Emergence of Carbapenem-Resistant Gram-Negative Isolates in Hospital Settings in Djibouti
Abstract
:1. Introduction
2. Results
2.1. Sample Culture
2.2. Antibiotic Susceptibility Test (AST)
2.3. Prevalence of ESBL and Carbapenemase Genes
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katale, B.Z.; Misinzo, G.; Mshana, S.E.; Chiyangi, H.; Campino, S.; Clark, T.G.; Good, L.; Rweyemamu, M.M.; Matee, M.I. Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: A review. Antimicrob. Resist. Infect. Control 2020, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Exner, M.; Bhattacharya, S.; Christiansen, B.; Gebel, J.; Goroncy-Bermes, P.; Hartemann, P.; Heeg, P.; Ilschner, C.; Kramer, A.; Larson, E.; et al. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? Antibiotikaresistenz: Was ist so besonders an den Gram-negativen. GMS Hyg. Infect. Control 2017, 12, Doc05. [Google Scholar]
- Schill, F.; Abdulmawjood, A.; Klein, G.; Reich, F. Prevalence and characterization of extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase producing Enterobacteriaceae in fresh pork meat at processing level in Germany. Int. J. Food Microbiol. 2017, 257, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Pop-Vicas, A.; Opal, S.M. The clinical impact of multidrug-resistant gram-negative bacilli in the management of septic shock. Virulence 2014, 5, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Jean, S.-S.; Lee, W.-S.; Lam, C.; Hsu, C.-W.; Chen, R.-J.; Hsueh, P.-R. Carbapenemase-producing Gram-negative bacteria: Current epidemics, antimicrobial susceptibility and treatment options. Future Microbiol. 2015, 10, 407–425. [Google Scholar] [CrossRef] [PubMed]
- Diene, S.M.; Rolain, J.M. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin. Microbiol. Infect. 2014, 20, 831–838. [Google Scholar] [CrossRef] [Green Version]
- Naas, T.; Nordmann, P. Analysis of a carbapenem-hydrolyzing class A beta-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proc. Natl. Acad. Sci. USA 1994, 91, 7693–7697. [Google Scholar] [CrossRef] [Green Version]
- Djahmi, N.; Dunyach-Remy, C.; Pantel, A.; Dekhil, M.; Sotto, A.; Lavigne, J.-P. Epidemiology of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in Mediterranean countries. BioMed Res. Int. 2014, 2014, 305784. [Google Scholar] [CrossRef] [Green Version]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-β-lactamase gene, bla NDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Lee, S.; Teng, L.; Ma, Z.; Hilliard, N.B.; May, R.J.; Brown, S.A.; Yu, F.; Desear, K.E.; Cherabuddi, K.; et al. Dissemination mechanisms of NDM genes in hospitalized patients. JAC—Antimicrob. Resist. 2021, 3, dlab032. [Google Scholar] [CrossRef]
- Dortet, L.; Poirel, L.; Nordmann, P. Worldwide Dissemination of the NDM-Type Carbapenemases in Gram-Negative Bacteria. BioMed Res. Int. 2014, 2014, 249856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loqman, S.; Soraa, N.; Diene, S.M.; Rolain, J.M. Dissemination of Carbapenemases (OXA-48, NDM and VIM) Producing Enterobacteriaceae Isolated from the Mohamed VI University Hospital in Marrakech, Morocco. Antibiotics 2021, 10, 492. [Google Scholar] [CrossRef] [PubMed]
- Leopold, S.J.; van Leth, F.; Tarekegn, H.; Schultsz, C. Antimicrobial drug resistance among clinically relevant bacterial isolates in sub-Saharan Africa: A systematic review. J. Antimicrob. Chemother. 2014, 69, 2337–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siachalinga, L.; Godman, B.; Mwita, J.C.; Sefah, I.A.; Ogunleye, O.O.; Massele, A.; Lee, I.H. Current Antibiotic Use Among Hospitals in the sub-Saharan Africa Region; Findings and Implications. Infect. Drug Resist. 2023, 16, 2179–2190. [Google Scholar] [CrossRef]
- Porter, G.J.; Owens, S.; Breckons, M. A systematic review of qualitative literature on antimicrobial stewardship in Sub-Saharan Africa. Glob. Health Res. Policy 2021, 6, 31. [Google Scholar] [CrossRef]
- Ntirenganya, C.; Manzi, O.; Muvunyi, C.M.; Ogbuagu, O. High prevalence of antimicrobial resistance among common bacterial isolates in a tertiary healthcare facility in Rwanda. Am. J. Trop. Med. Hyg. 2015, 92, 865–870. [Google Scholar] [CrossRef]
- Webale, M.K.; Guyah, B.; Wanjala, C.; Nyanga, P.L.; Webale, S.K.; Abonyo, C.; Kitungulu, N.; Kiboi, N.; Bowen, N. Phenotypic and Genotypic Antibiotic Resistant diarrheagenic Escherichia coli pathotypes isolated from Children with Diarrhea in Nairobi City, Kenya. Ethiop. J. Health Sci. 2020, 30, 881–890. [Google Scholar] [CrossRef]
- Najjuka, C.F.; Kateete, D.P.; Kajumbula, H.M.; Joloba, M.L.; Essack, S.Y. Antimicrobial susceptibility profiles of Escherichia coli and Klebsiella pneumoniae isolated from outpatients in urban and rural districts of Uganda. BMC Res. Notes 2016, 9, 235. [Google Scholar] [CrossRef] [Green Version]
- Nahid, F.; Khan, A.A.; Rehman, S.; Zahra, R. Prevalence of metallo-β-lactamase NDM-1-producing multi-drug resistant bacteria at two Pakistani hospitals and implications for public health. J. Infect. Public Health 2013, 6, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Somily, A.M.; Arshad, M.Z.; Garaween, G.A.; Senok, A.C. Phenotypic and genotypic characterization of extended-spectrum β-lactamases producing Escherichia coli and Klebsiella pneumoniae in a tertiary care hospital in Riyadh, Saudi Arabia. Ann. Saudi Med. 2015, 35, 435–439. [Google Scholar] [CrossRef] [Green Version]
- Tayh, G.; Al Laham, N.; Ben Yahia, H.; Ben Sallem, R.; Elottol, A.E.; Ben Slama, K. Extended-Spectrum β-Lactamases among Enterobacteriaceae Isolated from Urinary Tract Infections in Gaza Strip, Palestine. BioMed Res. Int. 2019, 2019, 4041801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mshana, S.E.; Falgenhauer, L.; Mirambo, M.M.; Mushi, M.F.; Moremi, N.; Julius, R.; Seni, J.; Imirzalioglu, C.; Matee, M.; Chakraborty, T. Predictors of blaCTX-M-15 in varieties of Escherichia coli genotypes from humans in community settings in Mwanza, Tanzania. BMC Infect. Dis. 2016, 16, 187. [Google Scholar] [CrossRef] [Green Version]
- Mushi, M.F.; Mshana, S.E.; Imirzalioglu, C.; Bwanga, F. Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. BioMed Res. Int. 2014, 2014, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, M.A.; Elhag, W.I. Prevalence of metallo-β-lactamase acquired genes among carbapenems susceptible and resistant Gram-negative clinical isolates using multiplex PCR, Khartoum hospitals, Khartoum Sudan. BMC Infect. Dis. 2018, 18, 668. [Google Scholar] [CrossRef]
- Abid, F.B.; Tsui, C.K.M.; Doi, Y.; Deshmukh, A.; McElheny, C.L.; Bachman, W.C.; Fowler, E.L.; Albishawi, A.; Mushtaq, K.; Ibrahim, E.B.; et al. Molecular characterization of clinical carbapenem-resistant Enterobacterales from Qatar. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1779–1785. [Google Scholar] [CrossRef] [PubMed]
- Sonnevend, Á.; Ghazawi, A.A.; Hashmey, R.; Jamal, W.; Rotimi, V.O.; Shibl, A.M.; Al-Jardani, A.; Al-Abri, S.S.; Tariq, W.U.Z.; Weber, S.; et al. Characterization of carbapenem-resistant Enterobacteriaceae with high rate of autochthonous transmission in the Arabian Peninsula. PLoS ONE 2015, 10, e0131372. [Google Scholar] [CrossRef] [PubMed]
- Hashemian, M.; Kazemian, H.; Kaviar, V.H.; Karamolahi, S.; Nazari, A.; Bagheri, M.R.; Sadeghifard, N.; Khoshnood, S. Nosocomial infections and antimicrobial susceptibility patterns among patients admitted to intensive care unit of Imam Khomeini hospital in Ilam, Iran. Mol. Biol. Rep. 2023, 50, 5565–5574. [Google Scholar] [CrossRef]
- Abbasi, E.; Ghaznavi-Rad, E. High frequency of NDM-1 and OXA-48 carbapenemase genes among Klebsiella pneumoniae isolates in central Iran. BMC Microbiol. 2023, 23, 98. [Google Scholar] [CrossRef]
- Poirel, L.; Potron, A.; Nordmann, P. OXA-48-like carbapenemases: The phantom menace. J. Antimicrob. Chemother. 2012, 67, 1597–1606. [Google Scholar] [CrossRef] [Green Version]
- Walsh, T.R. New Delhi metallo-β-lactamase-1: Detection and prevention. Can. Med. Assoc. J. 2011, 183, 1240–1241. [Google Scholar] [CrossRef] [Green Version]
- Pritsch, M.; Zeynudin, A.; Messerer, M.; Baumer, S.; Liegl, G.; Schubert, S.; Löscher, T.; Hoelscher, M.; Belachew, T.; Rachow, A.; et al. First report on bla NDM-1-producing Acinetobacter baumannii in three clinical isolates from Ethiopia. BMC Infect. Dis. 2017, 17, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villinger, D.; Schultze, T.G.; Musyoki, V.M.; Inwani, I.; Aluvaala, J.; Okutoyi, L.; Ziegler, A.H.; Wieters, I.; Stephan, C.; Museve, B.; et al. Genomic transmission analysis of multidrug-resistant Gram-negative bacteria within a newborn unit of a Kenyan tertiary hospital: A four-month prospective colonization study. Front. Cell. Infect. Microbiol. 2022, 12, 1240. [Google Scholar] [CrossRef] [PubMed]
- Gharout-Sait, A.; Alsharapy, S.A.; Brasme, L.; Touati, A.; Kermas, R.; Bakour, S.; Guillard, T.; de Champs, C. Enterobacteriaceae isolates carrying the New Delhi metallo-β-lactamase gene in Yemen. J. Med. Microbiol. 2014, 63, 1316–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Dunlop, K.; Long, S.R.; Li, L. Mass spectrometric methods for generation of protein mass database used for bacterial identification. Anal. Chem. 2002, 74, 3174–3182. [Google Scholar] [CrossRef] [PubMed]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [Green Version]
- EUCAST: Clinical Breakpoints and Dosing of Antibiotics. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 15 June 2022).
- Dortet, L.; Bréchard, L.; Poirel, L.; Nordmann, P. Rapid detection of carbapenemase-producing Enterobacteriaceae from blood cultures. Clin. Microbiol. Infect. 2014, 20, 340–344. [Google Scholar] [CrossRef] [Green Version]
- Nabti, L.Z.; Sahli, F.; Olowo-Okere, A.; Benslama, A.; Harrar, A.; Lupande-Mwenebitu, D.; Diene, S.M.; Rolain, J.-M. Molecular Characterization of Clinical Carbapenem-Resistant Enterobacteriaceae Isolates from Sétif, Algeria. Microb. Drug Resist. 2022, 28, 274–279. [Google Scholar] [CrossRef]
- Kusradze, I.; Diene, S.M.; Goderdzishvili, M.; Rolain, J.M. Molecular detection of OXA carbapenemase genes in multidrug-resistant Acinetobacter baumannii isolates from Iraq and Georgia. Int. J. Antimicrob. Agents 2011, 38, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Roschanski, N.; Fischer, J.; Guerra, B.; Roesler, U. Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type ampcs in enterobacteriaceae. PLoS ONE 2014, 9, e0100956. [Google Scholar] [CrossRef]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.-M. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 2014, 58, 212–220. [Google Scholar] [CrossRef] [Green Version]
Strains | Years | AMX | AMC | FEP | TPZ | CRO | ETP | IPM | FF | F | SXT | AK | CIP | DO | CT | CN | Carbapenemase Genes |
E. coli | 2019 | R | R | R | R | R | R | R | S | R | R | S | R | R | S | R | blaNDM-1 |
E. coli | 2019 | R | R | R | R | R | R | R | S | S | R | S | R | S | S | S | blaNDM-1 |
E. coli | 2020 | R | R | R | R | R | R | R | S | S | R | S | R | S | S | S | blaNDM-5 |
E. coli | 2020 | R | R | R | R | R | R | R | S | R | R | S | R | R | S | S | blaNDM-5 |
E. coli | 2020 | R | R | R | R | R | R | R | S | R | R | S | R | R | S | R | blaNDM-5 |
E. coli | 2020 | R | R | R | R | R | R | S | S | S | S | S | R | R | S | S | blaNDM-5 |
E. coli | 2020 | R | R | R | R | R | R | R | S | S | S | S | R | S | S | S | blaNDM-1 |
E. coli | 2020 | R | R | R | R | R | R | S | S | S | R | S | R | R | S | R | blaOXA-181 |
E. coli | 2020 | R | R | R | R | R | R | R | R | S | R | S | R | R | S | S | blaOXA-181 |
E. coli | 2020 | R | R | R | R | R | R | R | S | S | R | S | R | R | S | S | blaOXA-181 |
E. coli | 2020 | R | R | R | R | R | R | S | S | S | R | S | R | R | S | R | blaOXA-181 |
E. coli | 2020 | R | R | R | R | R | R | R | S | S | R | S | R | R | S | S | blaOXA-181 |
E. coli | 2020 | R | R | R | R | R | R | R | S | S | R | S | R | R | S | S | blaOXA-181 |
K. pneumoniae | 2020 | R | R | R | R | R | R | R | R | R | S | R | R | S | S | S | blaNDM-1 |
K. pneumoniae | 2020 | R | R | R | R | R | R | R | R | R | S | R | R | S | S | S | blaNDM-1 |
P. mirabilis | 2020 | R | R | R | R | R | R | R | R | S | R | S | R | R | R | S | blaNDM-1 |
Scheme | Years | TIC | TCC | TPZ | ATM | CAZ | FEP | MER | IMP | FF | RA | SXT | AK | CIP | DO | CT | CN | Carbapenemase Genes |
A. baumannii | 2020 | R | R | R | R | R | R | R | R | R | R | S | S | S | S | S | S | blaOXA-23 |
A. baumannii | 2020 | R | R | R | R | R | R | R | R | S | R | R | R | R | S | S | R | blaOXA-23, blaNDM-1 |
A. baumannii | 2020 | R | R | R | R | R | R | R | R | S | R | R | R | R | S | S | R | blaOXA-23, blaNDM-1 |
A. baumannii | 2020 | R | R | R | R | R | R | R | R | S | R | R | R | R | S | S | R | blaOXA-23, blaNDM-1 |
E. coli | K. pneumoniae | E. cloacae | A. baumannii | P. mirabilis | Total (n = 228) | |
---|---|---|---|---|---|---|
Single ESBL genes | ||||||
blaCTX-M | 38 | 1 | 3 | 0 | 0 | 42 (18.7%) |
blaTEM | 23 | 0 | 2 | 0 | 0 | 25 (11.6%) |
blaSHV | 0 | 14 | 1 | 0 | 0 | 15 (6.7%) |
Total | 61 | 15 | 6 | 0 | 0 | 82 (36.6%) |
ESBL gene combinations | ||||||
blaCTX-M + blaTEM | 36 | 20 | 4 | 0 | 0 | 60 (26.7%) |
blaCTX-M + blaSHV | 13 | 23 | 0 | 0 | 0 | 36 (16.1%) |
blaCTX-M + blaTEM + blaSHV | 12 | 18 | 0 | 0 | 0 | 30 (13.4%) |
Total | 61 | 61 | 4 | 0 | 0 | 126 (56.2%) |
Carbapenemase genes | ||||||
blaNDM-1 | 3 | 2 | 0 | 0 | 1 | 6 (2.7%) |
blaNDM-5 | 4 | 0 | 0 | 0 | 0 | 4 (1.8%) |
blaOXA-181 | 6 | 0 | 0 | 0 | 0 | 6 (2.7%) |
blaOXA-23 | 0 | 0 | 0 | 1 | 0 | 1 (0.4%) |
blaOXA-23 +blaNDM-1 | 0 | 0 | 0 | 3 | 0 | 3 (1.4%) |
Total | 13 | 2 | 0 | 4 | 1 | 20 (8.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragueh, A.A.; Aboubaker, M.H.; Mohamed, S.I.; Rolain, J.-M.; Diene, S.M. Emergence of Carbapenem-Resistant Gram-Negative Isolates in Hospital Settings in Djibouti. Antibiotics 2023, 12, 1132. https://doi.org/10.3390/antibiotics12071132
Ragueh AA, Aboubaker MH, Mohamed SI, Rolain J-M, Diene SM. Emergence of Carbapenem-Resistant Gram-Negative Isolates in Hospital Settings in Djibouti. Antibiotics. 2023; 12(7):1132. https://doi.org/10.3390/antibiotics12071132
Chicago/Turabian StyleRagueh, Ayan Ali, Mohamed Houmed Aboubaker, Sitani Idriss Mohamed, Jean-Marc Rolain, and Seydina M. Diene. 2023. "Emergence of Carbapenem-Resistant Gram-Negative Isolates in Hospital Settings in Djibouti" Antibiotics 12, no. 7: 1132. https://doi.org/10.3390/antibiotics12071132
APA StyleRagueh, A. A., Aboubaker, M. H., Mohamed, S. I., Rolain, J. -M., & Diene, S. M. (2023). Emergence of Carbapenem-Resistant Gram-Negative Isolates in Hospital Settings in Djibouti. Antibiotics, 12(7), 1132. https://doi.org/10.3390/antibiotics12071132