Gatifloxacin Loaded Nano Lipid Carriers for the Management of Bacterial Conjunctivitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Method
2.3. Lipid Screening Studies
2.4. Saturation Solubility in Liquid Lipids
2.5. Saturation Solubility in Solid Lipids
2.6. Preparation of GTX-NLC and GTX-SLN Formulations
2.7. Measurement of Particle Size (PS), Polydispersity Index (PDI), and Zeta Potential (ZP)
2.8. Assay (GTX Content)
2.9. Entrapment Efficiency (EE)
2.10. Measurement of pH and Viscosity
2.11. Fourier Transform Infrared Spectroscopy (FTIR)
2.12. In Vitro Release-Diffusion Studies
2.13. Antimicrobial Efficacy
2.14. Transcorneal Permeation Studies
2.15. Stability Studies
2.16. Scanning Transmission Electron Microscopy (STEM)
2.17. Statistical Analysis
3. Results and Discussion
3.1. Screening of Lipids
3.2. Saturation Solubility Studies
3.3. Preliminary Studies
3.4. Preparation of GTX-Loaded SLNs and NLCs
3.5. Effect of Tween® 80 Concentration on GTX-NLCs
3.6. In Vitro Drug Release-Diffusion Test
3.7. Viscosity
3.8. FTIR
3.9. Transcorneal Study
3.10. Stability Studies
3.11. Antibacterial Activity Testing
3.12. STEM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Youssef, A.; Dudhipala, N.; Majumdar, S. Ciprofloxacin Loaded Nanostructured Lipid Carriers Incorporated into In-Situ Gels to Improve Management of Bacterial Endophthalmitis. Pharmaceutics 2020, 12, 572. [Google Scholar] [CrossRef]
- Grixti, A.; Sadri, M.; Edgar, J.; Datta, A.V. Common Ocular Surface Disorders in Patients in Intensive Care Units. Ocul. Surf. 2012, 10, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.F.; Waycaster, C. Estimate of the Direct and Indirect Annual Cost of Bacterial Conjunctivitis in the United States. BMC Ophthalmol. 2009, 9, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, A.M.; Ali, M.M.; Zenebe, M.H. Bacterial Etiology of Ocular and Periocular Infections, Antimicrobial Susceptibility Profile and Associated Factors among Patients Attending Eye Unit of Shashemene Comprehensive Specialized Hospital, Shashemene, Ethiopia. BMC Ophthalmol. 2020, 20, 124. [Google Scholar] [CrossRef]
- Al-Abdullah, E.S. Gatifloxacin. Profiles Drug Subst. Excip. Relat. Methodol. 2012, 37, 183–243. [Google Scholar] [CrossRef]
- Kowalski, R.P.; Dhaliwal, D.K. Ocular Bacterial Infections: Current and Future Treatment Options. Expert Rev. Anti-Infect. Ther. 2005, 3, 131–139. [Google Scholar] [CrossRef]
- Patel, U.L.; Chotai, N.P.; Nagda, C.D. Design and Evaluation of Ocular Drug Delivery System for Controlled Delivery of Gatifloxacin Sesquehydrate: In Vitro and in Vivo Evaluation. Pharm. Dev. Technol. 2012, 17, 15–22. [Google Scholar] [CrossRef]
- Hooper, D.C. Mechanisms of Quinolone Resistance. In Quinolone Antimicrobial Agents, 3rd ed; ASM Press: Washington, DC, USA, 2003; pp. 41–67. [Google Scholar]
- Kowalski, R.P.; Dhaliwal, D.K.; Karenchak, L.M.; Romanowski, E.G.; Mah, F.S.; Ritterband, D.C.; Gordon, Y.J. Gatifloxacin and Moxifloxacin: An In Vitro Susceptibility Comparison to Levofloxacin, Ciprofloxacin, and Ofloxacin Using Bacterial Keratitis Isolates. Am. J. Ophthalmol. 2003, 136, 500–505. [Google Scholar] [CrossRef]
- Clark, L.; Silverstein, B.; Morris, T.; Gearinger, L.; Comstock, T.; DeCory, H. Besifloxacin Ophthalmic Suspension 0.6% in the Treatment of Bacterial Conjunctivitis Patients with Pseudomonas Aeruginosa Infections. OPTH 2012, 6, 1987–1996. [Google Scholar] [CrossRef] [Green Version]
- Taskar, P.; Tatke, A.; Majumdar, S. Advances in the Use of Prodrugs for Drug Delivery to the Eye. Expert Opin. Drug Deliv. 2016, 14, 49–63. [Google Scholar] [CrossRef]
- Youssef, A.A.A.; Cai, C.; Dudhipala, N.; Majumdar, S. Design of Topical Ocular Ciprofloxacin Nanoemulsion for the Management of Bacterial Keratitis. Pharmaceuticals 2021, 14, 210. [Google Scholar] [CrossRef] [PubMed]
- Farkouh, A.; Frigo, P.; Czejka, M. Systemic Side Effects of Eye Drops: A Pharmacokinetic Perspective. Clin. Ophthalmol. 2016, 10, 2433–2441. [Google Scholar] [PubMed] [Green Version]
- Duxfield, L.; Sultana, R.; Wang, R.; Englebretsen, V.; Deo, S.; Swift, S.; Rupenthal, I.; Al-Kassas, R. Development of Gatifloxacin-Loaded Cationic Polymeric Nanoparticles for Ocular Drug Delivery. Pharm. Dev. Technol. 2016, 21, 172–179. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, F.M.; Bianchera, A.; Gasco, P.; Nicoli, S.; Pescina, S. Lipid-Based Nanocarriers for Ophthalmic Administration: Towards Experimental Design Implementation. Pharmaceutics 2021, 13, 447. [Google Scholar] [CrossRef] [PubMed]
- Salvi, V.R.; Pawar, P. Nanostructured Lipid Carriers (NLC) System: A Novel Drug Targeting Carrier. J. Drug Deliv. Sci. Technol. 2019, 51, 255–267. [Google Scholar] [CrossRef]
- Almeida, H.; Amaral, M.H.; Lobão, P.; Silva, A.C.; Loboa, J.M.S. Applications of Polymeric and Lipid Nanoparticles in Ophthalmic Pharmaceutical Formulations: Present and Future Considerations. J. Pharm. Pharm. Sci. 2014, 17, 278–293. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, L.; Serpe, L.; Foglietta, F.; Muntoni, E.; Gallarate, M.; Del Pozo Rodriguez, A.; Solinis, M.A. Application of Lipid Nanoparticles to Ocular Drug Delivery. Expert Opin. Drug Deliv. 2016, 13, 1743–1757. [Google Scholar] [CrossRef]
- Hippalgaonkar, K.; Adelli, G.R.; Hippalgaonkar, K.; Repka, M.A.; Majumdar, S. Indomethacin-Loaded Solid Lipid Nanoparticles for Ocular Delivery: Development, Characterization, and In Vitro Evaluation. J. Ocul. Pharmacol. Ther. 2013, 29, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Seyfoddin, A.; Shaw, J.; Al-Kassas, R. Solid Lipid Nanoparticles for Ocular Drug Delivery. Drug Deliv. 2010, 17, 467–489. [Google Scholar] [CrossRef]
- Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: A Review Emphasizing on Particle Structure and Drug Release. Eur. J. Pharm. Biopharm. 2018, 133, 285–308. [Google Scholar] [CrossRef]
- Jacob, S.; Nair, A.B.; Shah, J.; Gupta, S.; Boddu, S.H.S.; Sreeharsha, N.; Joseph, A.; Shinu, P.; Morsy, M.A. Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy—An Overview on Recent Advances. Pharmaceutics 2022, 14, 533. [Google Scholar] [CrossRef]
- Youssef, A.A.A.; Thakkar, R.; Senapati, S.; Joshi, P.H.; Dudhipala, N.; Majumdar, S. Design of Topical Moxifloxacin Mucoadhesive Nanoemulsion for the Management of Ocular Bacterial Infections. Pharmaceutics 2022, 14, 1246. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Ouyang, J.; Baeyens, W.R.G.; Zhao, H.; Yang, Y. Chiral Separation of Four Fluoroquinolone Compounds Using Capillary Electrophoresis with Hydroxypropyl-β-Cyclodextrin as Chiral Selector. J. Chromatogr. A 2006, 1130, 296–301. [Google Scholar] [CrossRef]
- Blanka, S.-S. Characterization and Molecular Modelling of Cyclodextrin/Fluoroquinolone Inclusion Complexes. Acta Med. Marisiensis 2011, 57, 116–120. [Google Scholar]
- Ding, Y.; Pang, Y.; Vara Prasad, C.V.N.S.; Wang, B. Formation of Inclusion Complex of Enrofloxacin with 2-Hydroxypropyl-β-Cyclodextrin. Drug Deliv. 2020, 27, 334–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purslow, C.; Wolffsohn, J.S. Ocular Surface Temperature: A Review. Eye Contact Lens. 2005, 31, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Choradiya, B.R.; Patil, S.B. A Comprehensive Review on Nanoemulsion as an Ophthalmic Drug Delivery System. J. Mol. Liq. 2021, 339, 116751. [Google Scholar] [CrossRef]
- Poonia, N.; Kharb, R.; Lather, V.; Pandita, D. Nanostructured Lipid Carriers: Versatile Oral Delivery Vehicle. Future Sci. OA 2016, 2, FSO135. [Google Scholar] [CrossRef] [Green Version]
- Lakhani, P.; Patil, A.; Wu, K.-W.; Sweeney, C.; Tripathi, S.; Avula, B.; Taskar, P.; Khan, S.; Majumdar, S. Optimization, Stabilization, and Characterization of Amphotericin B Loaded Nanostructured Lipid Carriers for Ocular Drug Delivery. Int. J. Pharm. 2019, 572, 118771. [Google Scholar] [CrossRef]
- Kalam, M.A.; Sultana, Y.; Ali, A.; Aqil, M.; Mishra, A.K.; Chuttani, K. Preparation, Characterization, and Evaluation of Gatifloxacin Loaded Solid Lipid Nanoparticles as Colloidal Ocular Drug Delivery System. J. Drug Target. 2010, 18, 191–204. [Google Scholar] [CrossRef]
- Khurana, G.; Arora, S.; Pawar, P.K. Ocular Insert for Sustained Delivery of Gatifloxacin Sesquihydrate: Preparation and Evaluations. Int. J. Pharm. Investig. 2012, 2, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Caruso, C.; Porta, A.; Tosco, A.; Eletto, D.; Pacente, L.; Bartollino, S.; Costagliola, C. A Novel Vitamin E TPGS-Based Formulation Enhances Chlorhexidine Bioavailability in Corneal Layers. Pharmaceutics 2020, 12, 642. [Google Scholar] [CrossRef]
- Kwatra, D.; Vadlapatla, R.K.; Vadlapudi, A.D.; Pal, D.; Mitra, A.K. Interaction of Gatifloxacin with Efflux Transporters: A Possible Mechanism for Drug Resistance. Int. J. Pharm. 2010, 395, 114–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Novel Drug Delivery Systems: Applications, Advantages and Disadvantages. Res. Pharm. Sci. 2018, 13, 288. [Google Scholar] [PubMed]
- Ammar, H.O.; Salama, H.A.; Ghorab, M.; Mahmoud, A.A. Nanoemulsion as a Potential Ophthalmic Delivery System for Dorzolamide Hydrochloride. AAPS PharmSciTech 2009, 10, 808. [Google Scholar] [CrossRef] [Green Version]
- Pezeshki, A.; Ghanbarzadeh, B.; Mohammadi, M.; Fathollahi, I.; Hamishehkar, H. Encapsulation of Vitamin A Palmitate in Nanostructured Lipid Carrier (NLC)-Effect of Surfactant Concentration on the Formulation Properties. Adv. Pharm. Bull. 2014, 4, 563–568. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and Zeta Potential—What They Are and What They Are Not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Dudhipala, N.; Ettireddy, S.; Youssef, A.A.A.; Puchchakayala, G. Cyclodextrin Complexed Lipid Nanoparticles of Irbesartan for Oral Applications: Design, Development, and In Vitro Characterization. Molecules 2021, 26, 7538. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Ng, W.K.; Tan, R.B.H. Are Nanostructured Lipid Carriers (NLCs) Better than Solid Lipid Nanoparticles (SLNs): Development, Characterizations and Comparative Evaluations of Clotrimazole-Loaded SLNs and NLCs? Eur. J. Pharm. Sci. 2012, 47, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Haider, M.; Abdin, S.M.; Kamal, L.; Orive, G. Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review. Pharmaceutics 2020, 12, 288. [Google Scholar] [CrossRef] [Green Version]
- Witayaudom, P.; Klinkesorn, U. Effect of Surfactant Concentration and Solidification Temperature on the Characteristics and Stability of Nanostructured Lipid Carrier (NLC) Prepared from Rambutan (Nephelium lappaceum L.) Kernel Fat. J. Colloid Interface Sci. 2017, 505, 1082–1092. [Google Scholar] [CrossRef]
- Gonzalez-Mira, E.; Egea, M.A.; Garcia, M.L.; Souto, E.B. Design and Ocular Tolerance of Flurbiprofen Loaded Ultrasound-Engineered NLC. Colloids Surf. B Biointerfaces 2010, 81, 412–421. [Google Scholar] [CrossRef]
- Asasutjarit, R.; Lorenzen, S.-I.; Sirivichayakul, S.; Ruxrungtham, K.; Ruktanonchai, U.; Ritthidej, G.C. Effect of Solid Lipid Nanoparticles Formulation Compositions on Their Size, Zeta Potential and Potential for In Vitro PHIS-HIV-Hugag Transfection. Pharm. Res. 2007, 24, 1098–1107. [Google Scholar] [CrossRef]
- Kiss, E.L.; Berkó, S.; Gácsi, A.; Kovács, A.; Katona, G.; Soós, J.; Csányi, E.; Gróf, I.; Harazin, A.; Deli, M.A.; et al. Design and Optimization of Nanostructured Lipid Carrier Containing Dexamethasone for Ophthalmic Use. Pharmaceutics 2019, 11, 679. [Google Scholar] [CrossRef] [Green Version]
- Araújo, J.; Gonzalez-Mira, E.; Egea, M.A.; Garcia, M.L.; Souto, E.B. Optimization and Physicochemical Characterization of a Triamcinolone Acetonide-Loaded NLC for Ocular Antiangiogenic Applications. Int. J. Pharm. 2010, 393, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.-C.; Qi, H.-P.; Bai, J.-H.; Huang, L.; Cui, H. Effects of Oleic Acid on the Corneal Permeability of Compounds and Evaluation of Its Ocular Irritation of Rabbit Eyes. Curr. Eye Res. 2014, 39, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Jenning, V.; Thünemann, A.F.; Gohla, S.H. Characterisation of a Novel Solid Lipid Nanoparticle Carrier System Based on Binary Mixtures of Liquid and Solid Lipids. Int. J. Pharm. 2000, 199, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.A.A.; Dudhipala, N.; Majumdar, S. Dual Drug Loaded Lipid Nanocarrier Formulations for Topical Ocular Applications. Int. J. Nanomed. 2022, 17, 2283–2299. [Google Scholar] [CrossRef]
- Singh, M.; Bharadwaj, S.; Lee, K.E.; Kang, S.G. Therapeutic Nanoemulsions in Ophthalmic Drug Administration: Concept in Formulations and Characterization Techniques for Ocular Drug Delivery. J. Control. Release 2020, 328, 895–916. [Google Scholar] [CrossRef]
- Prachetan Balguri, S.; Adelli, G.R.; Majumdar, S. Topical Ophthalmic Formulations of Indomethacin for Delivery to the Posterior Segment Ocular Tissues. Eur. J. Pharm. Biopharm. 2016, 109, 224–235. [Google Scholar] [CrossRef] [Green Version]
- Shah, J.; Nair, A.B.; Jacob, S.; Patel, R.K.; Shah, H.; Shehata, T.M.; Morsy, M.A. Nanoemulsion Based Vehicle for Effective Ocular Delivery of Moxifloxacin Using Experimental Design and Pharmacokinetic Study in Rabbits. Pharmaceutics 2019, 11, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seyfoddin, A.; Al-Kassas, R. Development of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Improving Ocular Delivery of Acyclovir. Drug Dev. Ind. Pharm. 2012, 39, 508–519. [Google Scholar] [CrossRef] [PubMed]
- Calvo, P.; Vila-Jato, J.L.; Alonso, M.J. Comparative in Vitro Evaluation of Several Colloidal Systems, Nanoparticles, Nanocapsules, and Nanoemulsions, as Ocular Drug Carriers. J. Pharm. Sci. 1996, 85, 530–536. [Google Scholar] [CrossRef]
- Calvo, P.; Thomas, C.; Alonso, M.J.; Vila-Jato, J.; Robinson, J.R. Study of the Mechanism of Interaction of Poly(ϵ-Caprolactone) Nanocapsules with the Cornea by Confocal Laser Scanning Microscopy. Int. J. Pharm. 1994, 103, 283–291. [Google Scholar] [CrossRef]
- Bui, T.; Frampton, H.; Huang, S.; Collins, I.R.; Striolo, A.; Michaelides, A. Water/Oil Interfacial Tension Reduction—An Interfacial Entropy Driven Process. Phys. Chem. Chem. Phys. 2021, 23, 25075–25085. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.; Costa, A.L.R.; Cunha, R.L. Impact of Oil Type and WPI/Tween 80 Ratio at the Oil-Water Interface: Adsorption, Interfacial Rheology and Emulsion Features. Colloids Surf. B Biointerfaces 2018, 164, 272–280. [Google Scholar] [CrossRef]
Liquid Oil | Solubility | Solid Lipids | Solubility |
---|---|---|---|
Castor oil | (−) | Precirol® ATO 5 | (+) |
Sesame oil | (−) | Compritol® 888 | (−) |
Oleic acid | (+) | Dynasan™ 114 | (−) |
Mineral oil | (−) | Geleol™ | (+) |
Capryol® 90 | (−) | Gelucire™ 43/01 | (−) |
Labrafac® Lipophile WL 1349 | (−) | Dynasan™ 116 | (−) |
Isopropyl Myristate, NF | (−) | Gelucire™ 50/13 | (−) |
Olive oil | (−) | Gelucire™ 44/1 | (−) |
Miglyol® 829 | (−) | Softisan 154 | (−) |
Placebo | Formulation | Precirol® ATO 5 (% w/v) | Geleol™ (% w/v) | Oleic Acid (% w/v) | Visual Examination |
---|---|---|---|---|---|
NLCs | P1 | 3.0 | - | 2.0 | NLCs were formed |
P2 | 2.5 | - | 2.5 | NLCs were formed | |
P3 | 3.0 | - | 1.0 | NLCs were formed | |
P4 | 2.0 | - | 2.0 | NLCs were formed | |
P5 | - | 3.0 | 2.0 | Phase separation during the addition of the aqueous phase | |
P6 | - | 2.5 | 2.5 | Phase separation during the addition of the aqueous phase | |
P7 | - | 3.0 | 1.0 | Phase separation during the addition of the aqueous phase | |
P8 | - | 2.0 | 2.0 | Phase separation during the addition of the aqueous phase | |
SLNs | P9 | 5.0 | - | - | SLNs were formed |
P10 | 4.0 | - | - | SLNs were formed | |
P11 | - | 5.0 | - | Phase separation during the addition of the aqueous phase | |
P12 | - | 4.0 | - | Phase separation during the addition of the aqueous phase |
Formulation * | Precirol® ATO 5 (% w/v) | Oleic Acid (% w/v) | Physicochemical Characteristics | Visual Observations | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PS (nm) | PDI | ZP (mV) | pH | Assay (%) | EE (%) | |||||
NLCs | F1 | 3.0 | 2.0 | 266.8 ± 6.4 | 0.42 ± 0.05 | −32.2 ± 0.5 | 6.37 ± 0.03 | 99.2 ± 2.6 | 87.3 ± 2.0 | Milky-white dispersion |
F2 | 2.5 | 2.5 | 216.2 ± 6.8 | 0.32 ± 0.03 | −30.6 ± 1.2 | 6.37 ± 0.03 | 98.6 ± 2.1 | 91.63 ± 1.5 | Milky-white dispersion | |
F3 | 3.0 | 1.0 | 229.5 ± 3.2 | 0.16 ± 0.06 | −26.3 ±0.9 | 5.62 ± 0.03 | 100.5 ± 2.4 | 73.9 ± 3.2 | Milky-white dispersion | |
F4 | 2.0 | 2.0 | 209.2 ± 3.2 | 0.14 ± 0.03 | −31.2 ± 1.3 | 6.24 ± 0.02 | 102.3 ± 1.1 | 81.2 ± 1.8 | Milky-white dispersion | |
SLNs | F9 | 5.0 | - | 200 ± 11.0 | 0.20 ± 0.03 | −21.3 ± 0.4 | 7.17 ± 0.03 | 101.0 ± 2.5 | 80.29 ± 2.3 | Drug expulsion at day 15 with 20.3 ± 2.1% EE |
F10 | 4.0 | - | 182.7 ± 4.3 | 0.15 ± 0.02 | −18.2 ± 0.6 | 7.12 ± 0.02 | 97.9 ± 3.1 | 71.7 ± 2.8 | Drug expulsion at day 15 with 12.2 ± 3.6% EE |
Formulations * | Tween® 80 (% w/v) | Physicochemical Characteristics | Visual Observations | ||||||
---|---|---|---|---|---|---|---|---|---|
PS (nm) | PDI | ZP (mV) | pH | Assay (%) | EE (%) | ||||
NLCs | F2 # | 3.0 | 216.2 ± 6.8 | 0.32 ± 0.03 | −30.6 ± 1.2 | 6.37 ± 0.03 | 98.6 ± 2.1 | 90.4 ± 1.5 | Milky-white dispersion |
F5 # | 2.0 | 239.5 ± 7.1 | 0.38 ± 0.04 | −29.3 ± 0.5 | 6.42 ± 0.01 | 99.5 ± 2.6 | 70.6 ± 2.5 | Milky-white dispersion | |
F6 # | 4.0 | 200.3 ± 2.4 | 0.18 ± 0.02 | −30.2 ± 0.3 | 6.39 ± 0.01 | 100.2 ± 2.2 | 96.9 ± 2.0 | Milky-white dispersion | |
F4 @ | 3.0 | 209.2 ± 3.2 | 0.14 ± 0.03 | −31.2 ± 1.3 | 6.24 ± 0.02 | 102.3 ± 1.1 | 83.1 ± 1.8 | Milky-white dispersion | |
F7 @ | 2.0 | 226.4 ± 5.4 | 0.25 ± 0.03 | −29.4 ± 0.7 | 6.44 ± 0.01 | 98.7 ± 4.0 | 77.5 ± 2.1 | Milky-white dispersion | |
F8 @ | 4.0 | 183.4 ± 5.6 | 0.13 ± 0.02 | −28.9 ± 1.0 | 6.35 ± 0.01 | 99.3 ± 3.1 | 87.1 ± 2.9 | Milky-white dispersion |
Formulation | Korsmeyer–Peppas | Higuchi | First-Order | |
---|---|---|---|---|
R2 | n | |||
F2 | 0.9999 | 0.9094 | 0.9895 | 0.6 |
F6 | 0.9976 | 0.9515 | 0.982 | 0.6 |
Formulation | MIC90 (μg/mL) | |
---|---|---|
Methicillin-Resistant Staphylococcus aureus | Pseudomonas aeruginosa | |
GTX-C | 6.25 | 6.25 |
F2 | 6.25 | 6.25 |
Placebo F2 | Not achieved | Not achieved |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, P.H.; Youssef, A.A.A.; Ghonge, M.; Varner, C.; Tripathi, S.; Dudhipala, N.; Majumdar, S. Gatifloxacin Loaded Nano Lipid Carriers for the Management of Bacterial Conjunctivitis. Antibiotics 2023, 12, 1318. https://doi.org/10.3390/antibiotics12081318
Joshi PH, Youssef AAA, Ghonge M, Varner C, Tripathi S, Dudhipala N, Majumdar S. Gatifloxacin Loaded Nano Lipid Carriers for the Management of Bacterial Conjunctivitis. Antibiotics. 2023; 12(8):1318. https://doi.org/10.3390/antibiotics12081318
Chicago/Turabian StyleJoshi, Poorva H., Ahmed Adel Ali Youssef, Mihir Ghonge, Corinne Varner, Siddharth Tripathi, Narendar Dudhipala, and Soumyajit Majumdar. 2023. "Gatifloxacin Loaded Nano Lipid Carriers for the Management of Bacterial Conjunctivitis" Antibiotics 12, no. 8: 1318. https://doi.org/10.3390/antibiotics12081318
APA StyleJoshi, P. H., Youssef, A. A. A., Ghonge, M., Varner, C., Tripathi, S., Dudhipala, N., & Majumdar, S. (2023). Gatifloxacin Loaded Nano Lipid Carriers for the Management of Bacterial Conjunctivitis. Antibiotics, 12(8), 1318. https://doi.org/10.3390/antibiotics12081318