Effectiveness of Extended or Continuous vs. Bolus Infusion of Broad-Spectrum Beta-Lactam Antibiotics for Febrile Neutropenia: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Sources and Searches for Studies
2.2. Study Selection
2.3. Outcomes of Our Study
2.4. Data Extraction from Each Study
2.5. Risk of Bias Assessment for Each Study
2.6. Statistical Analyses
2.7. Certainty of Evidence
3. Results
3.1. The Results of Characteristics of Studies
3.2. The Result of Risk of Bias Assessment, GRADE, and Meta-Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Freifeld, A.G.; Bow, E.J.; Sepkowitz, K.A.; Boeckh, M.J.; Ito, J.I.; Mullen, C.A.; Raad, I.I.; Rolston, K.V.; Young, J.-A.H.; Wingard, J.R. Clinical Practice Guideline for the Use of Antimicrobial Agents in Neutropenic Patients with Cancer: 2010 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 52, e56–e93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosiriluck, N.; Klomjit, S.; Rassameehiran, S.; Sutamtewagul, G.; Tijani, L.; Radhi, S. Prognostic factors for febrile neutropenia in hospitalized patients. J. Investig. Med. 2015, 63, 435. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, A.; Freifeld, A.G. Optimal Management of Neutropenic Fever in Patients With Cancer. J. Oncol. Pract. 2019, 15, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Klastersky, J.; de Naurois, J.; Rolston, K.; Rapoport, B.; Maschmeyer, G.; Aapro, M.; Herrstedt, J.; on behalf of the ESMO Guidelines Committee. Management of febrile neutropaenia: ESMO Clinical Practice Guidelines. Ann. Oncol. 2016, 27 (Suppl. S5), v111–v118. [Google Scholar] [CrossRef]
- Averbuch, D.; Orasch, C.; Cordonnier, C.; Livermore, D.M.; Mikulska, M.; Viscoli, C.; Gyssens, I.C.; Kern, W.V.; Klyasova, G.; Marchetti, O.; et al. European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: Summary of the 2011 4th European Conference on Infections in Leukemia. Haematologica 2013, 98, 1826–1835. [Google Scholar] [CrossRef] [Green Version]
- Lodise, T.P.; Lomaestro, B.M.; Drusano, G.L.; Society of Infectious Diseases Pharmacists. Application of Antimicrobial Pharmacodynamic Concepts into Clinical Practice: Focus on β-Lactam Antibiotics: Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 2006, 26, 1320–1332. [Google Scholar] [CrossRef]
- Roberts, J.A.; Paul, S.K.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Kaukonen, K.-M.; Koulenti, D.; Martin, C.; Montravers, P.; et al. DALI: Defining Antibiotic Levels in Intensive Care Unit Patients: Are Current β-Lactam Antibiotic Doses Sufficient for Critically Ill Patients? Clin. Infect. Dis. 2014, 58, 1072–1083. [Google Scholar] [CrossRef]
- Goncalves-Pereira, J.; Povoa, P. Antibiotics in critically ill patients: A systematic review of the pharmacokinetics of be-ta-lactams. Crit. Care 2011, 15, R206. [Google Scholar] [CrossRef] [Green Version]
- Hafiz, A.-A.M.; Staatz, C.; Kirkpatrick, C.; Lipman, J.; Roberts, J. Continuous infusion vs. bolus dosing: Implications for beta-lactam antibiotics. Minerva Anestesiol. 2011, 78, 94–104. [Google Scholar]
- Vardakas, K.Z.; Voulgaris, G.L.; Maliaros, A.; Samonis, G.; Falagas, M.E. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: A systematic review and meta-analysis of randomised trials. Lancet Infect. Dis. 2018, 18, 108–120. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensiv. Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Lortholary, O.; Lefort, A.; Tod, M.; Chomat, A.-M.; Darras-Joly, C.; Cordonnier, C. Pharmacodynamics and pharmacokinetics of antibacterial drugs in the management of febrile neutropenia. Lancet Infect. Dis. 2008, 8, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Sime, F.B.; Hahn, U.; Warner, M.S.; Tiong, I.S.; Roberts, M.S.; Lipman, J.; Peake, S.L.; Roberts, J.A. Using Population Pharmacokinetic Modeling and Monte Carlo Simulations To Determine whether Standard Doses of Piperacillin in Piperacillin-Tazobactam Regimens Are Adequate for the Management of Febrile Neutropenia. Antimicrob. Agents Chemother. 2017, 61, e00311–e00317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benech, N.; Dumitrescu, O.; Conrad, A.; Balsat, M.; Paubelle, E.; Ducastelle-Lepretre, S.; Labussière-Wallet, H.; Salles, G.; Cohen, S.; Goutelle, S.; et al. Parameters influencing the pharmacokinetics/pharmacodynamics of piperacillin/tazobactam in patients with febrile neutropenia and haematological malignancy: A prospective study. J. Antimicrob. Chemother. 2019, 74, 2676–2680. [Google Scholar] [CrossRef]
- Ram, R.; Halavy, Y.; Amit, O.; Paran, Y.; Katchman, E.; Yachini, B.; Kor, S.; Avivi, I.; Ben-Ami, R. Extended vs Bolus Infusion of Broad-Spectrum β-Lactams for Febrile Neutropenia: An Unblinded, Randomized Trial. Clin. Infect. Dis. 2018, 67, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Fehér, C.; Rovira, M.; Soriano, A.; Esteve, J.; Martínez, J.A.; Marco, F.; Carreras, E.; Martínez, C.; Fernández-Avilés, F.; Suárez-Lledó, M.; et al. Effect of meropenem administration in extended infusion on the clinical outcome of febrile neutropenia: A retrospective observational study. J. Antimicrob. Chemother. 2014, 69, 2556–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrenn, R.H.; Cluck, D.; Kennedy, L.; Ohl, C.; Williamson, J.C. Extended infusion compared to standard infusion cefepime as empiric treatment of febrile neutropenia. J. Oncol. Pharm. Pract. 2017, 24, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Crawford, R.; Perkins, N.B.; Hobbs, D.A.; Hobbs, A.L.V. Time to defervescence evaluation for extended- vs. standard-infusion cefepime in patients with acute leukemia and febrile neutropenia. Pharmacotherapy 2022, 42, 798–805. [Google Scholar] [CrossRef]
- Solórzano-Santos, F.; Quezada-Herrera, A.; Fuentes-Pacheco, Y.; Labrada-Zamora, M.G.; Coello, G.R.; Aguirre-Morales, C.E.; Izelo-Flores, D.; Hernández, O.M.; Miranda-Novales, M.G. Piperacillin/Tazobactam in Continuous Infusion versus Intermittent Infusion in Children with Febrile Neutropenia. Rev. Investig. Clin. 2019, 71, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Grupper, M.; Kuti, J.L.; Nicolau, D.P. Continuous and Prolonged Intravenous beta-Lactam Dosing: Implications for the Clinical Laboratory. Clin. Microbiol. Rev. 2016, 29, 759–772. [Google Scholar] [CrossRef] [Green Version]
- Liberati, M.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Park, J.E.; Lee, Y.J.; Seo, H.-J.; Sheen, S.-S.; Hahn, S.; Jang, B.-H.; Son, H.-J. Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. J. Clin. Epidemiol. 2013, 66, 408–414. [Google Scholar] [CrossRef]
- Schünemann, H.; Brożek, J.; Guyatt, G.; Oxman, A. Grade Handbook. Available online: https://guidelinedevelopment.org/handbook (accessed on 11 April 2023).
- Cameron, D. Management of chemotherapy-associated febrile neutropenia. Br. J. Cancer 2009, 101 (Suppl. S1), S18–S22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aapro, M.S.; Cameron, D.A.; Pettengell, R.; Bohlius, J.; Crawford, J.; Ellis, M.; Kearney, N.; Lyman, G.H.; Tjan-Heijnen, V.C.; Walewski, J.; et al. EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemo-therapy-induced febrile neutropenia in adult patients with lymphomas and solid tumours. Eur. J. Cancer 2006, 42, 2433–2453. [Google Scholar] [CrossRef]
- Egi, M.; Ogura, H.; Yatabe, T.; Atagi, K.; Inoue, S.; Iba, T.; Kakihana, Y.; Kawasaki, T.; Kushimoto, S.; Kuroda, Y.; et al. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). Acute Med. Surg. 2021, 8, e659. [Google Scholar] [CrossRef]
- Navas, D.; Caillon, J.; Batard, E.; Le Conte, P.; Kergueris, M.-F.; Moreau, P.; Potel, G. Trough serum concentrations of β-lactam antibiotics in cancer patients: Inappropriateness of conventional schedules to pharmacokinetic/pharmacodynamic properties of β-lactams. Int. J. Antimicrob. Agents 2006, 27, 102–107. [Google Scholar] [CrossRef]
- Ariano, R.E.; Nyhlén, A.; Donnelly, J.P.; Sitar, D.S.; Harding, G.K.; Zelenitsky, S. Pharmacokinetics and Pharmacodynamics of Meropenem in Febrile Neutropenic Patients with Bacteremia. Ann. Pharmacother. 2005, 39, 32–38. [Google Scholar] [CrossRef]
- Álvarez, J.C.; Cuervo, S.I.; Garzón, J.R.; Gómez, J.C.; Díaz, J.A.; Silva, E.; Sanchez, R.; Cortés, J.A. Pharmacokinetics of piperacillin/tazobactam in cancer patients with hematological malignancies and febrile neutropenia after chemotherapy. BMC Pharmacol. Toxicol. 2013, 14, 59. [Google Scholar] [CrossRef] [Green Version]
- Tzouvelekis, L.S.; Markogiannakis, A.; Psichogiou, M.; Tassios, P.T.; Daikos, G.L. Carbapenemases in Klebsiella pneumoniae and Other Enterobacteriaceae: An Evolving Crisis of Global Dimensions. Clin. Microbiol. Rev. 2012, 25, 682–707. [Google Scholar] [CrossRef] [Green Version]
- Pouch, S.M.; Satlin, M.J. Carbapenem-resistant Enterobacteriaceae in special populations: Solid organ transplant recipients, stem cell transplant recipients, and patients with hematologic malignancies. Virulence 2016, 8, 391–402. [Google Scholar] [CrossRef] [Green Version]
- MacVane, S.H.; Kuti, J.L.; Nicolau, D.P. Prolonging beta-lactam infusion: A review of the rationale and evidence, and guidance for implementation. Int. J. Antimicrob. Agents 2014, 43, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Lodise, T.P., Jr.; Lomaestro, B.; Drusano, G.L. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: Clinical implications of an extended-infusion dosing strategy. Clin. Infect. Dis. 2007, 44, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Bauer, K.A.; West, J.E.; O’Brien, J.M.; Goff, D.A. Extended-Infusion Cefepime Reduces Mortality in Patients with Pseudomonas aeruginosa Infections. Antimicrob. Agents Chemother. 2013, 57, 2907–2912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulhunty, J.M.; Roberts, J.A.; Davis, J.S.; Webb, S.A.R.; Bellomo, R.; Gomersall, C.; Shirwadkar, C.; Eastwood, G.M.; Myburgh, J.; Paterson, D.L.; et al. Continuous Infusion of Beta-Lactam Antibiotics in Severe Sepsis: A Multicenter Double-Blind, Randomized Controlled Trial. Clin. Infect. Dis. 2012, 56, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Kasiakou, S.K.; Sermaides, G.J.; Michalopoulos, A.; Soteriades, E.S.; Falagas, M.E. Continuous versus intermittent intravenous administration of antibiotics: A meta-analysis of randomised controlled trials. Lancet Infect. Dis. 2005, 5, 581–589. [Google Scholar] [CrossRef]
- Roberts, J.A.; Webb, S.; Paterson, D.; Ho, K.M.; Lipman, J. A systematic review on clinical benefits of continuous administration of beta-lactam antibiotics. Crit. Care Med. 2009, 37, 2071–2078. [Google Scholar] [CrossRef] [Green Version]
- Tumbarello, M.; Trecarichi, E.M.; De Rosa, F.G.; Giannella, M.; Giacobbe, D.R.; Bassetti, M.; Losito, A.R.; Bartoletti, M.; Del Bono, V.; Corcione, S.; et al. Infections caused by KPC-producing Klebsiella pneumoniae: Differences in therapy and mortality in a multicentre study. J. Antimicrob. Chemother. 2015, 70, 2133–2143. [Google Scholar] [CrossRef] [Green Version]
- Tumbarello, M.; Viale, P.; Viscoli, C.; Trecarichi, E.M.; Tumietto, F.; Marchese, A.; Spanu, T.; Ambretti, S.; Ginocchio, F.; Cristini, F.; et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae car-bapenemase-producing K. pneumoniae: Importance of combination therapy. Clin. Infect. Dis. 2012, 55, 943–950. [Google Scholar] [CrossRef] [Green Version]
- Daikos, G.L.; Tsaousi, S.; Tzouvelekis, L.S.; Anyfantis, I.; Psichogiou, M.; Argyropoulou, A.; Stefanou, I.; Sypsa, V.; Miriagou, V.; Nepka, M.; et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: Lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob. Agents Chemother. 2014, 58, 2322–2328. [Google Scholar] [CrossRef] [Green Version]
- Albasanz-Puig, A.; Gudiol, C.; Puerta-Alcalde, P.; Ayaz, C.M.; Machado, M.; Herrera, F.; Martín-Dávila, P.; Laporte-Amargós, J.; Cardozo, C.; Akova, M.; et al. Impact of the Inclusion of an Aminoglycoside to the Initial Empirical Antibiotic Therapy for Gram-Negative Bloodstream Infections in Hematological Neutropenic Patients: A Propensity-Matched Cohort Study (AMINOLACTAM Study). Antimicrob. Agents Chemother. 2021, 65, e0004521. [Google Scholar] [CrossRef] [PubMed]
- Haley, M.; Jason, P.; Keith, K.; Kerry, L. Treatment Options for Carbapenem-Resistant Enterobacteriaceae Infections. Open Forum Infect. Dis. 2015, 2, ofv050. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Dickstein, Y.; Schlesinger, A.; Grozinsky-Glasberg, S.; Soares-Weiser, K.; Leibovici, L. Beta-lactam versus beta-lactam-aminoglycoside combination therapy in cancer patients with neutropenia. Cochrane Database Syst. Rev. 2013, 2016, CD003038. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Masaki, T.; Kawai, F.; Ota, E.; Mori, N. Systematic Review of the Short-Term versus Long-Term Duration of Antibiotic Management for Neutropenic Fever in Patients with Cancer. Cancers 2023, 15, 1611. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Laporte-Amargos, J.; Gudiol, C.; Arnan, M.; Puerta-Alcalde, P.; Carmona-Torre, F.; Huguet, M.; Albasanz-Puig, A.; Parody, R.; Garcia-Vidal, C.; Del Pozo, J.L.; et al. Efficacy of extended infusion of β-lactam antibiotics for the treatment of febrile neutropenia in haematologic patients: Protocol for a randomised, multicentre, open-label, superiority clinical trial (BEATLE). Trials 2020, 21, 412. [Google Scholar] [CrossRef] [PubMed]
Articles | Published Country | Study Design | Patient Characteristics/ Type of Beta-Lactam Antibiotics | Intervention | Comparison |
---|---|---|---|---|---|
Crawford 2022 [18] | USA | Retrospective/ single center | Hematologic malignancy (AML, 78.8%; ALL 21.2%) | EI (n = 98); CFPM 1 g/4 h q8h | BI (n = 95); CFPM 2 g/30 min q8h |
Fortino 2019 [19] | Mexico | RCT/single center | Hematologic malignancy/children hematological malignancy: 20.5%; solid tumor: 79.5% | CI (n = 100); PIPC/TAZ 75 mg/kg bolus, followed by 300 mg/kg/day over 24 h | BI (n = 76); PIPC/TAZ 300 mg/kg/day divided into 4 doses/30 min |
Ron 2018 [15] | Israel | RCT/single center | Hematologic malignancy (AML/MDS: 35.8%; lymphoma 27.6%; multiple myeloma: 34.1%) | EI ITT (n = 47); PP (n = 43); PIPC/TAZ 4.5 g/4 h q8h and CAZ 2 g/4 h q8h (if penicillin allergy) | BI ITT (n = 58); PP (n = 48); PIPC/TAZ 4.5 g/30 min q6h and CAZ 2 g/30 min q8h (if penicillin allergy) |
Rebekah 2018 [17] | USA | RCT/single center | Hematologic malignancy (acute leukemia: 42.9%; lymphoma: 36.5%; multiple myeloma: 14.3%; and MDS: 4.8%) | EI (n = 30); CFPM 2 g/3 h q8h | BI (n = 33); CFPM 2 q/30 min q8h |
Csaba 2014 [16] | Spain | Retrospective/ single center | Hematologic malignancy (acute leukemia: 40.9%; lymphoma: 28.0%) | EI (n = 76); MEPM 1 g/4 h q8h | BI (n = 88); MEPM 1 g/30 min q8h |
Summary of Findings | |||||
---|---|---|---|---|---|
Clinical Failure of Extended or Continuous Infusion Compared with Bolus Infusion for Febrile Neutropenia | |||||
Patient or Population: Febrile Neutropenia Intervention: Extended or Continuous Infusion Comparison: Bolus Infusion | |||||
Outcomes | Anticipated Absolute Effects * (95% CI) | Relative Effect (95% CI) | № of Participants (Studies) | Certainty of the Evidence (GRADE) | |
Risk with Placebo | Risk with Treatment Response | ||||
Clinical failure with 3 RCTs | 335 per 1000 | 248 per 1000 (178 to 352) | RR 0.74 (0.53 to 1.05) | 344 (3 RCTs) | ⨁⨁◯◯ Low a,b |
Clinical failure with extended infusion in 2 RCTs | 396 per 1000 | 289 per 1000 (186 to 451) | RR 0.73 (0.47 to 1.14) | 168 (2 RCTs) | ⨁⨁◯◯ Low a,b |
Clinical failure with extended infusion in 2 retrospective studies | 798 per 1000 | 356 per 1000 (73 to 822) | OR 0.14 (0.02 to 1.17) | 357 (2 observational studies) | ⨁◯◯◯ Very low a,b,c |
All-cause mortality in 3 RCTs | 36 per 1000 | 45 per 1000 (16 to 127) | RR 1.25 (0.44 to 3.54) | 344 (3 RCTs) | ⨁◯◯◯ Low a,b |
All-cause mortality with extended infusion in 2 RCTs | 55 per 1000 | 75 per 1000 (24 to 234) | RR 1.36 (0.44 to 4.25) | 168 (2 RCTs) | ⨁◯◯◯ Low a,b |
All-cause mortality with extended infusion in 2 retrospective studies | 71 per 1000 | 71 per 1000 (33 to 146) | OR 1.00 (0.44 to 2.23) | 357 (2 observational studies) | ⨁◯◯◯ Very low a,b,c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishikawa, K.; Shibutani, K.; Kawai, F.; Ota, E.; Takahashi, O.; Mori, N. Effectiveness of Extended or Continuous vs. Bolus Infusion of Broad-Spectrum Beta-Lactam Antibiotics for Febrile Neutropenia: A Systematic Review and Meta-Analysis. Antibiotics 2023, 12, 1024. https://doi.org/10.3390/antibiotics12061024
Ishikawa K, Shibutani K, Kawai F, Ota E, Takahashi O, Mori N. Effectiveness of Extended or Continuous vs. Bolus Infusion of Broad-Spectrum Beta-Lactam Antibiotics for Febrile Neutropenia: A Systematic Review and Meta-Analysis. Antibiotics. 2023; 12(6):1024. https://doi.org/10.3390/antibiotics12061024
Chicago/Turabian StyleIshikawa, Kazuhiro, Koko Shibutani, Fujimi Kawai, Erika Ota, Osamu Takahashi, and Nobuyoshi Mori. 2023. "Effectiveness of Extended or Continuous vs. Bolus Infusion of Broad-Spectrum Beta-Lactam Antibiotics for Febrile Neutropenia: A Systematic Review and Meta-Analysis" Antibiotics 12, no. 6: 1024. https://doi.org/10.3390/antibiotics12061024
APA StyleIshikawa, K., Shibutani, K., Kawai, F., Ota, E., Takahashi, O., & Mori, N. (2023). Effectiveness of Extended or Continuous vs. Bolus Infusion of Broad-Spectrum Beta-Lactam Antibiotics for Febrile Neutropenia: A Systematic Review and Meta-Analysis. Antibiotics, 12(6), 1024. https://doi.org/10.3390/antibiotics12061024