Developing a Slow-Release Permanganate Composite for Degrading Aquaculture Antibiotics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antibiotic Kinetic Experiments
2.2. Effect of Co-Contaminants
2.3. Effect of Initial pH
2.4. Effect of Humic Acids and Real Wastewater
2.5. Release Concentration of SR Permanganate
2.5.1. Release Concentration
2.5.2. SR-MnO4− Surface Properties
2.5.3. Chemical Addition/MnO4− Residual on Surface
2.5.4. Releasing Empirical Formula
2.5.5. Comparison of SDM Degradations by MnO4− Solution and SR-MnO4−
2.6. SR Permanganate Use in Contact Tank
3. Materials and Methods
3.1. Chemicals and Analyses
3.2. Antibiotic Kinetic Experiments
3.3. Influential Effects on Antibiotic Degradation
3.3.1. Effect of pH
3.3.2. Effect of Humic Acids and Real Wastewater
3.4. Slow-Release Permanganate
3.4.1. Manufacturing Mixture Ratio
3.4.2. MnO4− Releasing Experiments
3.4.3. Slow-Release Applicability Test
3.5. Contact Tank Experiment
3.5.1. Construction of Contact Tank
3.5.2. Remediation Experiment
4. Conclusions
- The second-order degradation rates for these antibiotics were 0.128 s−1 M−1 for SDM, 0.097 s−1 M−1 for OMP, and 0.056 s−1 M−1 for TMP, proving that the MnO4− efficiency for a variety of antibiotics depends upon their molecular structure.
- Manganese dioxide (MnO2) formed during treatment and enhanced SDM degradation by promoting surface-coordinated oxidization, but it also acted like a low permeable rind that reduced MnO4− release.
- Solution pH beyond neutral (pH > 4–6) and the presence of natural scavengers, such as organic constituents, slowed and sometimes halted oxidative degradation.
- While the oxidant composite was effective in treating SDM, the biodegradable wax component still required some synthetic paraffin in the mixture (>12%) to provide structural integrity. Among the several biowax and mixing ratios tested, 80% beeswax in the SR composite (SRB) produced the most consistent permanganate release patterns.
- Both dispersing agents (TKPP, SHMP) mixed in the composite produced delayed MnO2 rind formation. By increasing this addition to more than 2.5% (>0.02 g) per SR weight, the cylindrical shape was compromised. Within this upper limit as a suitable amount, the addition of TKPP (SRB+TKPP) provided the best releasing concentration (up to 20% greater release) in the beeswax formulation. The Siepmann-Peppas model provided the best fit of MnO4− release rates over 60 d.
- Using SRB+TKPP in the contact tank receiving the SDM-contaminated discharge water removed 80% of the SDM over three flushing cycles. These results confirmed that our SRB+TKPP formulation could provide sustained release of MnO4− and warrant the proposed oxidant composite as a low-cost treatment technology suitable for treating antibiotic-contaminated discharge water.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alarcon, P.; Wieland, B.; Mateus, A.L.; Dewberry, C. Pig farmers’ perceptions, attitudes, influences and management of information in the decision-making process for disease control. Prev. Veter. Med. 2014, 116, 223–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rico, A.; Oliveira, R.; McDonough, S.; Matser, A.; Khatikarn, J.; Satapornvanit, K.; Nogueira, A.J.; Soares, A.M.; Domingues, I.; Brink, P.J.V.D. Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand. Environ. Pollut. 2014, 191, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Speksnijder, D.; Jaarsma, A.; Van Der Gugten, A.; Verheij, T.J.; Wagenaar, J. Determinants associated with veterinary antimicrobial prescribing in farm animals in the Netherlands: A qualitative study. Zoonoses Public Health 2015, 62, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Hatosy, S.M.; Martiny, A.C. The Ocean as a Global Reservoir of Antibiotic Resistance Genes. Appl. Environ. Microbiol. 2015, 81, 7593–7599. [Google Scholar] [CrossRef] [Green Version]
- Boison, J.; Turnipseed, S.B. A Review of Aquaculture Practices and Their Impacts on Chemical Food Safety from a Regulatory Perspective. J. AOAC Int. 2015, 98, 541–549. [Google Scholar] [CrossRef]
- Yuan, J.; Ni, M.; Liu, M.; Zheng, Y.; Gu, Z. Occurrence of antibiotics and antibiotic resistance genes in a typical estuary aquaculture region of Hangzhou Bay, China. Mar. Pollut. Bull. 2018, 138, 376–384. [Google Scholar] [CrossRef]
- Qin, L.-T.; Pang, X.-R.; Zeng, H.-H.; Liang, Y.-P.; Mo, L.-Y.; Wang, D.-Q.; Dai, J.-F. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China. Sci. Total Environ. 2019, 708, 134552. [Google Scholar] [CrossRef]
- Zhou, J.; Yun, X.; Wang, J.; Li, Q.; Wang, Y. A review on the ecotoxicological effect of sulphonamides on aquatic organisms. Toxicol. Rep. 2022, 9, 534–540. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, M.; Yates, S.R. Degradation kinetics of manure-derived sulfadimethoxine in amended soil. J. Agric. Food Chem. 2006, 54, 157–163. [Google Scholar] [CrossRef]
- Park, K.-Y.; Choi, S.-Y.; Lee, S.-H.; Kweon, J.-H.; Song, J.H. Comparison of formation of disinfection by-products by chlorination and ozonation of wastewater effluents and their toxicity to Daphnia magna. Environ. Pollut. 2016, 215, 314–321. [Google Scholar] [CrossRef]
- Alvarez-Torrellas, S.; Rodríguez, A.; Ovejero, G.; García, J. Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem. Eng. J. 2016, 283, 936–947. [Google Scholar] [CrossRef]
- Bi, X.; Huang, Y.; Liu, X.; Yao, N.; Zhao, P.; Meng, X.; Astruc, D. Oxidative degradation of aqueous organic contaminants over shape-tunable MnO2 nanomaterials via peroxymonosulfate activation. Sep. Purif. Technol. 2021, 275. [Google Scholar] [CrossRef]
- Chokejaroenrat, C.; Sakulthaew, C.; Satchasataporn, K.; Snow, D.D.; Ali, T.E.; Assiri, M.A.; Watcharenwong, A.; Imman, S.; Suriyachai, N.; Kreetachat, T. Enrofloxacin and Sulfamethoxazole Sorption on Carbonized Leonardite: Kinetics, Isotherms, Influential Effects, and Antibacterial Activity toward S. aureus ATCC 25923. Antibiotics 2022, 11, 1261. [Google Scholar] [CrossRef] [PubMed]
- Jutarvutikul, K.; Sakulthaew, C.; Chokejaroenrat, C.; Pattanateeradetch, A.; Imman, S.; Suriyachai, N.; Satapanajaru, T.; Kreetachat, T. Practical use of response surface methodology for optimization of veterinary antibiotic removal using UV/H2O2 process. Aquac. Eng. 2021, 94, 102174. [Google Scholar] [CrossRef]
- Yao, N.; Wang, X.; Yang, Z.; Zhao, P.; Meng, X. Characterization of solid and liquid carbonization products of polyvinyl chloride (PVC) and investigation of the PVC-derived adsorbent for the removal of organic compounds from water. J. Hazard. Mater. 2023, 456. [Google Scholar] [CrossRef]
- Kambhu, A.; Gren, M.; Tang, W.; Comfort, S.; Harris, C.E. Remediating 1,4-dioxane-contaminated water with slow-release persulfate and zerovalent iron. Chemosphere 2017, 175, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Chen, C.-Y. Characterization of a Sodium Persulfate Sustained Release Rod for in Situ Chemical Oxidation Groundwater Remediation. Ind. Eng. Chem. Res. 2017, 56, 5271–5276. [Google Scholar] [CrossRef]
- Evans, P.J.; Dugan, P.; Nguyen, D.; Lamar, M.; Crimi, M. Slow-release permanganate versus unactivated persulfate for long-term in situ chemical oxidation of 1,4-dioxane and chlorinated solvents. Chemosphere 2019, 221, 802–811. [Google Scholar] [CrossRef]
- Sakulthaew, C.; Chokejaroenrat, C. Oxidation of 17β-Estradiol in Water by Slow-Release Permanganate Candles. Environ. Eng. Sci. 2016, 33, 224–234. [Google Scholar] [CrossRef]
- Hastings, J.L.; Lee, E.S. Optimization and Analysis of a Slow-Release Permanganate Gel for Groundwater Remediation in Porous and Low-Permeability Media. Water 2021, 13, 755. [Google Scholar] [CrossRef]
- Liang, S.; Kao, C.; Kuo, Y.; Chen, K.; Yang, B. In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system. Water Res. 2011, 45, 2496–2506. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.; Hou, D.; Ok, Y.S.; Song, Y.; Sarmah, A.K.; Li, X.; Tack, F.M. Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review. J. Control. Release 2018, 283, 200–213. [Google Scholar] [CrossRef]
- Rezaei, K.; Wang, T.; Johnson, L.A. Combustion characteristics of candles made from hydrogenated soybean oil. J. Am. Oil Chem. Soc. 2002, 79, 803–808. [Google Scholar] [CrossRef]
- Christenson, M.; Kambhu, A.; Reece, J.; Comfort, S.; Brunner, L. A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second-generation improvements. Chemosphere 2016, 150, 239–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Feng, Y.; Feng, Y.; Liao, G.; Sun, Y.; Ma, J. Characteristics and mechanisms of controlled-release KMnO4 for groundwater remediation: Experimental and modeling investigations. Water Res. 2020, 171, 115385. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Hedman, C.; Liu, C.; Guo, T.; Pedersen, J.A. Transformation of Sulfamethazine by Manganese Oxide in Aqueous Solution. Environ. Sci. Technol. 2012, 46, 2642–2651. [Google Scholar] [CrossRef]
- Zhuang, J.; Wang, S.; Tan, Y.; Xiao, R.; Chen, J.; Wang, X.; Jiang, L.; Wang, Z. Degradation of sulfadimethoxine by permanganate in aquatic environment: Influence factors, intermediate products and theoretical study. Sci. Total Environ. 2019, 671, 705–713. [Google Scholar] [CrossRef]
- Laszakovits, J.; Patterson, A.; Hipsher, C.; MacKay, A.A. Diethyl phenylene diamine (DPD) oxidation to measure low concentration permanganate in environmental systems. Water Res. 2018, 151, 403–412. [Google Scholar] [CrossRef]
- Hu, L.; Martin, H.M.; Strathmann, T.J. Oxidation Kinetics of Antibiotics during Water Treatment with Potassium Permanganate. Environ. Sci. Technol. 2010, 44, 6416–6422. [Google Scholar] [CrossRef]
- Hassan, M.; Alhemiary, N.A.; Albadani, A.S. Kinetics of Oxidation of dl-Tartaric Acid by Potassium Permanganate in Aqueuos and Aqueous Micellar Media. Arab. J. Sci. Eng. 2012, 37, 1263–1270. [Google Scholar] [CrossRef]
- Chokejaroenrat, C.; Comfort, S.D.; Harris, C.E.; Snow, D.D.; Cassada, D.; Sakulthaew, C.; Satapanajaru, T. Transformation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Permanganate. Environ. Sci. Technol. 2011, 45, 3643–3649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Y.; Shi, Y.; Wang, L.; Lu, J.; Ferronato, C.; Chovelon, J.-M. Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine: Formation of SO2 extrusion products and effects of natural organic matter. Sci. Total Environ. 2017, 593–594, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zhang, J.; Du, J.; Qiao, J.; Guan, X. Reinvestigation of the role of humic acid in the oxidation of phenols by permanganate. Environ. Sci. Technol. 2013, 47, 14332–14340. [Google Scholar] [CrossRef]
- Fang, G.-D.; Dionysiou, D.D.; Zhou, D.-M.; Wang, Y.; Zhu, X.-D.; Fan, J.-X.; Cang, L.; Wang, Y.-J. Transformation of polychlorinated biphenyls by persulfate at ambient temperature. Chemosphere 2013, 90, 1573–1580. [Google Scholar] [CrossRef]
- Carrillo, J.-C.; Danneels, D.; Woldhuis, J. Relevance of animal studies in the toxicological assessment of oil and wax hydrocarbons. Solving the puzzle for a new outlook in risk assessment. Crit. Rev. Toxicol. 2021, 51, 418–455. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Lio, J.; Wang, T.; Jarboe, D.H. Synthesis and Characterization of Acetylated and Stearylyzed Soy Wax. J. Am. Oil Chem. Soc. 2013, 90, 1063–1071. [Google Scholar] [CrossRef]
- Rezaei, K.; Wang, T.; Johnson, L.A. Hydrogenated vegetable oils as candle wax. J. Am. Oil Chem. Soc. 2002, 79, 1241–1247. [Google Scholar] [CrossRef]
- Wijarnprecha, K.; Aryusuk, K.; Santiwattana, P.; Sonwai, S.; Rousseau, D. Structure and rheology of oleogels made from rice bran wax and rice bran oil. Food Res. Int. 2018, 112, 199–208. [Google Scholar] [CrossRef]
- Garnier, N.; Cren-Olivé, C.; Rolando, C.; Regert, M. Characterization of Archaeological Beeswax by Electron Ionization and Electrospray Ionization Mass Spectrometry. Anal. Chem. 2002, 74, 4868–4877. [Google Scholar] [CrossRef]
- Luo, W.; Li, T.; Wang, C.; Huang, F. Discovery of Beeswax as binding agent on a 6th-century BC Chinese Turquoise-inlaid Bronze sword. J. Archaeol. Sci. 2012, 39, 1227–1237. [Google Scholar] [CrossRef]
- Shaabani, A.; Tavasoli-Rad, F.; Lee, D.G. Potassium Permanganate Oxidation of Organic Compounds. Synth. Commun. 2005, 35, 571–580. [Google Scholar] [CrossRef]
- Xará, S.M.; Delgado, J.N.; Almeida, M.F.; Costa, C.A. Laboratory study on the leaching potential of spent alkaline batteries. Waste Manag. 2009, 29, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Nagyová, G.; Buňka, F.; Salek, R.; Černíková, M.; Mančík, P.; Grůber, T.; Kuchař, D. Use of sodium polyphosphates with different linear lengths in the production of spreadable processed cheese. J. Dairy Sci. 2014, 97, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Passot, C.; Pouw, M.F.; Mulleman, D.; Bejan-Angoulvant, T.; Paintaud, G.; Dreesen, E.; Ternant, D. Therapeutic drug monitoring of biopharmaceuticals may benefit from pharmacokinetic and pharmacokinetic–pharmacodynamic modeling. Ther. Drug Monit. 2017, 39, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Kobryń, J.; Sowa, S.; Gasztych, M.; Dryś, A.; Musiał, W. Influence of hydrophilic polymers on the factor in weibull equation applied to the release kinetics of a biologically active complex of aesculus hippocastanum. Int. J. Polym. Sci. 2017, 2017, 3486384. [Google Scholar] [CrossRef] [Green Version]
- Bucio, A.; Moreno-Tovar, R.; Bucio, L.; Espinosa-Dávila, J.; Anguebes-Franceschi, F. Characterization of Beeswax, Candelilla Wax and Paraffin Wax for Coating Cheeses. Coatings 2021, 11, 261. [Google Scholar] [CrossRef]
- Cornforth, D.; West, E. Evaluation of the Antioxidant Effects of Dried Milk Mineral in Cooked Beef, Pork, and Turkey. J. Food Sci. 2002, 67, 615–618. [Google Scholar] [CrossRef]
- Famoofo, O.O.; Adeniyi, I.F. Impact of effluent discharge from a medium-scale fish farm on the water quality of Odo-Owa stream near Ijebu-Ode, Ogun State, Southwest Nigeria. Appl. Water Sci. 2020, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Chokejaroenrat, C.; Comfort, S.; Sakulthaew, C.; Dvorak, B. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate. J. Hazard. Mater. 2014, 268, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Sakulthaew, C.; Watcharenwong, A.; Chokejaroenrat, C.; Rittirat, A. Leonardite-Derived Biochar Suitability for Effective Sorption of Herbicides. Water Air Soil Pollut. 2021, 232, 1–17. [Google Scholar] [CrossRef]
- Sanders, S.; Srivastava, P.; Feng, Y.; Dane, J.; Basile, J.; Barnett, M. Sorption of the Veterinary Antimicrobials Sulfadimethoxine and Ormetoprim in Soil. J. Environ. Qual. 2008, 37, 1510–1518. [Google Scholar] [CrossRef] [PubMed]
- Straub, J.O. An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters. Antibiotics 2013, 2, 115–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gros, M.; Petrović, M.; Barceló, D. Development of a multi-residue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta 2006, 70, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Z.; Adams, C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 2004, 38, 2874–2890. [Google Scholar] [CrossRef]
- Samuelsen, O.B.; Lunestad, B.T.; Ervik, A.; Fjelde, S. Stability of antibacterial agents in an artificial marine aquaculture sediment studied under laboratory conditions. Aquaculture 1994, 126, 283–290. [Google Scholar] [CrossRef]
Model | Siepman-Peppas | Higuchi; t < 60 d | Higuchi; t ≤ 8 d | Noyes-Whitney | Weibull | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Generalized Eq. | |||||||||||||||||
Graphs | Figure S5 | Figure S6 | Figure S7 | Figure S8 | Figure S9 | ||||||||||||
Parameters | α | β | R2 | r2adj | k | R2 | r2adj | k | R2 | r2adj | k | R2 | r2adj | α | β | R2 | r2adj |
SC0 | 186.9 | 0.216 | 0.815 | 0.736 | 65.75 | 0.113 | N/A | 163.1 | 0.932 | 0.898 | 0.0361 | N/A | N/A | 0.3555 | 0.4325 | 0.8661 | 0.809 |
ST1 | 195.7 | 0.189 | 0.801 | 0.716 | 56.64 | N/A | N/A | 144.8 | 0.894 | 0.841 | 0.0276 | N/A | N/A | 0.3119 | 0.4536 | 0.8476 | 0.782 |
ST2 | 214.2 | 0.170 | 0.822 | 0.746 | 57.24 | N/A | N/A | 151.6 | 0.907 | 0.861 | 0.0296 | N/A | N/A | 0.3816 | 0.4015 | 0.8557 | 0.794 |
SS1 | 183.7 | 0.212 | 0.797 | 0.710 | 63.24 | 0.055 | N/A | 161.4 | 0.93 | 0.895 | 0.0359 | N/A | N/A | 0.3335 | 0.5269 | 0.8673 | 0.810 |
SS2 | 171.3 | 0.221 | 0.826 | 0.751 | 62.30 | 0.194 | N/A | 142.3 | 0.926 | 0.889 | 0.0304 | N/A | N/A | 0.3067 | 0.4877 | 0.8740 | 0.820 |
RC0 | 199.7 | 0.212 | 0.824 | 0.749 | 55.66 | N/A | N/A | 140.9 | 0.87 | 0.805 | −0.0265 | N/A | N/A | 0.3639 | 0.3899 | 0.8171 | 0.739 |
RT1 | 207.0 | 0.189 | 0.804 | 0.720 | 52.79 | N/A | N/A | 152.4 | 0.86 | 0.790 | −0.0266 | N/A | N/A | 0.3548 | 0.3924 | 0.8432 | 0.776 |
RT2 | 222.6 | 0.174 | 0.820 | 0.743 | 52.68 | N/A | N/A | 146.6 | 0.842 | 0.763 | −0.0272 | N/A | N/A | 0.3243 | 0.4192 | 0.8786 | 0.827 |
RS1 | 196.4 | 0.209 | 0.797 | 0.710 | 53.27 | N/A | N/A | 135.8 | 0.929 | 0.894 | −0.0243 | N/A | N/A | 0.3431 | 0.4012 | 0.8891 | 0.842 |
RS2 | 187.8 | 0.212 | 0.809 | 0.727 | 55.53 | N/A | N/A | 134.6 | 0.885 | 0.828 | −0.0274 | N/A | N/A | 0.3713 | 0.3667 | 0.8923 | 0.846 |
BC0 | 137.4 | 0.313 | 0.933 | 0.904 | 73.47 | 0.791 | 0.739 | 97.40 | 0.984 | 0.976 | −0.0396 (−0.0995) | 0.371 (0.980) | 0.214 (0.975) | 0.8823 | 0.4831 | 0.9667 | 0.952 |
BT1 | 142.8 | 0.296 | 0.95 | 0.929 | 71.78 | 0.743 | 0.679 | 101.2 | 0.994 | 0.991 | −0.0365 (−0.9901) | 0.171 (0.978) | N/A (0.973) | 0.2556 | 0.5198 | 0.9698 | 0.957 |
BT2 | 114.1 | 0.343 | 0.957 | 0.939 | 66.27 | 0.862 | 0.828 | 91.90 | 0.989 | 0.984 | −0.0325 (−0.0727) | 0.518 (0.952) | N/A (0.940) | 0.2306 | 0.4737 | 0.9805 | 0.972 |
BS1 | 169.9 | 0.250 | 0.854 | 0.791 | 70.06 | 0.545 | 0.431 | 124.8 | 0.974 | 0.961 | −0.0349 (−0.1162) | N/A (0.896) | N/A (0.870) | 0.8908 | 0.4774 | 0.9281 | 0.897 |
BS2 | 216.3 | 0.189 | 0.85 | 0.786 | 64.85 | 0.119 | N/A | 153.5 | 0.966 | 0.949 | −0.0355 (−0.1306) | N/A (0.631) | N/A (0.539) | 0.4012 | 0.4398 | 0.8958 | 0.851 |
PC0 | 238.6 | 0.199 | 0.944 | 0.920 | 74.47 | 0.238 | 0.048 | 154.6 | 0.939 | 0.909 | −0.0563 (−0.1603) | N/A (0.829) | N/A (0.786) | 0.5897 | 0.3955 | 0.9732 | 0.962 |
PT1 | 241.2 | 0.186 | 0.934 | 0.906 | 70.18 | 0.083 | N/A | 166.7 | 0.935 | 0.903 | −0.0465 (−0.1472) | N/A (0.480) | N/A (0.350) | 0.5432 | 0.3993 | 0.9431 | 0.919 |
PT2 | 247.3 | 0.185 | 0.93 | 0.900 | 71.45 | 0.069 | N/A | 168.3 | 0.942 | 0.913 | −0.0499 (−0.1747) | N/A (0.786) | N/A (0.733) | 0.5666 | 0.4048 | 0.9291 | 0.899 |
PS1 | 234.5 | 0.201 | 0.933 | 0.904 | 73.64 | 0.229 | 0.036 | 160.0 | 0.961 | 0.942 | −0.0509 (−0.1746) | N/A (0.859) | N/A (0.824) | 0.5650 | 0.4044 | 0.9311 | 0.902 |
PS2 | 237.9 | 0.189 | 0.937 | 0.910 | 70.38 | 0.118 | N/A | 161.8 | 0.943 | 0.915 | −0.0470 (−0.1594) | N/A (0.764) | N/A (0.705) | 0.5638 | 0.3809 | 0.9382 | 0.912 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakulthaew, C.; Chokejaroenrat, C.; Panya, S.; Songsasen, A.; Poomipuen, K.; Imman, S.; Suriyachai, N.; Kreetachat, T.; Comfort, S. Developing a Slow-Release Permanganate Composite for Degrading Aquaculture Antibiotics. Antibiotics 2023, 12, 1025. https://doi.org/10.3390/antibiotics12061025
Sakulthaew C, Chokejaroenrat C, Panya S, Songsasen A, Poomipuen K, Imman S, Suriyachai N, Kreetachat T, Comfort S. Developing a Slow-Release Permanganate Composite for Degrading Aquaculture Antibiotics. Antibiotics. 2023; 12(6):1025. https://doi.org/10.3390/antibiotics12061025
Chicago/Turabian StyleSakulthaew, Chainarong, Chanat Chokejaroenrat, Sidaporn Panya, Apisit Songsasen, Kitipong Poomipuen, Saksit Imman, Nopparat Suriyachai, Torpong Kreetachat, and Steve Comfort. 2023. "Developing a Slow-Release Permanganate Composite for Degrading Aquaculture Antibiotics" Antibiotics 12, no. 6: 1025. https://doi.org/10.3390/antibiotics12061025
APA StyleSakulthaew, C., Chokejaroenrat, C., Panya, S., Songsasen, A., Poomipuen, K., Imman, S., Suriyachai, N., Kreetachat, T., & Comfort, S. (2023). Developing a Slow-Release Permanganate Composite for Degrading Aquaculture Antibiotics. Antibiotics, 12(6), 1025. https://doi.org/10.3390/antibiotics12061025