Effects of Florfenicol on nirS-Type Denitrification Community Structure of Sediments in an Aquatic Microcosm Model
Abstract
:1. Introduction
2. Results
2.1. Effects of Florfenicol Stress on Physicochemical Properties in Sediments
2.2. Effects of Florfenicol on nirS Gene Abundance
2.3. Effect of Florfenicol on nirS-Type Denitrification Community Structure
2.4. Beta Diversity
2.5. Linkage among Sediment Properties, nirS Gene Abundance, and nirS-Type Denitrification Communities
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Aquatic Mesocosm Experiment Design and Sampling
4.3. Analysis of Sample Physical and Chemical Properties
4.4. DNA Extraction and qPCR
4.5. Amplicon Sequencing of nirS Gene and Bioinformatics Processing
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- Gil, J. Antimicrobial use in livestock farming. Nat. Food 2023, 4, 138. [Google Scholar] [CrossRef]
- Liu, P.X.; Wang, X.; Feng, L. Occurrence, resources, and risks of antibiotics in aquatic environmental: A review. Environ. Eng. 2020, 38, 36–42. (In Chinese) [Google Scholar]
- Liu, J.Z.; Fung, K.F.; Chen, Z.L.; Zeng, Z.L.; Zhang, J. Pharmacokinetics of florfenicol in healthy pigs and in pigs experimentally infected with Actinobacillus pleuropneumoniae. Antimicrob. Agents Chemother. 2003, 47, 820–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, J.Y.; Chen, C.Y.; Huang, X.Y.; Mo, J.C.; Xie, Q.L.; Zeng, Q.Y. Occurrence and risk assessment of tetracycline antibiotics in soils and vegetables from vegetable fields in Pearl River Delta, South China. Sci. Total Environ. 2021, 776, 145959. [Google Scholar] [CrossRef]
- Lyu, J.; Yang, L.S.; Zhang, L.; Ye, B.X.; Wang, L. Antibiotics in soil and water in China–a systematic review and source analysis. Environ. Pollut. 2020, 266, 115147. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Yang, S.D.; Zhao, L.X.; Li, X.J.; Weng, L.P.; Sun, Y.; Li, Y.T. Temporal and spatial variability of antibiotics in agricultural soils from Huang-Huai-Hai Plain, northern China. Chemosphere 2021, 272, 29803. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, K.B.; Choi, K. Effect of runoff discharge on the environmental levels of 13 veterinary antibiotics: A case study of Han River and Kyungahn Stream, South Korea. Mar. Pollut. Bull. 2016, 107, 347–354. [Google Scholar] [CrossRef]
- Monteiro, S.H.; Francisco, J.G.; Andrade, G.C.; Botelho, R.G.; Figueiredo, L.A.; Tornisielo, V.L. Study of spatial and temporal distribution of antimicrobial in water and sediments from caging fish farms by on-line SPE-LC-MS/MS. J. Environ. Sci. Health Part B 2016, 51, 634–643. [Google Scholar] [CrossRef]
- Charuaud, L.; Jarde, E.; Jaffrezic, A.; Liotaud, M.; Goyat, Q.; Mercier, F.; Le Bot, B. Veterinary pharmaceutical residues in water resources and tap water in an intensive husbandry area in France. Sci. Total Environ. 2019, 664, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Na, G.S.; Fang, X.D.; Cai, Y.Q.; Ge, L.K.; Zong, H.M.; Yuan, X.T.; Yao, Z.W.; Zhang, Z.F. Occurrence, distribution, and bioaccumulation of antibiotics in coastal environment of Dalian, China. Mar. Pollut. Bull. 2013, 69, 233–237. [Google Scholar] [CrossRef]
- Wang, H.; Wang, N.; Wang, B.; Fang, H.; Fu, C.W.; Tang, C.X.; Jiang, F.; Zhou, Y.; He, G.S.; Zhao, Q.; et al. Antibiotics detected in urines and adipogenesis in school children. Environ. Int. 2016, 89, 204–211. [Google Scholar] [CrossRef]
- Huang, C.; Liu, Q.; Li, Z.L.; Ma, X.D.; Hou, Y.N.; Ren, N.Q.; Wang, A.J. Relationship between functional bacteria in a denitrification desulfurization system under autotrophic, heterotrophic, and mixotrophic conditions. Water Res. 2021, 188, 16526. [Google Scholar] [CrossRef]
- Tan, P. Study on Denitrification Performance and Key Enzyme Functional Genes of an Aerobic Denitrifier, Pseudomonas stutzeri XL-2. Master’s Thesis, Chongqing University, Chongqing, China, 2017. (In Chinese). [Google Scholar]
- Zhou, X.T.; Zhao, L.; Wang, X.; Wang, X.C.; Wei, J.; Fang, Z.; Li, S.W.; Rong, X.S.; Luo, Z.J.; Liang, Z.S.; et al. Organic and inorganic nitrogen removals by an ureolytic heterotrophic nitrification and aerobic denitrification strain Acinetobacter sp.Z1: Elucidatingits physiological characteristics and metabolic mechanisms. Bioresour. Technol. 2022, 362, 127792. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.F.; Sobey, M.N.; Smith, C.J.; Rusmana, I.; Phillips, W.; Stott, A.; Osborn, A.M.; Nedwell, D.B. Dissimilatory reduction of nitrate to ammonium, not denitrification or anammox, dominates benthic nitrate reduction in tropical estuaries. Limnol. Oceanogr. 2011, 56, 279–291. [Google Scholar] [CrossRef]
- Wang, B.R.; Wang, X.; Wang, W.B.; Tang, D.S. Cu-NiR and cd-1-NiR: Advances in two kinds of denitrifying nitrite reductase. Plant Sci. J. 2021, 39, 324–334. (In Chinese) [Google Scholar]
- Smith, J.M.; Ogram, A. Genetic and functional variation in denitrifier populations along a short-term restoration chronosequence. App. Environ. Microb. 2008, 74, 5615–5620. [Google Scholar] [CrossRef] [Green Version]
- Yi, N.; Gao, Y.; Zhang, Z.H.; Wang, Y.; Liu, X.H.; Zhang, L.; Yan, S.H. Response of spatial patterns of denitrifying bacteria communities to water properties in the stream inlets at Dianchi Lake, China. Int. J. Genom. 2015, 2015, 572121. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Uchida, Y.; Shimomura, Y.; Akiyama, H.; Hayatsu, M. Responses of denitrifying bacterial communities to short-term waterlogging of soils. Sci. Rep. 2017, 7, 803. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.D.; Hu, Y.G.; Wang, Z.M.; Zeng, Z.H. Variations of the nirS-, nirK-, and nosZ-denitrifying bacterial communities in a northern Chinese soil as affected by different long-term irrigation regimes. Environ. Sci. Pollut. R. 2018, 25, 14057–14067. [Google Scholar] [CrossRef]
- Shi, R.J.; Xu, S.M.; Qi, Z.H.; Huang, H.H.; Liang, Q.Y. Seasonal patterns and environmental drivers of nirS- and nirK-encoding denitrifiers in sediments of Daya Bay, China. Oceanologia 2019, 61, 308–320. [Google Scholar] [CrossRef]
- Tong, Y.D.; Wang, M.Z.; Peñuelas, J.; Liu, X.Y.; Paerl, H.W.; Elser, J.J.; Sardans, J.; Couture, R.M.; Larssen, T.; Hu, H.Y. Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions. Proc. Natl. Acad. Sci. USA 2020, 117, 11566–11572. [Google Scholar] [CrossRef] [PubMed]
- Gui, M.; Chen, Q.; Ni, J. Effect of sulfamethoxazole on aerobic denitrification by strain Pseudomonas stutzeri PCN-1. Bioresour. Technol. 2017, 235, 325–331. [Google Scholar] [CrossRef]
- Zou, H.; He, J.T.; Guan, X.Y.; Zhang, Y.Y.; Deng, L.; Li, Y.Q.; Liu, F. Microbial responses underlying the denitrification kinetic shifting exposed to ng/L- and μg/L-level lomefloxacin in groundwater. J. Hazard. Mater. 2021, 417, 126093. [Google Scholar] [CrossRef]
- Feng, L.J.; Yang, J.Y.; Yu, H.; Lan, Z.Y.; Ye, X.; Yang, G.F.; Yang, Q.; Zhou, J.H. Response of denitrifying community, denitrification genes and antibiotic resistance genes to oxytetracycline stress in polycaprolactone supported solid-phase denitrification reactor. Bioresour. Technol. 2020, 308, 123274. [Google Scholar] [CrossRef]
- Zhang, R.J.; Xu, X.M.; Jia, D.T.; Lyu, Y.T.; Hu, J.R.; Chen, Q.; Sun, W.L. Sediments alleviate the inhibition effects of antibiotics on denitrification: Functional gene, microbial community, and antibiotic resistance gene analysis. Sci. Total Environ. 2022, 804, 150092. [Google Scholar] [CrossRef]
- Laverman, A.M.; Cazier, T.; Yan, C.; Roose-Amsaleg, C.; Petit, F.; Garnier, J.; Berthe, T. Exposure to vancomycin causes a shift in the microbial community structure without affecting nitrate reduction rates in river sediments. Environ. Sci. Pollut. Res. 2015, 22, 13702–13709. [Google Scholar] [CrossRef]
- Ren, Y.Y.; Han, G.; Zeng, H.; Ma, B. General situation and strategy of the potential safety hazard investigation on aquaculture veterinary drugs and other inputs in China. Chin. Fish. Qual. Stand. 2020, 10, 7–11. (In Chinese) [Google Scholar]
- Qiao, M.; Ying, G.G.; Singer, A.C.; Zhu, Y.G. Review of antibiotic resistance in China and its environment. Environ. Int. 2018, 110, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.Y.; Ding, Y.X.; Peng, J.J.; Dai, Y.; Luo, S.S.; Liu, W.C.; Ma, Y. Effects of broad-spectrum antibiotic (florfenicol) on resistance genes and bacterial community structure of water and sediments in an aquatic microcosm model. Antibiotics 2022, 11, 1299. [Google Scholar] [CrossRef]
- Cydzik-Kwiatkowska, A.; Rusanowska, P.; Zielińska, M.; Bernat, K.; Wojnowska-Baryla, I. Structure of nitrogen-converting communities induced by hydraulic retention time and COD/N ratio in constantly aerated granular sludge reactors treating digester supernatant. Bioresour. Technol. 2014, 154, 162–170. [Google Scholar] [CrossRef]
- Cui, P.Y.; Fan, F.L.; Yin, C.; Song, A.L.; Huang, P.R.; Tang, Y.J.; Zhu, P.; Peng, C.; Li, T.Q.; Wakelin, S.A. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biol. Biochem. 2016, 93, 131–141. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Wu, W.D.; Zhang, Z.Z.; Xu, J.J.; Jin, R.C. Inhibitory effects of sulfamethoxazole on denitrifying granule properties: Short- and long-term tests. Bioresour. Technol. 2017, 233, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chen, G.; Zhang, X.; Yang, K.; Xie, B. Change in microbial community in landfill refuse contaminated with antibiotics facilitates denitrification more than the increase in ARG over long-term. Sci. Rep. 2017, 7, 41230. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Ye, M.; Liu, K.; Schwab, A.P.; Liu, M.Q.; Jiao, J.G.; Feng, Y.F.; Wan, J.Z.; Tian, D.; Wu, J.; et al. Dynamic interplay between microbial denitrification and antibiotic resistance under enhanced anoxic denitrification condition in soil. Environ. Pollut. 2017, 222, 583–591. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Fu, J.J.; Ma, Y.L.; Jin, R.C.; Fan, N.S. Response of anammox granules to the simultaneous exposure to macrolide and aminoglycoside antibiotics: Linking performance to mechanism. J. Environ. Manag. 2021, 286, 112267. [Google Scholar] [CrossRef]
- Gamoń, F.; Banach-Wiśniewska, A.; Kaur, J.J.; Cema, G.; Ziembińska-Buczyńska, A. Microbial response of the anammox process to trace antibiotic concentration. J. Water Process. Eng. 2022, 46, 102607. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, H.Y.; Zhu, R.X.; Li, X.; Xi, Y.; Luo, S.; Tan, Z.L.; Chen, Y.W. Microbial community characteristics of shortcut nitrification and denitrification process under antibiotic selective pressure. Chin. J. Appl. Environ. Biol. 2022, 28, 394–400. (In Chinese) [Google Scholar]
- Li, T.T.; Liu, C.; Lu, J.; Gaurav, G.K.; Chen, W. Determination of how tetracycline influences nitrogen removal performance, community structure, and functional genes of biofilm systems. J. Taiwan Inst. Chem. Eng. 2020, 106, 99–109. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, A.; Margareto, A.; Rodriguez-Sanchez, A.; Pesciaroli, C.; Diaz-Cruz, S.; Barcelo, D.; Vahala, R. Linking the effect of antibiotics on partial-nitritation biofilters: Performance, microbial communities and microbial activities. Front. Microbiol. 2018, 9, 354. [Google Scholar] [CrossRef]
- Li, J.Z.; Wu, B.L.; Liu, F.R.; Liu, G.G.; Li, X.K. Treatment of Tetracyclines Antibiotics Pharmaceutical Wastewater by BAF. China Water Wastewater 2022, 38, 24–31. (In Chinese) [Google Scholar]
- Huang, M.H.; Zhang, W.; Zheng, Y.; Zhang, W. Correlation among extracellular polymeric substances, tetracycline resistant bacteria and tetracycline resistance genes under trace tetracycline. Chemosphere 2014, 117, 658–662. [Google Scholar] [CrossRef]
- Roose-Amsaleg, C.; Yan, C.; Hoang, A.M.; Laverman, A.M. Chronic exposure of river sediments to environmentally relevant levels of tetracycline affects bacterial communities but not denitrification rates. Ecotoxicology 2013, 22, 1467–1478. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Han, H.N.; Zheng, X.; Yu, T.; Chen, Y.G. Tetracycline-induced effects on the nitrogen transformations in sediments: Roles of adsorption behavior and bacterial activity. Sci. Total Environ. 2019, 695, 133811. [Google Scholar] [CrossRef]
- An, Y.L.; Qin, X.M. Effects of sulfamethoxazole on the denitrifying process in anoxic activated sludge and the responses of denitrifying microorganisms. Water Sci. Tec. 2018, 78, 1228–1236. [Google Scholar] [CrossRef] [Green Version]
- Fan, N.S.; Bai, Y.H.; Chen, Q.Q.; Shen, Y.Y.; Huang, B.C.; Jin, R.C. Deciphering the toxic effects of antibiotics on denitrification: Process performance, microbial community and antibiotic resistance genes. J. Environ. Manag. 2020, 262, 110375. [Google Scholar] [CrossRef]
- Guo, G.X.; Deng, H.; Qiao, M.; Yao, H.Y.; Zhu, Y.G. Effect of long-term wastewater irrigation on potential denitrification and denitrifying communities in soils at the watershed scale. Environ. Sci. Technol. 2013, 47, 3105–3113. [Google Scholar] [CrossRef]
- Zhang, T.; Peng, J.; Dai, Y.; Xie, X.P.; Luo, S.S.; Ding, Y.X.; Ma, Y. Effect of florfenicol on nirS-type denitrifying communities structure of water in an aquatic microcosm model. Front. Vet. Sci. 2023, 10, 1205394. [Google Scholar] [CrossRef]
- Kim, H.; Bae, H.S.; Reddy, K.R.; Ogram, A. Distributions, abundances and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary. Water Res. 2016, 106, 51–61. [Google Scholar] [CrossRef]
- Ishida, Y.; Imai, I.; Miyagaki, T.; Kadota, H. Growth and uptake kinetics of a facultatively oligotrophic bacterium at low nutrient concentrations. Microb. Ecol. 1982, 8, 23–32. [Google Scholar] [CrossRef]
- Francis, C.A.; O’Mullan, G.D.; Cornwell, J.C.; Ward, B.B. Transitions in nirS-type denitrifier diversity, community composition, and biogeochemical activity along the chesapeake bay estuary. Front. Microbiol. 2013, 4, 237. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.J.; Dong, L.F.; Wilson, J.; Stott, A.; Osborn, A.M.; Nedwell, D.B. Seasonal variation in denitrification and dissimilatory nitrate reduction to ammonia process rates and corresponding key functional genes along an estuarine nitrate Gradient. Front. Microbiol. 2015, 6, 542. [Google Scholar] [CrossRef]
Sample | pH | Conductivity (μS/cm) | Alkaline Nitrogen | Organic Matter |
---|---|---|---|---|
(mg/kg) | (g/kg) | |||
S0D0 | 7.88 ± 0.03 | 208.00 ± 5.29 | 173.42 ± 1.03 | 21.76 ± 0.51 |
S1D0 | 7.99 ± 0.12 | 221.00 ± 2.65 | 187.03 ± 2.20 | 26.46 ± 1.53 |
S2D0 | 7.88 ± 0.03 | 213.00 ± 5.29 | 191.67 ± 12.21 | 30.09 ± 0.57 |
S3D0 | 8.04 ± 0.12 | 204.00 ± 4.00 | 179.68 ± 5.06 | 26.55 ± 0.69 |
S4D0 | 7.64 ± 0.02 | 219.00 ± 2.65 | 196.89 ± 1.57 | 33.41 ± 0.62 |
S0D7 | 7.99 ± 0.04 | 249.00 ± 6.08 | 202.72 ± 1.66 | 24.27 ± 2.92 |
S1D7 | 8.01 ± 0.03 | 256.00 ± 3.61 | 199.67 ± 4.02 | 25.33 ± 2.20 |
S2D7 | 7.81 ± 0.08 | 251.00 ± 5.20 | 223.41 ± 4.72 | 30.43 ± 1.10 |
S3D7 | 7.96 ± 0.05 | 233.00 ± 5.57 | 209.62 ± 4.39 | 27.10 ± 0.56 |
S4D7 | 7.63 ± 0.04 | 202.00 ± 7.94 | 216.16 ± 1.99 | 28.75 ± 1.32 |
S0D30 | 8.03 ± 0.04 | 261.00 ± 9.54 | 313.54 ± 9.12 | 20.76 ± 0.51 |
S1D30 | 8.00 ± 0.03 | 275.00 ± 9.17 | 273.53 ± 6.99 | 24.20 ± 1.48 |
S2D30 | 7.78 ± 0.06 | 274.00 ± 4.36 | 261.63 ± 4.63 | 28.38 ± 0.90 |
S3D30 | 7.97 ± 0.03 | 228.00 ± 3.61 | 267.23 ± 3.66 | 25.49 ± 0.57 |
S4D30 | 7.80 ± 0.04 | 119.00 ± 4.58 | 339.91 ± 4.98 | 30.68 ± 2.18 |
S0D60 | 7.50 ± 0.03 | 215.00 ± 1.73 | 248.44 ± 4.99 | 23.03 ± 1.26 |
S1D60 | 7.64 ± 0.02 | 205.00 ± 9.54 | 300.01 ± 6.86 | 24.13 ± 0.66 |
S2D60 | 7.56 ± 0.05 | 195.10 ± 2.01 | 275.04 ± 2.65 | 29.45 ± 1.16 |
S3D60 | 7.77 ± 0.08 | 170.80 ± 6.58 | 225.58 ± 4.84 | 22.13 ± 0.76 |
S4D60 | 7.68 ± 0.06 | 180.80 ± 4.53 | 268.63 ± 6.06 | 29.66 ± 1.30 |
Sample | OTUs | Chao1 | Ace | Shannon | Simpson | Goods Coverage |
---|---|---|---|---|---|---|
S0D0 | 4592 | 10,247 | 10,985 | 10.69 | 1.00 | 0.95 |
S1D0 | 4312 | 9601 | 10,055 | 10.60 | 1.00 | 0.96 |
S2D0 | 4020 | 9680 | 10,065 | 10.41 | 1.00 | 0.96 |
S3D0 | 4626 | 8946 | 9474 | 10.38 | 1.00 | 0.96 |
S4D0 | 4879 | 9715 | 10,414 | 10.52 | 1.00 | 0.96 |
S0D7 | 5192 | 13,508 | 14,433 | 11.13 | 1.00 | 0.94 |
S1D7 | 4389 | 10,180 | 10,461 | 10.72 | 1.00 | 0.96 |
S2D7 | 3161 | 5200 | 5288 | 10.32 | 1.00 | 0.98 |
S3D7 | 4678 | 9621 | 10,170 | 10.34 | 1.00 | 0.96 |
S4D7 | 5389 | 11,611 | 12,638 | 10.78 | 1.00 | 0.95 |
S0D30 | 2420 | 4662 | 5190 | 9.31 | 1.00 | 0.98 |
S1D30 | 2636 | 5766 | 6551 | 9.64 | 1.00 | 0.97 |
S2D30 | 3374 | 6993 | 7820 | 9.85 | 1.00 | 0.97 |
S3D30 | 4188 | 8338 | 9154 | 10.20 | 1.00 | 0.96 |
S4D30 | 3921 | 6773 | 7443 | 9.91 | 1.00 | 0.97 |
S0D60 | 3796 | 8139 | 9047 | 9.67 | 0.99 | 0.96 |
S1D60 | 2982 | 5952 | 6233 | 9.71 | 1.00 | 0.98 |
S2D60 | 3455 | 7962 | 8615 | 8.73 | 0.98 | 0.96 |
S3D60 | 3230 | 6339 | 6962 | 8.29 | 0.98 | 0.97 |
S4D60 | 2809 | 6447 | 7130 | 7.12 | 0.94 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Sun, J.; Peng, J.; Ding, Y.; Li, Y.; Ma, H.; Yu, M.; Ma, Y. Effects of Florfenicol on nirS-Type Denitrification Community Structure of Sediments in an Aquatic Microcosm Model. Antibiotics 2023, 12, 1254. https://doi.org/10.3390/antibiotics12081254
Zhang T, Sun J, Peng J, Ding Y, Li Y, Ma H, Yu M, Ma Y. Effects of Florfenicol on nirS-Type Denitrification Community Structure of Sediments in an Aquatic Microcosm Model. Antibiotics. 2023; 12(8):1254. https://doi.org/10.3390/antibiotics12081254
Chicago/Turabian StyleZhang, Tengyue, Junying Sun, Jinju Peng, Yuexia Ding, Yang Li, Haotian Ma, Mengbo Yu, and Yi Ma. 2023. "Effects of Florfenicol on nirS-Type Denitrification Community Structure of Sediments in an Aquatic Microcosm Model" Antibiotics 12, no. 8: 1254. https://doi.org/10.3390/antibiotics12081254
APA StyleZhang, T., Sun, J., Peng, J., Ding, Y., Li, Y., Ma, H., Yu, M., & Ma, Y. (2023). Effects of Florfenicol on nirS-Type Denitrification Community Structure of Sediments in an Aquatic Microcosm Model. Antibiotics, 12(8), 1254. https://doi.org/10.3390/antibiotics12081254