From Hospital to Community: Exploring Antibiotic Resistance and Genes Associated with Virulence Factor Diversity of Coagulase-Positive Staphylococci
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Specimen Collection and Transport
4.3. Isolation and Identification of Coagulase-Positive and Negative Staphylococcus
4.4. Antimicrobial Susceptibility Testing
4.5. Polymerase Chain Reaction (PCR) Analysis
4.6. Statistical Analysis
4.7. Ethical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bush, L.M.; Vazquez-Pertejo, M.T. Staphylococcal Infections. In MSD Manual Professional Edition. 2023. Available online: https://www.msdmanuals.com/professional/infectious-diseases/gram-positive-cocci/staphylococcal-infections (accessed on 19 June 2023).
- Ikhimiukor, O.O.; Souza, S.S.R.; Marcovici, M.M.; Nye, G.J.; Gibson, R.; Andam, C.P. Leaky barriers to gene sharing between locally co-existing coagulase-negative Staphylococcus species. Commun. Biol. 2023, 6, 482. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Adalbert, J.R.; Varshney, K.; Tobin, R.; Pajaro, R. Clinical outcomes in patients co-infected with COVID-19 and Staphylococcus aureus: A scoping review. BMC Infect. Dis. 2021, 21, 985. [Google Scholar] [CrossRef] [PubMed]
- Mayo Clinic. MRSA infection—Symptoms and Causes. 2021. Available online: https://www.mayoclinic.org/diseases-conditions/mrsa/symptoms-causes/syc-20375336 (accessed on 19 June 2023).
- Willis, J.A.; Cheburkanov, V.; Chen, S.; Soares, J.M.; Kassab, G.; Blanco, K.C.; Bagnato, V.S.; de Figueiredo, P.; Yakovlev, V.V. Breaking down antibiotic resistance in methicillin-resistant Staphylococcus aureus: Combining antimicrobial photodynamic and antibiotic treatments. Proc. Natl. Acad. Sci. USA 2022, 119, e2208378119. [Google Scholar] [CrossRef]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 2018, 4, 18033. [Google Scholar] [CrossRef] [Green Version]
- Aljeldah, M.M. Prevalence of Methicillin-Resistant Staphylococcus aureus (MRSA) in Saudi Arabia: A Systematic Review. J. Pure Appl. Microbiol. 2020, 14, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Dulon, M.; Peters, C.; Schablon, A.; Nienhaus, A. MRSA carriage among healthcare workers in non-outbreak settings in Europe and the United States: A systematic review. BMC Infect. Dis. 2014, 14, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abie, S.; Tiruneh, M.; Abebe, W. Methicillin-resistant Staphylococcus aureus nasal carriage among janitors working in hospital and non-hospital areas: A comparative cross-sectional study. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 47. [Google Scholar] [CrossRef]
- Snitser, O.; Russ, D.; Stone, L.K.; Wang, K.K.; Sharir, H.; Kozer, N.; Cohen, G.; Barr, H.M.; Kishony, R. Ubiquitous selection for mecA in community-associated MRSA across diverse chemical environments. Nat. Commun. 2020, 11, 6038. [Google Scholar] [CrossRef]
- Zhan, X.-Y.; Zhu, Q.-Y. Evolution of methicillin-resistant Staphylococcus aureus: Evidence of positive selection in a penicillin-binding protein (PBP) 2a coding gene mecA. Infect. Genet. Evol. 2018, 59, 16–22. [Google Scholar] [CrossRef]
- Pichon, M.; Micaelo, M.; Rasoanandrasana, S.; Menn, A.-M. Molecular characterization of Staphylococcus aureus isolates derived from severe pneumonia: A retrospective monocentre study. Infect. Dis. 2021, 53, 811–819. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Zhang, H.; Shi, X.; Wang, J.; Li, K.; Liang, J.; Xu, X.; Zhao, W.; Zhao, C. Genomic analysis, antibiotic resistance, and virulence of Staphylococcus aureus from food and food outbreaks: A potential public concern. Int. J. Food Microbiol. 2022, 377, 109825. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.S.; San, T.; Aye, M.M.; Mya, S.; Maw, W.W.; Zan, K.N.; Htut, W.H.W.; Kawaguchiya, M.; Urushibara, N.; Kobayashi, N. Prevalence and Genetic Characteristics of Staphylococcus aureus and Staphylococcus argenteus Isolates Harboring Panton-Valentine Leukocidin, Enterotoxins, and TSST-1 Genes from Food Handlers in Myanmar. Toxins 2017, 9, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesari, M.R.; Salehzadeh, A.; Darsanaki, R.K. Prevalence and molecular typing of methicillin-resistant Staphylococcus aureus carrying Panton–Valentine leukocidin gene. Acta Microbiol. Immunol. Hung. 2017, 65, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Jin, T.; Zhu, Y.L.; Li, J.; Shi, J.; He, X.Q.; Ding, J.; Xu, Y.Q. Staphylococcal Protein A, Panton-Valentine Leukocidin and Coagulase Aggravate the Bone Loss and Bone Destruction in Osteomyelitis. Cell. Physiol. Biochem. 2013, 32, 322–333. [Google Scholar] [CrossRef]
- Siegel, J.D.; Rhinehart, E.; Jackson, M.; Chiarello, L.; Health Care Infection Control Practices Advisory Committee. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings. Am. J. Infect. Control 2007, 35, S65–S164. [Google Scholar] [CrossRef]
- Maree, M.; Nguyen, L.T.T.; Ohniwa, R.L.; Higashide, M.; Msadek, T.; Morikawa, K. Natural transformation allows transfer of SCCmec-mediated methicillin resistance in Staphylococcus aureus biofilms. Nat. Commun. 2022, 13, 2477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Q.; Wang, T.; Xu, N.; Lu, T.; Hong, W.; Penuelas, J.; Gillings, M.; Wang, M.; Gao, W.; et al. Assessment of global health risk of antibiotic resistance genes. Nat. Commun. 2022, 13, 1553. [Google Scholar] [CrossRef]
- Jain, P.; Bepari, A.K.; Sen, P.K.; Rafe, T.; Imtiaz, R.; Hossain, M.; Reza, H.M. High prevalence of multiple antibiotic resistance in clinical E. coli isolates from Bangladesh and prediction of molecular resistance determinants using WGS of an XDR isolate. Sci. Rep. 2021, 11, 22859. [Google Scholar] [CrossRef]
- Vestergaard, M.; Frees, D.; Ingmer, H. Antibiotic Resistance and the MRSA Problem. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Zaman, R.; Dibb, W. Methicillin resistant Staphylococcus aureus (MRSA) isolated in Saudi Arabia: Epidemiology and antimicrobial resistance patterns. J. Hosp. Infect. 1994, 26, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Alrabiah, K.; Al Alola, S.; Al Banyan, E.; Al Shaalan, M.; Al Johani, S. Characteristics and risk factors of hospital acquired—Methicillin-resistant Staphylococcus aureus (HA-MRSA) infection of pediatric patients in a tertiary care hospital in Riyadh, Saudi Arabia. Int. J. Pediatr. Adolesc. Med. 2016, 3, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taha, A.E.; Al-Ruwaili, N.M.; El-Masry, A.E.; Saad, E.A.; Taher, A.I. MRSA as an indicator of infection control measures in Turaif General Hospital, Northern Area-Saudi Arabia. J. Infect. Dev. Ctries. 2022, 16, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Al-Humaidan, O.S.; El-Kersh, T.A.; Al-Akeel, R.A. Risk factors of nasal carriage of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus among health care staff in a teaching hospital in central Saudi Arabia. Saudi Med. J. 2015, 36, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Alghaithy, A.; Bilal, N.; Gedebou, M.; Weily, A. Nasal carriage and antibiotic resistance of Staphylococcus aureus isolates from hospital and non-hospital personnel in Abha, Saudi Arabia. Trans. R. Soc. Trop. Med. Hyg. 2000, 94, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Rajab, A.M.; Al-Khani, A.M.; Ayash, S.Q.; Basha, A.C.; Abdelgadir, A.; Rajab, T.M.; Enabi, S.; Saquib, N. Methicillin-resistant Staphylococcus aureus development in intensive care patients. A case-control study. Saudi Med. J. 2020, 41, 1181–1186. [Google Scholar] [CrossRef]
- Balkhy, H.H.; Memish, Z.A.; Almuneef, M.A.; Cunningham, G.C.; Francis, C.; Fong, K.C.; Nazeer, Z.B.; Tannous, E. Methicillin-Resistant Staphylococcus aureus: A 5-Year Review of Surveillance Data in a Tertiary Care Hospital in Saudi Arabia. Infect. Control. Hosp. Epidemiol. 2007, 28, 976–982. [Google Scholar] [CrossRef]
- Monegro, A.F.; Muppidi, V.; Regunath, H. Hospital-Acquired Infections. [Updated 2023 Feb 12]; In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441857/ (accessed on 19 June 2023).
- Downing, M.A.; Bazzi, M.O.; Vinicky, M.E.; Lampasona, N.V.; Tsvyetayev, O.; Mayrovitz, H.N. Dietary views and habits of students in health professional vs. non-health professional graduate programs in a single university. J. Am. Osteopat. Assoc. 2021, 121, 377–383. [Google Scholar] [CrossRef]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Siddiqui, A.H.; Koirala, J. Methicillin-Resistant Staphylococcus aureus. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482221/ (accessed on 19 June 2023).
- CDC. Laboratory Detection of: Oxacillin/Methicillin-Resistant Staphylococcus aureus. 2019. Available online: https://www.cdc.gov/hai/settings/lab/lab_mrsa.html (accessed on 19 June 2023).
- Palavecino, E.L. Clinical, Epidemiologic, and Laboratory Aspects of Methicillin-Resistant Staphylococcus aureus Infections. Methods Mol. Biol. 2019, 2069, 1–28. [Google Scholar] [CrossRef]
- Madani, T.A.; Al-Abdullah, N.A.; Al-Sanousi, A.A.; Ghabrah, T.M.; Afandi, S.Z.; Bajunid, H.A. Methicillin-ResistantStaphylococcus aureus in Two Tertiary-Care Centers in Jeddah, Saudi Arabia. Infect. Control. Hosp. Epidemiology 2001, 22, 211–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konstantinovski, M.M.; Veldkamp, K.E.; Lavrijsen, A.P.M.; Bosch, T.; Kraakman, M.E.M.; Nooij, S.; Claas, E.C.J.; Gooskens, J. Hospital transmission of borderline oxacillin-resistant Staphylococcus aureus evaluated by whole-genome sequencing. J. Med. Microbiol. 2021, 70, 001384. [Google Scholar] [CrossRef]
- Tsouklidis, N.; Kumar, R.; Heindl, S.E.; Soni, R.; Khan, S. Understanding the Fight Against Resistance: Hospital-Acquired Methicillin-Resistant Staphylococcus Aureus vs. Community-Acquired Methicillin-Resistant Staphylococcus aureus. Cureus 2020, 12, e8867. [Google Scholar] [CrossRef] [PubMed]
- Cella, M.A.; Coulson, T.; MacEachern, S.; Badr, S.; Ahmadi, A.; Tabatabaei, M.S.; Labbe, A.; Griffiths, M.W. Probiotic disruption of quorum sensing reduces virulence and increases cefoxitin sensitivity in methicillin-resistant Staphylococcus aureus. Sci. Rep. 2023, 13, 4373. [Google Scholar] [CrossRef] [PubMed]
- Qodrati, M.; SeyedAlinaghi, S.; Manshadi, S.A.D.; Abdollahi, A.; Dadras, O. Antimicrobial susceptibility testing of Staphylococcus aureus isolates from patients at a tertiary hospital in Tehran, Iran, 2018–2019. Eur. J. Med. Res. 2022, 27, 152. [Google Scholar] [CrossRef]
- Shahid, A.H.; Nazir, K.N.H.; El Zowalaty, M.E.; Kabir, A.; Sarker, S.A.; Siddique, M.P.; Ashour, H.M. Molecular detection of vancomycin and methicillin resistance in Staphylococcus aureus isolated from food processing environments. One Health 2021, 13, 100276. [Google Scholar] [CrossRef]
- Salas, M.; Wernecki, M.; Fernández, L.; Iglesias, B.; Gutiérrez, D.; Álvarez, A.; García, L.; Prieto, E.; García, P.; Rodríguez, A. Characterization of Clinical MRSA Isolates from Northern Spain and Assessment of Their Susceptibility to Phage-Derived Antimicrobials. Antibiotics 2020, 9, 447. [Google Scholar] [CrossRef]
- Ferreira, C.; Costa, S.S.; Serrano, M.; Oliveira, K.; Trigueiro, G.; Pomba, C.; Couto, I. Clonal Lineages, Antimicrobial Resistance, and PVL Carriage of Staphylococcus aureus Associated to Skin and Soft-Tissue Infections from Ambulatory Patients in Portugal. Antibiotics 2021, 10, 345. [Google Scholar] [CrossRef]
- Isozumi, R.; Ito, Y.; Ishida, T.; Osawa, M.; Hirai, T.; Ito, I.; Maniwa, K.; Hayashi, M.; Kagioka, H.; Hirabayashi, M.; et al. Genotypes and Related Factors Reflecting Macrolide Resistance in Pneumococcal Pneumonia Infections in Japan. J. Clin. Microbiol. 2007, 45, 1440–1446. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Xu, Y.; Zhao, H.; Wang, X.; Rao, L.; Guo, Y.; Yi, X.; Hu, L.; Chen, S.; Han, L.; et al. Methicillin-resistant Staphylococcus aureus in China: A multicentre longitudinal study and whole-genome sequencing. Emerg. Microbes Infect. 2022, 11, 532–542. [Google Scholar] [CrossRef]
- Omar, N.Y.; Ali, H.A.S.; Harfoush, R.A.H.; El Khayat, E.H. Molecular typing of methicillin resistant Staphylococcus aureus clinical isolates on the basis of protein A and coagulase gene polymorphisms. Int. J. Microbiol. 2014, 2014, 650328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, J.; Raisen, C.L.; Ba, X.; Sadgrove, N.J.; Padilla-González, G.F.; Simmonds, M.S.J.; Loncaric, I.; Kerschner, H.; Apfalter, P.; Hartl, R.; et al. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 2022, 602, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Z.; Chen, M.; Lin, Q.; Ye, Y.; Fan, H.; Wen, K.; Zeng, J.; Huang, D.; Mo, W.; Lei, Y.; et al. Identification of Methicillin-Resistant Staphylococcus aureus From Methicillin-Sensitive Staphylococcus aureus and Molecular Characterization in Quanzhou, China. Front. Cell Dev. Biol. 2021, 9, 629681. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, M100, 28th ed.; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2018. [Google Scholar]
- Kotilainen, P.; Routamaa, M.; Peltonen, R.; Oksi, J.; Rintala, E.; Meurman, O.; Lehtonen, O.P.; Eerola, E.; Salmenlinna, S.; Vuopio-Varkila, J.; et al. Elimination of epidemic methicillin-resistant Staphylococcus aureus from a university hospital and district institutions, Finland. Emerg. Infect. Dis. 2003, 9, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Ruaily, M.A.; Khalil, O.M. Detection of (mecA) gene in methicillin-resistant Staphylococcus aureus (MRSA) at Prince a/Rhman Sidery hospital, al-Jouf, Saudi Arabia. J. Med. Genet. Genom. 2011, 3, 41–45. [Google Scholar]
- Milheiriço, C.; Oliveira, D.C.; de Lencastre, H. Update to the Multiplex PCR Strategy for Assignment of mec Element Types in Staphylococcus aureus. Antimicrob. Agents Chemother. 2007, 51, 3374–3377. [Google Scholar] [CrossRef] [Green Version]
- Vannuffel, P.; Gigi, J.; Ezzedine, H.; Vandercam, B.; Delmee, M.; Wauters, G.; Gala, J.L. Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR. J. Clin. Microbiol. 1995, 33, 2864–2867. [Google Scholar] [CrossRef] [Green Version]
- Mehndiratta, P.; Bhalla, P.; Ahmed, A.; Sharma, Y. Molecular typing of methicillin-resistant Staphylococcus aureus strains by pcr-rflp of spa gene: A reference laboratory perspective. Indian J. Med. Microbiol. 2009, 27, 116–122. [Google Scholar] [CrossRef]
- Heilmann, C.; Hartleib, J.; Hussain, M.S.; Peters, G. The multifunctional Staphylococcus aureus autolysin aaa mediates adherence to immobilized fibrinogen and fibronectin. Infect. Immun. 2005, 73, 4793–4802. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, C.R.; Woods, K.M.; Longo, G.M.; Kiedrowski, M.R.; Paharik, A.E.; Büttner, H.; Christner, M.; Boissy, R.J.; Horswill, A.R.; Rohde, H.; et al. Accumulation-associated protein enhances staphylococcus epidermidis biofilm formation under dynamic conditions and is required for infection in a rat catheter model. Infect. Immun. 2015, 83, 214–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srednik, M.E.; Tremblay, Y.D.N.; Labrie, J.; Archambault, M.; Jacques, M.; Cirelli, A.F.; Gentilini, E.R.; Alicia, F.C. Biofilm formation and antimicrobial resistance genes of coagulase-negative staphylococci isolated from cows with mastitis in Argentina. FEMS Microbiol. Lett. 2017, 364, fnx001. [Google Scholar] [CrossRef] [PubMed]
- Arciola, C.R.; Baldassarri, L.; Montanaro, L. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J. Clin. Microbiol. 2001, 39, 2151–2156. [Google Scholar] [CrossRef] [Green Version]
- McClure, J.-A.; Conly, J.M.; Lau, V.; Elsayed, S.; Louie, T.; Hutchins, W.; Zhang, K. Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton-Valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from resistant staphylococci. J. Clin. Microbiol. 2006, 44, 1141–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Non-Hospital Personnel (NHP) n (%) | Hospital Personnel (HP) n (%) | Total n (%) | p-Value | |
---|---|---|---|---|
Number of participants | 117 (58.5) | 83 (41.5) | 200 (100) | 0.007 |
Bacterial isolation | ||||
Staphylococcus aureus (CoPS) | 13 (6.5) | 11 (5.5) | 24 (12) | 0.055 |
Coagulase-negative staphylococci (CoNS) | 12 (6) | 48 (24) | 60 (30) | 0.240 |
CoPS and CoNS | 91 (45.5) | 18 (9) | 109 (54.5) | 0.090 |
Other bacteria | 0 | 1 (0.5) | 1 (0.5) | 0.005 |
No bacterial growth | 1 (0.5) | 5 (2.5) | 6 (3) | 0.025 |
Variables | NHP-CoPS (n = 104) [n (%)] | HP-CoPS (n = 29) [n (%)] | p-Value |
---|---|---|---|
E-Test Method (MIC): | |||
Oxacillin | 0.20 | ||
Resistance | 20 (19.2%) | 10 (34.5%) | |
Intermediate | 12 (11.5%) | 2 (6.9%) | |
Sensitive | 72 (69.2%) | 17 (58.6%) | |
β-Lactam Antibiotics: | |||
FOX30 | 0.03 | ||
Resistance | 30 (28.9%) | 11 (38.5%) | |
Intermediate | 15 (14.4%) | 9 (30.8%) | |
Sensitive | 59 (56.7%) | 9 (30.8%) | |
P10 | <0.00001 | ||
Resistance | 104 (100%) | 29 (100%) | |
Intermediate | 0 | 0 | |
Sensitive | 0 | 0 | |
Non-β-Lactam Antibiotics: | |||
VA30 | 0.01 | ||
Resistance | 0 | 0 | |
Intermediate | 5 (4.8%) | 13 (46.2%) | |
Sensitive | 99 (95.2%) | 16 (55.2%) | |
CC2 | <0.00001 | ||
Resistance | 10 (9.6%) | 0 | |
Intermediate | 10 (9.6%) | 0 | |
Sensitive | 84 (81%) | 29 (100%) | |
SXT25 | <0.00001 | ||
Resistance | 0 | 0 | |
Intermediate | 0 | 0 | |
Sensitive | 104 (100%) | 29 (100%) | |
RA25 | 0.001 | ||
Resistance | 5 (4.8%) | 0 | |
Intermediate | 0 | 0 | |
Sensitive | 99 (95.2%) | 29 (100%) | |
SYN15 | <0.00001 | ||
Resistance | 0 | 0 | |
Intermediate | 0 | 0 | |
Sensitive | 104 (100%) | 29 (100%) |
Gene | NHP-MRSA n = 30 | HP-MRSA n = 11 | Total n = 41 |
---|---|---|---|
| |||
mec genes | |||
mecA (300 bp) | 25 (83.3%) | 9 (81.8%) | 34 (82.9%) |
SCCmecII (495 bp) | 0 | 0 | 0 |
SCCmecVIa (21–67 bp) | 0 | 0 | 0 |
SCCmecVIb (21–67 bp) | 25 (83.3%) | 9 (81.8%) | 34 (82.9%) |
NHP-MRSA n = 25 | HP-MRSA n = 9 | Total n = 34 | |
| |||
coa gene | |||
coa (81 bp) | 25 (100%) | 9 (100%) | 34 (100%) |
coa (120 bp) | 1 (4%) | 4 (44.4%) | 5 (14.7%) |
coa (400 bp) | 0 | 2 (22.2%) | 2 (5.9%) |
coa (720 bp) | 2 (8%) | 2 (22.2%) | 4 (11.8%) |
Spa gene | |||
spa (800 bp) | 0 | 3 (33.3%) | 3 (8.8%) |
spa (1020 bp) | 0 | 1 (11.1%) | 1 (2.9%) |
spa (1100 bp) | 16 (64%) | 3 (33.3%) | 19 (55.9%) |
spa (1120 bp) | 0 | 1 (11.1%) | 1 (2.9%) |
Other genes | |||
aae (110 bp) | 0 | 2 (22%) | 2 (5.9%) |
aae (220 bp) | 6 (24%) | 0 | 6 (17.7%) |
aap (180 bp) | 6 (24%) | 0 | 6 (17.7%) |
aap (200 bp) | 6 (24%) | 0 | 6 (17.7%) |
aap (300 bp) | 6 (24%) | 0 | 6 (17.7%) |
aap (460 bp) | 6 (24%) | 0 | 6 (17.7%) |
aap (480 bp) | 6 (24%) | 0 | 6 (17.7%) |
emb (50 bp) | 25 (100%) | 9 (100%) | 34 (100%) |
emb (480 bp) | 6 (24%) | 0 | 6 (17.7%) |
IcaD (100 bp) | 0 | 1 (11.1%) | 1 (2.9%) |
IcaD (200 bp) | 13 (44.8%) | 3 (33.3%) | 16 (47.1%) |
Luk-PV (433 bp) |
Gene | Primers | Size | PCR Conditions | References | ||
---|---|---|---|---|---|---|
mecA | F 5′-TGGCTATCGTGTCACAATCG-3′ R 5′-CTGGAACTTGTTGAGCAGAG-3′ | 300 bp | 95 °C → 5 min 95 °C → 30 s 56 °C → 40 s 72 °C → 45 s 72 °C → 10 min 4 °C → ∞ | 35× | [52] | |
SCCmecII | F 5′-CAAAAGGACTGGACTGGAGTCCAAA-3′ R 5′-CAAGTGAATTGAAACCGCCT-3′ | 287 bp | [53] | |||
SCCmecVIa | F 5′-TTTGAATGCCCTCCATGAATAAAAT-3′ R 5′-AGAAAAGATAGAAGTTCGAAAGA-3′ | 776 bp | ||||
SCCmecVIb | F 5′-AGTACATTTTATCTTTGCGTA-3′ R 5′-AGTCATCTTCAATATCGAGAAAGTA-3′ | 1000 bp | ||||
coa | F 5′-CGAGACCAAGATTCAACAAG-3′ R 5′-AAAGAAAACCACTCACATCA-3′ | 81–720 bp | 95 °C → 2 min 95 °C → 30 s 58 °C → 2 min 72 °C → 2 min 72 °C → 10 min 4 °C → ∞ | 30× | [54] | |
spa | F 5′-ATCTGGTGGCGTAACACCTG-3′ R 5′-CGCTGCACCTAACGCTAATG-3′ | 800–1120 bp | 95 °C → 5 min 95 °C → 30 s 56 °C → 40 s 72 °C → 45 s 72 °C → 10 min 4 °C → ∞ | 35× | [55] | |
aae | F 5′-AACAAATTGATAAAGCAACG-3′ R 5′-GTTGTCTTTCCTTTAGTGTC-3′ | 110 and 220 bp | 95 °C → 10 min 95 °C → 10 s 55 °C → 20 s 72 °C → 25 s 72 °C → 10 min 4 °C → ∞ | 45× | [56] | |
aap | F 5′-TCACTAAACAACCTGTTGACG AA-3′ R 5′-AATTGATTTTTATTATCTGTTGAA TGC-3′ | 180–480 bp | [57] | |||
emb | F 5′-AGCGGTACAAATGTCAATATC-3′ R 5′-AGAAGTGCTCTAGCATCATCC-3′ | 50–480 bp | 96 °C → 2 min 94 °C → 1 min 55 °C → 30 s 72 °C → 1 min 72 °C → 10 min 4 °C → ∞ | 40× | [58] | |
IcaD | F 5′-ATGGTCAAGCCCAGACAGAG-3′ R 5′-CGTGTTTTCAACATTTAATGCAA-3′ | 100–200 bp | 94 °C → 5 min 94 °C → 30 s 55 °C → 30 s 72 °C → 30 s 72 °C → 1 min 4 °C → ∞ | 50× | [59] | |
Luk-PV | F 5′-ATCATTAGGTAAAATGTCTGGACATGATCCA-3′ R 5′-GCATCAACTGTATTGGATAGCAAAAGC-3′ | 433 bp | 95 °C → 5 min 95 °C → 30 s 55 °C → 40 s 72 °C → 45 s 72 °C → 10 min 4 °C → ∞ | 35× | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aqel, H.; Sannan, N.; Foudah, R. From Hospital to Community: Exploring Antibiotic Resistance and Genes Associated with Virulence Factor Diversity of Coagulase-Positive Staphylococci. Antibiotics 2023, 12, 1147. https://doi.org/10.3390/antibiotics12071147
Aqel H, Sannan N, Foudah R. From Hospital to Community: Exploring Antibiotic Resistance and Genes Associated with Virulence Factor Diversity of Coagulase-Positive Staphylococci. Antibiotics. 2023; 12(7):1147. https://doi.org/10.3390/antibiotics12071147
Chicago/Turabian StyleAqel, Hazem, Naif Sannan, and Ramy Foudah. 2023. "From Hospital to Community: Exploring Antibiotic Resistance and Genes Associated with Virulence Factor Diversity of Coagulase-Positive Staphylococci" Antibiotics 12, no. 7: 1147. https://doi.org/10.3390/antibiotics12071147
APA StyleAqel, H., Sannan, N., & Foudah, R. (2023). From Hospital to Community: Exploring Antibiotic Resistance and Genes Associated with Virulence Factor Diversity of Coagulase-Positive Staphylococci. Antibiotics, 12(7), 1147. https://doi.org/10.3390/antibiotics12071147