Diflunisal and Analogue Pharmacophores Mediating Suppression of Virulence Phenotypes in Staphylococcus aureus
Abstract
:1. Introduction
2. Results
2.1. Selection of Staphylococcus aureus Strains
2.2. Selection of DIF Analogues
2.3. Impact of DIF and Analogues on Antibiotic Susceptibility
2.4. Impact on Virulence Phenotypes
3. Discussion
4. Materials and Methods
4.1. Staphylococcus aureus Strains
4.2. Antibiotics and Study Compounds
4.3. Growth Rate
4.4. Minimum Inhibitory Concentration
4.5. Hemolysis Assay
4.6. Proteolysis Assay
4.7. Biofilm Assay
4.8. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, L.C.; Park, M.; Lee, H.K.; Chaili, S.; Xiong, Y.Q.; Bayer, A.S.; Proctor, R.A.; Yeaman, M.R. Diflunisal Attenuates Virulence Factor Gene Regulation and Phenotypes in Staphylococcus aureus. Antibiotics 2023, 12, 902. [Google Scholar] [CrossRef]
- Park, M.; Bayer, A.S.; Yount, N.; Yang, S.J.; Xiong, Y.Q.; Yeaman, M.R. Modulation of Virulence Gene Expression in Staphylococcus aureus Using Salicylate Analogues. In Proceedings of the 49th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, USA, 12–15 September 2009. [Google Scholar]
- Yeaman, M.R.; Bayer, A.S. Anti-Infective Hydroxy-Phenyl-Benzoates and Methods of Use. U.S. Patent 9,205,097 B2, 8 December 2015. LA BioMedical Research Institute at Harbor-UCLA Medical Center: Torrance, CA, USA, 2014. [Google Scholar]
- Yeaman, M.R.; Bayer, A.S. Anti-Infective Hydroxy-Phenyl-Benzoates and Methods of Use. U.S. Patent 8,809,263 B2, 19 August 2014. Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center: Torrance, CA, USA, 2014. [Google Scholar]
- Yeaman, M.R.; Bayer, A.S. Anti-Infective Hydroxy-Phenyl-Benzoates and Methods of Use. U.S. Patent 9,585,897 B2, 7 March 2017. LA BioMedical Research Institute at Harbor-UCLA Medical Center: Torrance, CA, USA, 2017. [Google Scholar]
- Kupferwasser, L.I.; Yeaman, M.R.; Nast, C.C.; Kupferwasser, D.; Xiong, Y.Q.; Palma, M.; Cheung, A.L.; Bayer, A.S. Salicylic acid attenuates virulence in endovascular infections by targeting global regulatory pathways in Staphylococcus aureus. J. Clin. Investig. 2003, 112, 222–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kupferwasser, L.I.; Yeaman, M.R.; Shapiro, S.M.; Nast, C.C.; Sullam, P.M.; Filler, S.G.; Bayer, A.S. Acetylsalicylic acid reduces vegetation bacterial density, hematogenous bacterial dissemination, and frequency of embolic events in experimental Staphylococcus aureus endocarditis through antiplatelet and antibacterial effects. Circulation 1999, 99, 2791–2797. [Google Scholar] [CrossRef] [Green Version]
- Muller, E.; Al-Attar, J.; Wolff, A.G.; Farber, B.F. Mechanism of salicylate-mediated inhibition of biofilm in Staphylococcus epidermidis. J. Infect. Dis. 1998, 177, 501–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolau, D.P.; Marangos, M.N.; Nightingale, C.H.; Quintiliani, R. Influence of aspirin on development and treatment of experimental Staphylococcus aureus endocarditis. Antimicrob. Agents Chemother. 1995, 39, 1748–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolau, D.P.; Tessier, P.R.; Nightingale, C.H. Beneficial effect of combination antiplatelet therapy on the development of experimental Staphylococcus aureus endocarditis. Int. J. Antimicrob. Agents 1999, 11, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Palma, M.; Bayer, A.; Kupferwasser, L.I.; Joska, T.; Yeaman, M.R.; Cheung, A. Salicylic acid activates sigma factor B by rsbU-dependent and -independent mechanisms. J. Bacteriol. 2006, 188, 5896–5903. [Google Scholar] [CrossRef] [Green Version]
- Riordan, J.T.; O’Leary, J.O.; Gustafson, J.E. Contributions of sigB and sarA to distinct multiple antimicrobial resistance mechanisms of Staphylococcus aureus. Int. J. Antimicrob. Agents 2006, 28, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Polzin, A.; Dannenberg, L.; M’Pembele, R.; Mourikis, P.; Naguib, D.; Zako, S.; Helten, C.; Petzold, T.; Levkau, B.; Hohlfeld, T.; et al. Staphylococcus aureus increases platelet reactivity in patients with infective endocarditis. Sci. Rep. 2022, 12, 12933. [Google Scholar] [CrossRef] [PubMed]
- Nicolau, D.P.; Freeman, C.D.; Nightingale, C.H.; Quintiliani, R.; Coe, C.J.; Maderazo, E.G.; Cooper, B.W. Reduction of bacterial titers by low-dose aspirin in experimental aortic valve endocarditis. Infect. Immun. 1993, 61, 1593–1595. [Google Scholar] [CrossRef] [Green Version]
- Hannachi, N.; Habib, G.; Camoin-Jau, L. Aspirin Effect on Staphylococcus aureus-Platelet Interactions During Infectious Endocarditis. Front. Med. 2019, 6, 217. [Google Scholar] [CrossRef] [Green Version]
- Veloso, T.R.; Que, Y.A.; Chaouch, A.; Giddey, M.; Vouillamoz, J.; Rousson, V.; Moreillon, P.; Entenza, J.M. Prophylaxis of experimental endocarditis with antiplatelet and antithrombin agents: A role for long-term prevention of infective endocarditis in humans? J. Infect. Dis. 2015, 211, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Eisen, D.P.; Corey, G.R.; McBryde, E.S.; Fowler, V.G., Jr.; Miro, J.M.; Cabell, C.H.; Street, A.C.; Paiva, M.G.; Ionac, A.; Tan, R.S.; et al. Reduced valve replacement surgery and complication rate in Staphylococcus aureus endocarditis patients receiving acetyl-salicylic acid. J. Infect. 2009, 58, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Sedlacek, M.; Gemery, J.M.; Cheung, A.L.; Bayer, A.S.; Remillard, B.D. Aspirin treatment is associated with a significantly decreased risk of Staphylococcus aureus bacteremia in hemodialysis patients with tunneled catheters. Am. J. Kidney Dis. 2007, 49, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Osthoff, M.; Sidler, J.A.; Lakatos, B.; Frei, R.; Dangel, M.; Weisser, M.; Battegay, M.; Widmer, A.F. Low-Dose Acetylsalicylic Acid Treatment and Impact on Short-Term Mortality in Staphylococcus aureus Bloodstream Infection: A Propensity Score-Matched Cohort Study. Crit. Care Med. 2016, 44, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Eisen, D.P. Manifold beneficial effects of acetyl salicylic acid and nonsteroidal anti-inflammatory drugs on sepsis. Intensive Care Med. 2012, 38, 1249–1257. [Google Scholar] [CrossRef]
- Dotto, C.; Lombarte Serrat, A.; Ledesma, M.; Vay, C.; Ehling-Schulz, M.; Sordelli, D.O.; Grunert, T.; Buzzola, F. Salicylic acid stabilizes Staphylococcus aureus biofilm by impairing the agr quorum-sensing system. Sci. Rep. 2021, 11, 2953. [Google Scholar] [CrossRef]
- Sun, F.; Zhou, L.; Zhao, B.C.; Deng, X.; Cho, H.; Yi, C.; Jian, X.; Song, C.X.; Luan, C.H.; Bae, T.; et al. Targeting MgrA-mediated virulence regulation in Staphylococcus aureus. Chem. Biol. 2011, 18, 1032–1041. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, L.P.; Barbagelata, M.S.; Gordiola, M.; Cheung, A.L.; Sordelli, D.O.; Buzzola, F.R. Salicylic acid diminishes Staphylococcus aureus capsular polysaccharide type 5 expression. Infect. Immun. 2010, 78, 1339–1344. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, M. Salicylic acid: An old dog, new tricks, and staphylococcal disease. J. Clin. Investig. 2003, 112, 149–151. [Google Scholar] [CrossRef]
- Khodaverdian, V.; Pesho, M.; Truitt, B.; Bollinger, L.; Patel, P.; Nithianantham, S.; Yu, G.; Delaney, E.; Jankowsky, E.; Shoham, M. Discovery of antivirulence agents against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2013, 57, 3645–3652. [Google Scholar] [CrossRef] [Green Version]
- Leonard, P.G.; Bezar, I.F.; Sidote, D.J.; Stock, A.M. Identification of a hydrophobic cleft in the LytTR domain of AgrA as a locus for small molecule interactions that inhibit DNA binding. Biochemistry 2012, 51, 10035–10043. [Google Scholar] [CrossRef] [Green Version]
- Sully, E.K.; Malachowa, N.; Elmore, B.O.; Alexander, S.M.; Femling, J.K.; Gray, B.M.; DeLeo, F.R.; Otto, M.; Cheung, A.L.; Edwards, B.S.; et al. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog. 2014, 10, e1004174. [Google Scholar] [CrossRef]
- Miller, L.G.; Perdreau-Remington, F.; Rieg, G.; Mehdi, S.; Perlroth, J.; Bayer, A.S.; Tang, A.W.; Phung, T.O.; Spellberg, B. Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N. Engl. J. Med. 2005, 352, 1445–1453. [Google Scholar] [CrossRef] [Green Version]
- Baba, T.; Takeuchi, F.; Kuroda, M.; Yuzawa, H.; Aoki, K.; Oguchi, A.; Nagai, Y.; Iwama, N.; Asano, K.; Naimi, T.; et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 2002, 359, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, K.; Aritaka, N.; Hanaki, H.; Kawasaki, S.; Hosoda, Y.; Hori, S.; Fukuchi, Y.; Kobayashi, I. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 1997, 350, 1670–1673. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; 27th Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Archer, N.K.; Mazaitis, M.J.; Costerton, J.W.; Leid, J.G.; Powers, M.E.; Shirtliff, M.E. Staphylococcus aureus biofilms: Properties, regulation, and roles in human disease. Virulence 2011, 2, 445–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, H.; Rudkin, J.K.; Black, N.S.; Gallagher, L.; O’Neill, E.; O’Gara, J.P. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front. Cell Infect. Microbiol. 2015, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doster, R.S.; Kirk, L.A.; Tetz, L.M.; Rogers, L.M.; Aronoff, D.M.; Gaddy, J.A. Staphylococcus aureus Infection of Human Gestational Membranes Induces Bacterial Biofilm Formation and Host Production of Cytokines. J. Infect. Dis. 2017, 215, 653–657. [Google Scholar] [CrossRef] [Green Version]
- Baudoin, J.P.; Camoin-Jau, L.; Prasanth, A.; Habib, G.; Lepidi, H.; Hannachi, N. Ultrastructure of a late-stage bacterial endocarditis valve vegetation. J. Thromb. Thrombolysis 2021, 51, 821–826. [Google Scholar] [CrossRef]
- Kwiecinski, J.M.; Jacobsson, G.; Horswill, A.R.; Josefsson, E.; Jin, T. Biofilm formation by Staphylococcus aureus clinical isolates correlates with the infection type. Infect Dis. 2019, 51, 446–451. [Google Scholar] [CrossRef]
- Hsu, C.C.; Hsu, R.B.; Ohniwa, R.L.; Chen, J.W.; Yuan, C.T.; Chia, J.S.; Jung, C.J. Neutrophil Extracellular Traps Enhance Staphylococcus aureus Vegetation Formation through Interaction with Platelets in Infective Endocarditis. Thromb. Haemost. 2019, 119, 786–796. [Google Scholar] [CrossRef]
- Spoonmore, T.J.; Ford, C.A.; Curry, J.M.; Guelcher, S.A.; Cassat, J.E. Concurrent Local Delivery of Diflunisal Limits Bone Destruction but Fails to Improve Systemic Vancomycin Efficacy during Staphylococcus aureus Osteomyelitis. Antimicrob. Agents Chemother. 2020, 64, e00182-20. [Google Scholar] [CrossRef]
- Greenberg, G.N. Recurrent sulindac-induced aseptic meningitis in a patient tolerant to other nonsteroidal anti-inflammatory drugs. South. Med. J. 1988, 81, 1463–1464. [Google Scholar] [CrossRef] [PubMed]
- Carestia, A.; Davis, R.P.; Grosjean, H.; Lau, M.W.; Jenne, C.N. Acetylsalicylic acid inhibits intravascular coagulation during Staphylococcus aureus-induced sepsis in mice. Blood 2020, 135, 1281–1286. [Google Scholar] [CrossRef]
- Oliveira, I.M.; Borges, A.; Borges, F.; Simões, M. Repurposing ibuprofen to control Staphylococcus aureus biofilms. Eur. J. Med. Chem. 2019, 166, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Varma, G.Y.N.; Kummari, G.; Paik, P.; Kalle, A.M. Celecoxib potentiates antibiotic uptake by altering membrane potential and permeability in Staphylococcus aureus. J. Antimicrob. Chemother. 2019, 74, 3462–3472. [Google Scholar] [CrossRef]
- Carta, D.; Brun, P.; Dal Pra, M.; Bernabè, G.; Castagliuolo, I.; Ferlin, M.G. Synthesis and preliminary anti-inflammatory and anti-bacterial evaluation of some diflunisal aza-analogs. Medchemcomm 2018, 9, 1017–1032. [Google Scholar] [CrossRef]
- Ford, C.A.; Spoonmore, T.J.; Gupta, M.K.; Duvall, C.L.; Guelcher, S.A.; Cassat, J.E. Diflunisal-loaded poly(propylene sulfide) nanoparticles decrease S. aureus-mediated bone destruction during osteomyelitis. J. Orthop. Res. 2021, 39, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Palaniappan, B.; Solomon, A.P. Targeting AgrA quorum sensing regulator by bumetanide attenuates virulence in Staphylococcus aureus—A drug repurposing approach. Life Sci. 2021, 273, 119306. [Google Scholar] [CrossRef]
Strain | Description | Reference |
---|---|---|
SH1000 | Laboratory strain 8325-4 with repaired rsbU mutation | American Type Culture Collection |
COL | Original MRSA reference strain | American Type Culture Collection |
LAC | CA-MRSA USA300 isolate; Los Angeles County | [28] |
MW2 | CA-MRSA USA400 isolate | [29] |
Mu3 | Vancomycin-intermediate MRSA (VISA) | [30] |
Mu50 | Vancomycin-intermediate MRSA (VISA) | [30] |
C15 | Daptomycin-susceptible MRSA (DSSA) | Present study |
C16 | Daptomycin-non-susceptible MRSA (DNSA) | Present study |
Name | Compound Name | M.W | Phenyl Group (Position) | Halogen (Position) | Aromatic Compound |
---|---|---|---|---|---|
DIF | 2-hydroxy-5-(2,4-difluorophenyl) benzoic acid | 250.2 | Difluorophenyl (5) | FI (2, 4) | Benzoic acid |
OHPB1 | 2-Hydroxy-4-phenylbenzoic acid | 214.2 | None (4) | NA | Benzoic acid |
OHPB2 | 2-Hydroxy-5-phenylbenzoic acid | 214.2 | None (5) | NA | Benzoic acid |
FPB1 | 4-(2-fluorophenyl) benzoic acid | 216.2 | Fluorophenyl (4) | FI (2) | Benzoic acid |
dFPB1 | 3-(2,4-difluorophenyl) benzoic acid | 234.2 | Difluorophenyl (3) | FI (2, 4) | Benzoic acid |
dFPB2 | 4-(2,4-difluorophenyl) benzoic acid | 234.2 | Difluorophenyl (4) | FI (2, 4) | Benzoic acid |
dFPB3 | 2-(3,4-difluorophenyl) benzoic acid | 234.2 | Difluorophenyl (2) | FI (3, 4) | Benzoic acid |
dFPB4 | 4-(3,4-difluorophenyl) benzoic acid | 234.2 | Difluorophenyl (4) | FI (3, 5) | Benzoic acid |
dFPB5 | 4-(2,3-difluorophenyl) benzoic acid | 234.2 | Difluorophenyl (4) | FI (2, 3) | Benzoic acid |
dFPB6 | 4-(2,5-difluorophenyl) benzoic acid | 234.2 | Difluorophenyl (4) | FI (2, 6) | Benzoic acid |
dFPP1 | 3-(2,4-difluorophenyl) phenol | 206.2 | Difluorophenyl (3) | FI (2, 4) | Phenol |
dFPP2 | 3-(2,3-difluorophenyl) phenol | 206.2 | Difluorophenyl (3) | FI (2, 3) | Phenol |
dCPB1 | 2-(3,5-dichlorophenyl) benzoic acid | 267.1 | Dichlorophenyl (2) | Cl (3, 5) | Benzoic acid |
dCPB2 | 3-(3,5-dichlorophenyl) benzoic acid | 267.1 | Dichlorophenyl (3) | Cl (3, 5) | Benzoic acid |
dCPB3 | 4-(3,5-dichlorophenyl) benzoic acid | 267.1 | Dichlorophenyl (4) | Cl (3, 5) | Benzoic acid |
dCPB4 | 4-(2,3-dichlorophenyl) benzoic acid | 267.1 | Dichlorophenyl (3) | Cl (2, 5) | Benzoic acid |
dCPB5 | 4-(2,5-dichlorophenyl) benzoic acid | 267.1 | Dichlorophenyl (4) | Cl (2, 3) | Benzoic acid |
dCPB6 | 2-(3,5-dichlorophenyl) benzoic acid | 267.1 | Dichlorophenyl (4) | Cl (2, 5) | Benzoic acid |
dCPB7 | 3-(2,4-dichlorophenyl) benzoic acid | 267.1 | Dichlorophenyl (3) | Cl (2, 4) | Benzoic acid |
B | Benzoic acid | 122.1 | NA | NA | Benzoic acid |
dCB1 | 2,4-Dichlorobenzoic acid | 191.0 | NA | NA | Benzoic acid |
dCB2 | 3,4-Dichlorobenzoic acid | 191.0 | NA | NA | Benzoic acid |
dCB3 | 2,5-Dichlorobenzoic acid | 191.0 | NA | NA | Benzoic acid |
dFB1 | 2,6-Difluorobenzoic acid | 158.1 | NA | NA | Benzoic acid |
dFB2 | 2,3-Difluorobenzoic acid | 158.1 | NA | NA | Benzoic acid |
dFB3 | 2,4-Difluorobenzoic acid | 158.1 | NA | NA | Benzoic acid |
CFB | 2-Chloro-4-fluorobenzoic acid | 174.6 | NA | NA | Benzoic acid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, L.C.; Lee, H.K.; Wang, L.; Chaili, S.; Xiong, Y.Q.; Bayer, A.S.; Proctor, R.A.; Yeaman, M.R. Diflunisal and Analogue Pharmacophores Mediating Suppression of Virulence Phenotypes in Staphylococcus aureus. Antibiotics 2023, 12, 1180. https://doi.org/10.3390/antibiotics12071180
Chan LC, Lee HK, Wang L, Chaili S, Xiong YQ, Bayer AS, Proctor RA, Yeaman MR. Diflunisal and Analogue Pharmacophores Mediating Suppression of Virulence Phenotypes in Staphylococcus aureus. Antibiotics. 2023; 12(7):1180. https://doi.org/10.3390/antibiotics12071180
Chicago/Turabian StyleChan, Liana C., Hong K. Lee, Ling Wang, Siyang Chaili, Yan Q. Xiong, Arnold S. Bayer, Richard A. Proctor, and Michael R. Yeaman. 2023. "Diflunisal and Analogue Pharmacophores Mediating Suppression of Virulence Phenotypes in Staphylococcus aureus" Antibiotics 12, no. 7: 1180. https://doi.org/10.3390/antibiotics12071180
APA StyleChan, L. C., Lee, H. K., Wang, L., Chaili, S., Xiong, Y. Q., Bayer, A. S., Proctor, R. A., & Yeaman, M. R. (2023). Diflunisal and Analogue Pharmacophores Mediating Suppression of Virulence Phenotypes in Staphylococcus aureus. Antibiotics, 12(7), 1180. https://doi.org/10.3390/antibiotics12071180