.; Pickering, A.J.; Kwong, L.H.; Arnold, B.F.; Parvez, S.M.; Alam, M.; Sen, D.; Islam, S.; Kullmann, C.; Chase, C.; et al. Animal Feces Contribute to Domestic Fecal Contamination: Evidence from E. coli Measured in Water, Hands, Food, Flies, and Soil in Bangladesh. Environ. Sci. Technol. 2017, 51, 8725–8734. [Google Scholar] [CrossRef]
- Sivagami, K.; Vignesh, V.J.; Srinivasan, R.; Divyapriya, G.; Nambi, I.M. Antibiotic usage, residues and resistance genes from food animals to human and environment: An Indian scenario. J. Environ. Chem. Eng. 2020, 8, 102221. [Google Scholar] [CrossRef]
- Young, C.C.W.; Karmacharya, D.; Bista, M.; Sharma, A.N.; Goldstein, T.; Mazet, J.A.K.; Johnson, C.K. Antibiotic resistance genes of public health importance in livestock and humans in an informal urban community in Nepal. Sci. Rep. 2022, 12, 13808. [Google Scholar] [CrossRef] [PubMed]
- Moser, K.A.; Zhang, L.; Spicknall, I.; Braykov, N.P.; Levy, K.; Marrs, C.F.; Foxman, B.; Trueba, G.; Cevallos, W.; Goldstick, J.; et al. The Role of Mobile Genetic Elements in the Spread of Antimicrobial-Resistant Escherichia coli From Chickens to Humans in Small-Scale Production Poultry Operations in Rural Ecuador. Am. J. Epidemiol. 2018, 187, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Xu, S.; Tang, Z.; Li, Z.; Zhang, L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf. Health 2021, 3, 32–38. [Google Scholar] [CrossRef]
- Maron, D.F.; Smith, T.J.; Nachman, K.E. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Glob. Health 2013, 9, 48. [Google Scholar] [CrossRef]
- Björkman, I.; Röing, M.; Sternberg Lewerin, S.; Stålsby Lundborg, C.; Eriksen, J. Animal Production With Restrictive Use of Antibiotics to Contain Antimicrobial Resistance in Sweden—A Qualitative Study. Front. Vet. Sci. 2021, 7, 619030. [Google Scholar] [CrossRef]
- Dho-Moulin, M.; Fairbrother, J.M. Avian pathogenic Escherichia coli (APEC). Vet Res. 1999, 30, 299–316. [Google Scholar]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Ingle, D.J.; Levine, M.M.; Kotloff, K.L.; Holt, K.E.; Robins-Browne, R.M. Dynamics of antimicrobial resistance in intestinal Escherichia coli from children in community settings in South Asia and sub-Saharan Africa. Nat. Microbiol. 2018, 3, 1063–1073. [Google Scholar] [CrossRef]
- Bélanger, L.; Garenaux, A.; Harel, J.; Boulianne, M.; Nadeau, E.; Dozois, C.M. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunol. Med. Microbiol. 2011, 62, 1–10. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Tadesse, D.A.; Zhao, S.; Tong, E.; Ayers, S.; Singh, A.; Bartholomew, M.J.; McDermott, P.F. Antimicrobial Drug Resistance in Escherichia coli from Humans and Food Animals, United States, 1950–2002. Emerg. Infect. Dis. 2012, 18, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Barrera, S.; Cardenas, P.; Graham, J.P.; Trueba, G. Changes in dominant Escherichia coli and antimicrobial resistance after 24 h in fecal matter. MicrobiologyOpen 2019, 8, e00643. [Google Scholar] [CrossRef]
- Johnson, T.J.; Logue, C.M.; Johnson, J.R.; Kuskowski, M.A.; Sherwood, J.S.; Barnes, H.J.; DebRoy, C.; Wannemuehler, Y.M.; Obata-Yasuoka, M.; Spanjaard, L.; et al. Associations Between Multidrug Resistance, Plasmid Content, and Virulence Potential Among Extraintestinal Pathogenic and Commensal Escherichia coli from Humans and Poultry. Foodborne Pathog. Dis. 2012, 9, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Dobiasova, H.; Dolejska, M. Prevalence and diversity of IncX plasmids carrying fluoroquinolone and β-lactam resistance genes in Escherichia coli originating from diverse sources and geographical areas. J. Antimicrob. Chemother. 2016, 71, 2118–2124. [Google Scholar] [CrossRef]
- Wright, G.D. The antibiotic resistome: The nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 2007, 5, 175–186. [Google Scholar] [CrossRef]
- Ampaire, L.; Muhindo, A.; Orikiriza, P.; Mwanga-Amumpaire, J.; Bebell, L.; Boum, Y. A review of antimicrobial resistance in East Africa. Afr. J. Lab. Med. 2016, 5, a432. [Google Scholar] [CrossRef]
- Berhe, D.F.; Beyene, G.T.; Seyoum, B.; Gebre, M.; Haile, K.; Tsegaye, M.; Boltena, M.T.; Tesema, E.; Kibret, T.C.; Biru, M.; et al. Prevalence of antimicrobial resistance and its clinical implications in Ethiopia: A systematic review. Antimicrob. Resist. Infect. Control 2021, 10, 168. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Teshal, A.M.; Dinku, S.F.; Abera, N.A.; Negeri, A.A.; Desta, F.G.; Seyum, E.T.; Gemeda, A.W.; Keficho, W.M. Antimicrobial resistance surveillance in Ethiopia: Implementation experiences and lessons learned. Afr. J. Lab. Med. 2018, 7, a770. [Google Scholar] [CrossRef]
- Moges, F.; Endris, M.; Mulu, A.; Tessema, B.; Belyhun, Y.; Shiferaw, Y.; Huruy, K.; Unakal, C.; Kassu, A. The growing challenges of antibacterial drug resistance in Ethiopia. J. Glob. Antimicrob. Resist. 2014, 2, 148–154. [Google Scholar] [CrossRef]
- Seboxa, T.; Amogne, W.; Abebe, W.; Tsegaye, T.; Azazh, A.; Hailu, W.; Fufa, K.; Grude, N.; Henriksen, T.-H. High Mortality from Blood Stream Infection in Addis Ababa, Ethiopia, Is Due to Antimicrobial Resistance. PLoS ONE 2015, 10, e0144944. [Google Scholar] [CrossRef] [PubMed]
- Gemeda, B.A.; Assefa, A.; Jaleta, M.B.; Amenu, K.; Wieland, B. Antimicrobial resistance in Ethiopia: A systematic review and meta-analysis of prevalence in foods, food handlers, animals, and the environment. One Health 2021, 13, 100286. [Google Scholar] [CrossRef] [PubMed]
- Bekele, T.; Zewde, G.; Tefera, G.; Feleke, A.; Zerom, K. Escherichia coli O157:H7 in Raw Meat in Addis Ababa, Ethiopia: Prevalence at an Abattoir and Retailers and Antimicrobial Susceptibility. Int. J. Food Contam. 2014, 1, 4. [Google Scholar] [CrossRef]
- Abreham, S.; Teklu, A.; Cox, E.; Sisay Tessema, T. Escherichia coli O157:H7: Distribution, molecular characterization, antimicrobial resistance patterns and source of contamination of sheep and goat carcasses at an export abattoir, Mojdo, Ethiopia. BMC Microbiol. 2019, 19, 215. [Google Scholar] [CrossRef]
- Abebe, M.; Hailelule, A.; Abrha, B.; Nigus, A.; Birhanu, M.; Adane, H.; Genene, T.; Daniel, H.; Getachew, G.; Merga, G.; et al. Antibiogram of Escherichia coli strains isolated from food of bovine origin in selected Woredas of Tigray. Ethiop. J. Bacteriol. Res 2014, 6, 17–22. [Google Scholar] [CrossRef]
- Messele, Y.E.; Abdi, R.D.; Yalew, S.T.; Tegegne, D.T.; Emeru, B.A.; Werid, G.M. Molecular determination of antimicrobial resistance in Escherichia coli isolated from raw meat in Addis Ababa and Bishoftu, Ethiopia. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 55. [Google Scholar] [CrossRef]
- White, D.G. Antimicrobial Resistance in Pathogenic Escherichia coli from Animals. In Antimicrobial Resistance in Bacteria of Animal Origin; ASM Press: Washington, DC, USA, 2019; pp. 145–166. [Google Scholar]
- Beyene, T.; Endalamaw, D.; Tolossa, Y.; Feyisa, A. Evaluation of rational use of veterinary drugs especially antimicrobials and anthelmintics in Bishoftu, Central Ethiopia. BMC Res. Notes 2015, 8, 482. [Google Scholar] [CrossRef]
- Gemeda, B.A.; Amenu, K.; Magnusson, U.; Dohoo, I.; Hallenberg, G.S.; Alemayehu, G.; Desta, H.; Wieland, B. Antimicrobial Use in Extensive Smallholder Livestock Farming Systems in Ethiopia: Knowledge, Attitudes, and Practices of Livestock Keepers. Front. Vet. Sci 2020, 7, 55. [Google Scholar] [CrossRef]
- Muloi, D.; Kiiru, J.; Ward, M.J.; Hassell, J.M.; Bettridge, J.M.; Robinson, T.P.; van Bunnik, B.A.D.; Chase-Topping, M.; Robertson, G.; Pedersen, A.B.; et al. Epidemiology of antimicrobial-resistant Escherichia coli carriage in sympatric humans and livestock in a rapidly urbanizing city. Int. J. Antimicrob. Agents 2019, 54, 531–537. [Google Scholar] [CrossRef]
- Hunduma, D. Isolation, Identification and Antimicrobial Susceptibility Test of Escherichia coli O157 and Non-Typhoid Salmonella Species in Milk and Faeces of Lactating Cows and Camels in Borana Pastoral Area, Southern Ethiopia. Master’s Thesis, College of Veterinary Medicine and Agriculture of Addis Ababa University, Bishoftu, Ethiopia, 2018. [Google Scholar]
- Munns, K.D.; Selinger, L.B.; Stanford, K.; Guan, L.; Callaway, T.R.; McAllister, T.A. Perspectives on Super-Shedding of Escherichia coli O157:H7 by Cattle. Foodborne Pathog. Dis. 2015, 12, 89–103. [Google Scholar] [CrossRef]
- Pao, S.; Patel, D.; Kalantari, A.; Tritschler, J.P.; Wildeus, S.; Sayre, B.L. Detection of Salmonella Strains and Escherichia coli O157:H7 in Feces of Small Ruminants and Their Isolation with Various Media. Appl. Environ. Microbiol. 2005, 71, 2158–2161. [Google Scholar] [CrossRef] [PubMed]
- Gencay, Y.E. Sheep as an important source of E. coli O157/O157:H7 in Turkey. Vet. Microbiol. 2014, 172, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Mersha, G.; Asrat, D.; Zewde, B.M.; Kyule, M. Occurrence of Escherichia coli O157:H7 in faeces, skin and carcasses from sheep and goats in Ethiopia. Lett. Appl. Microbiol. 2010, 50, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Bitew, A.; Adane, A.; Abdeta, A. Bacteriological spectrum, extended-spectrum β-lactamase production and antimicrobial resistance pattern among patients with bloodstream infection in Addis Ababa. Sci. Rep. 2023, 13, 2071. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, H.; Wu, L.; Lou, J.; Wu, J.; Brookes, P.C.; Xu, J. Survival of Escherichia coli O157:H7 in Soils from Jiangsu Province, China. PLoS ONE 2013, 8, e81178. [Google Scholar] [CrossRef]
- Ogden, I.; Fenlon, D.R.; Vinten, A.J.; Lewis, D. The fate of Escherichia coli O157 in soil and its potential to contaminate drinking water. Int. J. Food Microbiol. 2001, 66, 111–117. [Google Scholar] [CrossRef]
- Franz, E.; Semenov, A.V.; Termorshuizen, A.J.; de Vos, O.J.; Bokhorst, J.G.; van Bruggen, A.H.C. Manure-amended soil characteristics affecting the survival of E. coli O157:H7 in 36 Dutch soils. Environ. Microbiol. 2008, 10, 313–327. [Google Scholar] [CrossRef]
- Yao, Z.; Wei, G.; Wang, H.; Wu, L.; Wu, J.; Xu, J. Survival of Escherichia coli O157:H7 in Soils from Vegetable Fields with Different Cultivation Patterns. Appl. Environ. Microbiol. 2013, 79, 1755–1756. [Google Scholar] [CrossRef]
- Duffitt, A.D.; Reber, R.T.; Whipple, A.; Chauret, C. Gene Expression during Survival of Escherichia coli O157:H7 in Soil and Water. Int. J. Microbiol. 2011, 2011, 340506. [Google Scholar] [CrossRef]
- Boyce, T.G.; Swerdlow, D.L.; Griffin, P.M. Escherichia coli O157:H7 and the Hemolytic–Uremic Syndrome. N. Engl. J. Med. 1995, 333, 364–368. [Google Scholar] [CrossRef]
- Collignon, P.; Beggs, J.J.; Walsh, T.R.; Gandra, S.; Laxminarayan, R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: A univariate and multivariable analysis. Lancet Planet. Health 2018, 2, e398–e405. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.W.; Knapp, C.W.; Christensen, B.T.; McCluskey, S.; Dolfing, J. Appearance of β-lactam Resistance Genes in Agricultural Soils and Clinical Isolates over the 20th Century. Sci. Rep. 2016, 6, 21550. [Google Scholar] [CrossRef] [PubMed]
- Udikovic-Kolic, N.; Wichmann, F.; Broderick, N.A.; Handelsman, J. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc. Natl. Acad. Sci. USA 2014, 111, 15202–15207. [Google Scholar] [CrossRef] [PubMed]
- Pehrsson, E.C.; Tsukayama, P.; Patel, S.; Mejía-Bautista, M.; Sosa-Soto, G.; Navarrete, K.M.; Calderon, M.; Cabrera, L.; Hoyos-Arango, W.; Bertoli, M.T.; et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 2016, 533, 212–216. [Google Scholar] [CrossRef] [PubMed]
- American Society for Microbiology. Antibiotic Resistance: An Ecological Perspective on an Old Problem; American Society for Microbiology: Washington, DC, USA, 2009. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559361/ (accessed on 18 November 2022).
- Thrusfield, M. Veterinary Epidemiology; Blackwell Scientific Publications: Oxford, UK, 1995. [Google Scholar]
- Assefa, A.; Bihon, A. A systematic review and meta-analysis of prevalence of Escherichia coli in foods of animal origin in Ethiopia. Heliyon 2018, 4, e00716. [Google Scholar] [CrossRef] [PubMed]
- NCCLS—National Committee for Clinical Laboratory Standards. Methodology for the Serum Bactericidal Test, 2nd ed.; Tentative Guideline—NCCLS Document M21-T; NCCLS: Villanova, PA, USA, 1990. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI Supplement M100; CLSI: St. Louis, MO, USA, 2022. [Google Scholar]
- Jayatillake, R.V.; Sooriyarachchi, M.R.; Senarathna, D.L.P. Adjusting for a cluster effect in the logistic regression model: An illustration of theory and its application. J. Natl. Sci. Found. Sri Lanka 2011, 39, 201. [Google Scholar] [CrossRef]
- Lee, P.H.; Burstyn, I. Identification of confounder in epidemiologic data contaminated by measurement error in covariates. BMC Med. Res. Methodol. 2016, 16, 54. [Google Scholar] [CrossRef]
Sample Type | Positives (%) | Odds Ratio | p-Value | CI for the Odds Ratio |
---|---|---|---|---|
Cattle feces | 11.4 (7–18.1) | 1.75 | 0.240 | 0.68–4.48 |
Sheep feces | 1.4 (0.3–5.5) | 0.19 | 0.045 | 0.04–0.96 |
Goat feces | 20.2 (13.1–29.8) | 3.4 | 0.009 | 1.36–8.68 |
Soil | 6.8 (3.3–13.7) | Ref |
Drug Class | Antibiotics | Host | n | Resistance Phenotypes in Different Host Types | |
---|---|---|---|---|---|
% * | 95% Conf. Interval | ||||
Penicillin | Amoxycillin/clavulanate (AML10) | Cattle | 124 | 25.8 a | 18.9–34.2 |
Sheep | 134 | 11.2 b | 6.9–17.7 | ||
Goat | 81 | 37.0 a | 27.2–48 | ||
Soil | 101 | 24.8 | 17.3–34.1 | ||
Total | 440 | 23.2 | 19.4–27.4 | ||
Tetracyclines | Tetracycline (TE30) | Cattle | 128 | 3.9 a | 1.6–9.1 |
Sheep | 138 | 5.8 | 2.9–11.2 | ||
Goat | 88 | 13.6 b | 7.9–22.5 | ||
Soil | 97 | 11.3 | 6.4–19.4 | ||
Total | 451 | 8 | 5.8–10.9 | ||
Doxycycline (DO30) | Cattle | 115 | 0.9 | 0.1–5.9 | |
Sheep | 132 | 3 | 1.1–7.8 | ||
Goat | 67 | 0 | - | ||
Soil | 95 | 3.2 | 1.1–9.3 | ||
Total | 409 | 2 | 1–3.8 | ||
Fluoroquinolones | Ciprofloxacin (CIP5) | Cattle | 127 | 2.4 | 0.7–7.1 |
Sheep | 137 | 4.4 | 1.9–9.4 | ||
Goat | 87 | 5.7 | 2.4–13.1 | ||
Soil | 99 | 5.1 | 2.1–11.6 | ||
Total | 450 | 4.2 | 2.7–6.5 | ||
Trimethoprim/Folate pathway inhibitors | Trimethoprim (W5) | Cattle | 130 | 0 a | - |
Sheep | 136 | 2.2 | 0.7–6.6 | ||
Goat | 89 | 7.8 b | 3.8–15.6 | ||
Soil | 101 | 4.9 | 2.1–11.4 | ||
Total | 456 | 3.3 | 2–5.4 | ||
Sulfonamide | Sulfamethoxazole trimethoprim (SXT25) | Cattle | 127 | 0 a | - |
Sheep | 137 | 3.6 | 1.5–8.5 | ||
Goat | 87 | 9.1 b | 4.6–17.4 | ||
Soil | 98 | 3.1 | 0.9–9.1 | ||
Total | 449 | 3.6 | 2.2–5.7 | ||
Sulfonamide (S3_300) | Cattle | 116 | 0.9 a | 0.1–5.8 | |
Sheep | 133 | 1.5 ac | 0.4–5.8 | ||
Goat | 69 | 7.2 | 3–16.3 | ||
Soil | 93 | 8.6 b | 4.4–16.3 | ||
Total | 411 | 3.9 | 2.4–6.3 | ||
Aminoglycoside | Gentamicin (CN10) | Cattle | 122 | 4.9 | 2.2–10.5 |
Sheep | 134 | 4.5 a | 2–9.6 | ||
Goat | 82 | 14.6 b | 8.5–24.1 | ||
Soil | 101 | 10 | 5.4–17.5 | ||
Total | 439 | 7.7 | 5.6–10.7 | ||
Streptomycin (S25) | Cattle | 126 | 37.3 a | 29.3–46.1 | |
Sheep | 137 | 16.8 b | 11.4–24 | ||
Goat | 87 | 49.4 ac | 39.1–59.8 | ||
Soil | 99 | 36.4 ad | 27.5–46.3 | ||
Total | 449 | 33.2 | 28.9–37.7 | ||
Cephalosporins | Cefuroxime (CXM30) | Cattle | 117 | 0.9 | 0.1–5.8 |
Sheep | 132 | 0 | - | ||
Goat | 74 | 4.1 | 13.1–11.9 | ||
Soil | 94 | 2.1 | 0.5–8.1 | ||
Total | 417 | 1.4 | 0.6–3.2 | ||
Cefotaxime (CTX30) | Cattle | 115 | 8.7 | 4.7–15.4 | |
Sheep | 134 | 4.5 | 2.1–9.6 | ||
Goat | 69 | 4.3 | 1.4–12.7 | ||
Soil | 94 | 6.4 | 2.9–13.5 | ||
Total | 412 | 6.1 | 4.1–8.8 | ||
Cefoxitin (FOX30) | Cattle | 118 | 0.8 | 0.1–5.8 | |
Sheep | 133 | 0.8 | 1.1–5.2 | ||
Goat | 70 | 0 | |||
Soil | 92 | 1.1 | 0.2–7.3 | ||
Total | 413 | 0.7 | 0.2–2.2 | ||
Quinolones | Nalidixic acid (NA30) | Cattle | 116 | 0 | - |
Sheep | 137 | 1.5 | 0.3–5.7 | ||
Goat | 72 | 1.4 | 0.2–9.2 | ||
Soil | 93 | 3.2 | 1–9.6 | ||
Total | 418 | 1.4 | 0.6–3.1 | ||
Chloramphenicol | Chloramphenicol (C30) | Cattle | 124 | 1.6 | 0.4–6.2 |
Sheep | 137 | 2.2 | 0.7–6.6 | ||
Goat | 81 | 2.5 | 0.6–9.4 | ||
Soil | 93 | 2.1 | 0.5–8.2 | ||
Total | 435 | 2.1 | 1.1–3.9 | ||
Nitrofuran | Nitrofurantoin (F300) | Cattle | 123 | 0 | - |
Sheep | 132 | 0.8 | 0.1–5.2 | ||
Goat | 83 | 2.4 | 0.6–9.2 | ||
Soil | 101 | 1.9 | 0.4–7.6 | ||
Total | 425 | 1.1 | 0.5–2.7 |
Number of Antimicrobial Resistances | Predominant Resistance Profile Composition * | No. of Isolates (%) |
---|---|---|
Zero | - | 205 (54.7) |
One | S; Aml; Ctx; Te; Cn | 170 (45.3) |
Two | AmlS; SCtx; CipS; CnS; | 56 (14.9) |
Three | AmlCnS; TeSS3; AmlTeS; AmlSF; AmlCipS | 26 (6.9) |
Four | AmlCnSCxm; AmlCnTES | 7 (1.9) |
Five | WamlTeSxtS; AmlCnSCDo | 7 (1.9) |
Six | AmlCnSFCS3; AmlTeSxtCNaDo | 3 (0.8) |
Eight | WamlCnTeCipSxtSS3 | 1 (0.3) |
Predictor | Level/Category | % AMR (95% CI) | Univariable Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |||
Agroecology | Highland mixed crop–livestock production system (n = 158) | 7 (3.8–12.2) | Ref | |||||
Pastoralist system (n = 130) | 43.8 (35.5–52.5) | 3.2 | 2.3–4.6 | 0.000 | 2.98 | 1.72–5.17 | 0.000 | |
Species mix | Keep <3 species (n = 39) | 41 (26.8–56.9) | Ref | |||||
Keep ≥3 species (n = 244) | 20.9 (16.2–26.5) | 0.38 | 0.18–0.77 | 0.006 | 1.35 | 0.56–3.22 | 0.498 | |
Manure mgt. | Leave on farm; Open air; Discard into environment (n = 125) | 44.8 (36.3–53.6) | Ref | |||||
Used as fertilizer (n = 32) | 15.6 (6.6–32.5) | 0.23 | 0.09–0.68 | 0.004 | ||||
Used for fuel (incl. biogas); Sold for cash (fuel) (n = 126) | 4.8 (2.1–10.2) | 0.06 | 0.04–0.20 | 0.000 | ||||
Isolation of sick animals | Yes (n = 150) | 11.3 (7.1–17.5) | Ref | |||||
No (n = 133) | 37.5 (29.7–46.1) | 4.7 | 2.5–8.7 | 0.000 | 1.24 | 0.39–3.88 | 0.713 | |
Allow mix of animals on treatment | Yes (n = 95) | 36.8 (27.7–46.9) | Ref | |||||
No (n = 188) | 17 (12.3–23.1) | 0.35 | 0.2–0.62 | 0.000 | 0.62 | 0.32–1.17 | 0.143 | |
What do you do with dead animals? | Leave as it is (n = 4) | 75 (23.6–96.6) | 22.2 | 1.73–59.1 | 0.010 | |||
Give to the dog (n = 112) | 5.3 (2.4–11.4) | 0.41 | 0.15–1.61 | 0.245 | ||||
Bury (n = 42) | 11.9 (5–25.6) | Ref | ||||||
Human consumption (n = 125) | 42.4 (34–51.2) | 4.84 | 1.81–12.9 | 0.002 | ||||
Access to professional animal health services/treatments | Yes (n = 245) | 22.8 (18.1–28.5) | Ref | |||||
No (n = 38) | 28.9 (16.8–45.2) | 1.4 | 0.64–2.94 | 0.3 | ||||
Access to regular animal health services (vaccination and deworming) | Yes (n = 256) | 23.8 (18.9–29.4) | Ref | |||||
No (n = 27) | 22.2 (10.3–41.5) | 0.91 | 0.35–2.36 | 0.537 |
Predictor | Level/Category | % AMR (95% CI) | Bivariate Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |||
Agroecology | Highland mixed crop–livestock production system (n = 58) | 24.1 (14.7–36.9) | Ref | |||||
Pastoralist system (n = 29) | 62.1 (43.3–77.8) | 2.3 | 1.4–3.6 | 0.001 | ||||
Species mix | Keep <3 species (n = 9) | 55.5 (24.7–82.5) | Ref | |||||
Keep ≥3 species (n = 77) | 35.1 (25.1–46.4) | 0.43 | 0.11–1.74 | 0.239 | ||||
Manure mgt. | Leave on farm; Open air; Discard into environment (n = 27) | 66.7 (47–81.8) | Ref | |||||
Used as fertilizer (n = 9) | 44.4 (17.4–75.2) | 0.4 | 0.08–1.86 | 0.243 | 0.47 | 0.12–1.885 | 0.291 | |
Used for fuel (incl. biogas); Sold for cash (fuel) (n = 49) | 20.4 (11.2–34.2) | 0.13 | 0.04–0.36 | 0.000 | 0.15 | 0.03–0.75 | 0.03 | |
Isolation of sick animals | Yes (n = 52) | 25 (14.9–38.6) | Ref | |||||
No (n = 34) | 55.8 (38.9–71.6) | 3.8 | 1.5–9.56 | 0.004 | 0.98 | 0.25–3.91 | 0.986 | |
Allow mix of animals on treatment | Yes (n = 23) | 47.8 (28.5–67.7) | Ref | |||||
No (n = 63) | 33.3 (22.7–45.9) | 0.54 | 0.21–1.44 | 0.221 | ||||
What do you do with dead animals? | Leave as it is (n = 1) | (no observation) | - | |||||
Give to the dog (n = 47) | 25.5 (14.9–40) | 1.54 | 0.29–8.17 | 0.61 | ||||
Bury (n = 11) | 18.2 (4.5–51.3) | Ref | ||||||
Human consumption (n = 27) | 66.7 (47–81.8) | 9 | 1.59–50.7 | 0.013 | ||||
Access to professional animal health services | Yes (n = 75) | 32 (22.3–43.4) | Ref | |||||
No (n = 11) | 72.7 (40.9–91.1) | 5.6 | 1.37–23.2 | 0.016 | 1.6 | 0.28–8.85 | 0.59 | |
Access to regular animal health services (vaccination and deworming) | Yes (n = 76) | 35.5 (25.4–47) | Ref | |||||
No (n = 10) | 50 (22.1–77.8) | 1.81 | 0.48–6.83 | 0.378 |
Antimicrobial Agent | Disc Content (µg) | Resistant (≤) | Intermediate | Susceptible (≥) |
---|---|---|---|---|
Trimethoprim (W5) | 5 | 10 | 11–15 | 16 |
Amoxycillin/clavulanate (AML10) | 10 | 13 | 14–17 | 18 |
Gentamicin (CN10) | 10 | 12 | 13–14 | 15 |
Tetracycline (TE30) | 30 | 11 | 12–14 | 15 |
Ciprofloxacin (CIP5) | 5 | 15 | 16–20 | 21 |
Sulfamethoxazole trimethoprim (SXT25) | 25 | 10 | 11–15 | 16 |
Streptomycin (S25) | 25 | 11 | 13–14 | 15 |
Cefuroxime (CXM30) | 30 | 14 | 15–17 | 18 |
Nalidixic acid (NA30) | 30 | 13 | 14–18 | 19 |
Chloramphenicol (C30) | 30 | 12 | 13–17 | 18 |
Cefotaxime (CTX30) | 30 | 22 | 23–25 | 26 |
Cefoxitin (FOX30) | 30 | 14 | 15–17 | 18 |
Doxycycline (DO30) | 30 | 10 | 11–13 | 14 |
Sulfonamide (S3_300) | 300 | 12 | 13–16 | 17 |
Nitrofurantoin (F300) | 300 | 14 | 15–16 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gemeda, B.A.; Wieland, B.; Alemayehu, G.; Knight-Jones, T.J.D.; Wodajo, H.D.; Tefera, M.; Kumbe, A.; Olani, A.; Abera, S.; Amenu, K. Antimicrobial Resistance of Escherichia coli Isolates from Livestock and the Environment in Extensive Smallholder Livestock Production Systems in Ethiopia. Antibiotics 2023, 12, 941. https://doi.org/10.3390/antibiotics12050941
Gemeda BA, Wieland B, Alemayehu G, Knight-Jones TJD, Wodajo HD, Tefera M, Kumbe A, Olani A, Abera S, Amenu K. Antimicrobial Resistance of Escherichia coli Isolates from Livestock and the Environment in Extensive Smallholder Livestock Production Systems in Ethiopia. Antibiotics. 2023; 12(5):941. https://doi.org/10.3390/antibiotics12050941
Chicago/Turabian StyleGemeda, Biruk Alemu, Barbara Wieland, Gezahegn Alemayehu, Theodore J. D. Knight-Jones, Hiwot Desta Wodajo, Misgana Tefera, Adem Kumbe, Abebe Olani, Shubisa Abera, and Kebede Amenu. 2023. "Antimicrobial Resistance of Escherichia coli Isolates from Livestock and the Environment in Extensive Smallholder Livestock Production Systems in Ethiopia" Antibiotics 12, no. 5: 941. https://doi.org/10.3390/antibiotics12050941
APA StyleGemeda, B. A., Wieland, B., Alemayehu, G., Knight-Jones, T. J. D., Wodajo, H. D., Tefera, M., Kumbe, A., Olani, A., Abera, S., & Amenu, K. (2023). Antimicrobial Resistance of Escherichia coli Isolates from Livestock and the Environment in Extensive Smallholder Livestock Production Systems in Ethiopia. Antibiotics, 12(5), 941. https://doi.org/10.3390/antibiotics12050941