Recent Advances in the Development of Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance
Abstract
:1. Introduction
2. AMR—A Global Threat
3. Bacterial Resistance Mechanisms
3.1. Inactivation of the Drug
3.2. Target Modification
3.3. Limiting Drug Uptake
3.4. Development of Efflux Pump
4. Synthesis of Antibiotic-Coated AuNPs
5. Antibiotic-Coated AuNPs to Combat AMR
6. Antibacterial Flavonoids and Heterocyclic Compounds Coated AuNPs to Combat AMR
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khandelwal, P.; Singh, D.K.; Poddar, P. Advances in the Experimental and Theoretical Understandings of Antibiotic Conjugated Gold Nanoparticles for Antibacterial Applications. ChemistrySelect 2019, 4, 6719–6738. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef]
- Kalhapure, R.S.; Suleman, N.; Mocktar, C.; Seedat, N.; Govender, T. Nanoengineered Drug Delivery Systems for Enhancing Antibiotic Therapy. J. Pharm. Sci. 2015, 104, 872–905. [Google Scholar] [CrossRef]
- Cars, O.; Hedin, A.; Heddini, A. The global need for effective antibiotics—Moving towards concerted action. Drug Resist. Updates 2011, 14, 68–69. [Google Scholar] [CrossRef]
- Ali, S.; Perveen, S.; Shah, M.R.; Zareef, M.; Arslan, M.; Basheer, S.; Ullah, S.; Ali, M. Bactericidal potentials of silver and gold nanoparticles stabilized with cefixime: A strategy against antibiotic-resistant bacteria. J. Nanoparticle Res. 2020, 22, 201. [Google Scholar] [CrossRef]
- Rocca, D.M.; Silvero, C.M.J.; Aiassa, V.; Cecilia Becerra, M. Rapid and effective photodynamic treatment of biofilm infections using low doses of amoxicillin-coated gold nanoparticles. Photodiagn. Photodyn. Ther. 2020, 31, 101811. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.M.; Lila, A.S.; Moin, A.; Hussain, T.; Kamal, M.A.; Sonbol, H.; Khafagy, E.-S. Antibiotic-Loaded Gold Nanoparticles: A Nano-Arsenal against ESBL Producer-Resistant Pathogens. Pharmaceutics 2023, 15, 430. [Google Scholar] [CrossRef] [PubMed]
- Teklu, D.S.; Negeri, A.A.; Legese, M.H.; Bedada, T.L.; Woldemariam, H.K.; Tullu, K.D. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrob. Resist. Infect. Control 2019, 8, 39. [Google Scholar] [CrossRef]
- Saha, M.; Sarkar, A. Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century. J. Xenobiotics 2021, 11, 197–214. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Haddada, M.B.; Jeannot, K.; Spadavecchia, J. Novel Synthesis and Characterization of Doxycycline-loaded Gold Nanoparticles: The Golden Doxycycline for Antibacterial Applications. Part. Part. Syst. Charact. 2018, 36, 1800395. [Google Scholar] [CrossRef]
- Hakemi-Vala, M.; Rafati, H.; Aliahmadi, A.; Ardalan, A. Nanoemulsions: A Novel Antimicrobial Delivery System. In Nano-and Microscale Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 245–266. [Google Scholar]
- Yeh, Y.C.; Huang, T.H.; Yang, S.C.; Chen, C.C.; Fang, J.Y. Nano-Based Drug Delivery or Targeting to Eradicate Bacteria for Infection Mitigation: A Review of Recent Advances. Front. Chem. 2020, 8, 286. [Google Scholar] [CrossRef] [PubMed]
- Pizzolato-Cezar, L.R.; Okuda-Shinagawa, N.M.; Machini, M.T. Combinatory Therapy Antimicrobial Peptide-Antibiotic to Minimize the Ongoing Rise of Resistance. Front. Microbiol. 2019, 10, 1703. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, P.; Poddar, P. Fluorescent metal quantum clusters: An updated overview of the synthesis, properties, and biological applications. J. Mater. Chem. B 2017, 5, 9055–9084. [Google Scholar] [CrossRef] [PubMed]
- Baptista, P.V.; McCusker, M.P.; Carvalho, A.; Ferreira, D.A.; Mohan, N.M.; Martins, M.; Fernandes, A.R. Nano-Strategies to Fight Multidrug Resistant Bacteria “a Battle of the Titans”. Front. Microbiol. 2018, 9, 1441. [Google Scholar] [CrossRef] [PubMed]
- Gholipourmalekabadi, M.; Mobaraki, M.; Ghaffari, M.; Zarebkohan, A.; Omrani, V.; Urbanska, A.; Seifalian, A. Targeted Drug Delivery Based on Gold Nanoparticle Derivatives. Curr. Pharm. Des. 2017, 23, 20. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, K.; Liu, Z.; Zhang, Y.; Chen, Z.; Sun, H.; Ren, J.; Qu, X. Activation of biologically relevant levels of reactive oxygen species by au/g-c3n4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 2017, 113, 145–157. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, X. Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale 2013, 5, 8340. [Google Scholar] [CrossRef]
- Wadhwani, P.; Heidenreich, N.; Podeyn, B.; Bürck, J.; Ulrich, A.S. Antibiotic gold: Tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility. Biomater. Sci. 2017, 5, 817–827. [Google Scholar] [CrossRef]
- Hussein, M.A.; Grinholc, M.; Dena, A.S.; El-Sherbiny, I.M.; Megahed, M. Boosting the antibacterial activity of chitosan–gold nanoparticles against antibiotic–resistant bacteria by Punicagranatum L. Extract. Carbohydr. Polym. 2021, 256, 117498. [Google Scholar] [CrossRef]
- Sinha, R.; Karan, R.; Sinha, A.; Khare, S.K. interaction and nanotoxic effect of zno and ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour. Technol. 2011, 102, 1516–1520. [Google Scholar] [CrossRef]
- Hemeg, H. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed. 2017, 12, 8211–8225. [Google Scholar] [CrossRef]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef]
- Sarma, P.P.; Barman, K.; Baruah, P.K. Green synthesis of silver nanoparticles using Murraya koenigii leaf extract with efficient catalytic, antimicrobial, and sensing properties towards heavy metal ions. Inorg. Chem. Commun. 2023, 152, 110676. [Google Scholar] [CrossRef]
- Manju, S.; Malaikozhundan, B.; Vijayakumar, S.; Shanthi, S.; Jaishabanu, A.; Ekambaram, P.; Vaseeharan, B. Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles. Microb. Pathog. 2016, 91, 129–135. [Google Scholar] [CrossRef]
- Okkeh, M.; Bloise, N.; Restivo, E.; De Vita, L.; Pallavicini, P.; Visai, L. Gold Nanoparticles: Can They Be the next Magic Bullet for Multidrug-Resistant Bacteria? Nanomaterials 2021, 11, 312. [Google Scholar] [CrossRef]
- Khanna, S.; Padhan, P.; Das, S.; Jaiswal, K.S.; Tripathy, A.; Smita, S.; Tripathy, S.K.; Raghav, S.K.; Gupta, B. A Simple Colorimetric Method for Naked-eye Detection of Circulating Cell-free DNA Using Unlabelled Gold Nanoparticles. ChemistrySelect 2018, 3, 11541–11551. [Google Scholar] [CrossRef]
- Kukreja, A.; Kang, B.; Kim, H.O.; Jang, E.; Son, H.Y.; Huh, Y.M.; Haam, S. Preparation of gold core-mesoporous iron-oxide shell nanoparticles and their application as dual MR/CT contrast agent in human gastric cancer cells. J. Ind. Eng. Chem. 2017, 48, 56–65. [Google Scholar] [CrossRef]
- Ahangari, A.; Salouti, M.; Saghatchi, F. Gentamicin-gold nanoparticles conjugate: A contrast agent for x-ray imaging of infectious foci due to Staphylococcus aureus. IET Nanobiotechnol. 2016, 10, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Pourali, P.; Yahyaei, B.; Afsharnezhad, S. Bio-Synthesis of Gold Nanoparticles by Fusarium oxysporum and Assessment of Their Conjugation Possibility with Two Types of β-Lactam Antibiotics without Any Additional Linkers. Microbiology 2018, 87, 229–237. [Google Scholar] [CrossRef]
- Alafnan, A.; Rizvi, S.M.; Alshammari, A.S.; Faiyaz, S.S.; Lila, A.S.; Katamesh, A.A.; Khafagy, E.S.; Alotaibi, H.F.; Ahmed, A.B. Gold Nanoparticle-Based Resuscitation of Cefoxitin against Clinical Pathogens: A Nano-Antibiotic Strategy to Overcome Resistance. Nanomaterials 2022, 12, 3643. [Google Scholar] [CrossRef]
- Zong, T.-X.; Silveira, A.P.; Morais, J.A.; Sampaio, M.C.; Muehlmann, L.A.; Zhang, J.; Jiang, C.-S.; Liu, S.-K. Recent Advances in Antimicrobial Nano-Drug Delivery Systems. Nanomaterials 2022, 12, 1855. [Google Scholar] [CrossRef]
- Tayeb, H.H.; Moqaddam, S.A.; Hasaballah, N.H.; Felimban, R.I. Development of nanoemulsions for the delivery of hydrophobic and hydrophilic compounds against carbapenem-resistant Klebsiella pneumoniae. RSC Adv. 2022, 12, 26455–26462. [Google Scholar] [CrossRef]
- Larsson, D.G.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2021, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Chattopadhyay, M.K.; Grossart, H. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front. Microbiol. 2013, 4, 47. [Google Scholar] [CrossRef] [PubMed]
- Alba, C.; Blanco, A.; Alarcon, T. Antibiotic resistance in Helicobacter pylori. Curr. Opin. Infect. Dis. 2017, 30, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Kohler, V.; Vaishampayan, A.; Grohmann, E. Problematic Groups of Multidrug-Resistant Bacteria and Their Resistance Mechanisms. In Antibacterial Drug Discovery to Combat MDR; Springer: Berlin/Heidelberg, Germany, 2019; pp. 25–69. [Google Scholar]
- Chaudhuri, A.; Martin, P.M.; Kennedy, P.G.; Andrew Seaton, R.; Portegies, P.; Bojar, M.; Steiner, I. EFNS guideline on the management of community-acquired bacterial meningitis: Report of an EFNS Task Force on acute bacterial meningitis in older children and adults. Eur. J. Neurol. 2008, 15, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Poulin-Laprade, D.; Matteau, D.; Jacques, P.E.; Rodrigue, S.; Burrus, V. Transfer Activation of SXT/R391 integrative and conjugative elements: Unraveling the SetCD Regulon. Nucleic Acids Res. 2015, 43, 2045–2056. [Google Scholar] [CrossRef] [PubMed]
- Afshinnekoo, E.; Bhattacharya, C.; Burguete-García, A.; Castro-Nallar, E.; Deng, Y.; Desnues, C.; Dias-Neto, E.; Elhaik, E.; Iraola, G.; Jang, S.; et al. COVID-19 drug practices risk antimicrobial resistance evolution. Lancet Microbe 2021, 2, E135–E136. [Google Scholar] [CrossRef]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef]
- Yang, J.; Long, H.; Hu, Y.; Feng, Y.; McNally, A.; Zong, Z. Klebsiella oxytoca Complex: Update on Taxonomy, Antimicrobial Resistance, and Virulence. Clin. Microbiol. Rev. 2022, 35, e00006-21. [Google Scholar] [CrossRef]
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef]
- Wang, M.; Guo, Q.; Xu, X.; Wang, X.; Ye, X.; Wu, S.; Hooper, D.C.; Wang, M. New Plasmid-Mediated Quinolone Resistance Gene, qnrC, Found in a Clinical Isolate of Proteus mirabilis. Antimicrob. Agents Chemother. 2009, 53, 1892–1897. [Google Scholar] [CrossRef]
- Zhang, Y.; Tangadanchu, V.K.; Cheng, Y.; Yang, R.G.; Lin, J.M.; Zhou, C.H. Potential Antimicrobial Isopropanol-Conjugated Carbazole Azoles as Dual Targeting Inhibitors of Enterococcus faecalis. ACS Med. Chem. Lett. 2018, 9, 244–249. [Google Scholar] [CrossRef]
- Conrads, G.; Klomp, T.; Deng, D.; Wenzler, J.S.; Braun, A.; Abdelbary, M.M. The Antimicrobial Susceptibility of Porphyromonas gingivalis: Genetic Repertoire, Global Phenotype, and Review of the Literature. Antibiotics 2021, 10, 1438. [Google Scholar] [CrossRef]
- Zhu, M.; Zhu, Q.; Yang, Z.; Liang, Z. Clinical Characteristics of Patients with Micrococcus luteus Bloodstream Infection in a Chinese Tertiary-Care Hospital. Pol. J. Microbiol. 2021, 70, 321–326. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Ahmad, A. Antibiotic resistance profiling and phenotyping of Aeromonas species isolated from aquatic sources. Saudi J. Biol. Sci. 2017, 24, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Monk, I.R.; Gonçalves, S.A.; Seemann, T.; Chua, K.Y.; Kearns, A.; Hill, R.; Woodford, N.; Bartels, M.D.; Strommenger, B.; et al. Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis. Nat. Microbiol. 2018, 3, 1175–1185. [Google Scholar] [CrossRef]
- Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2014, 13, 42–51. [Google Scholar] [CrossRef]
- Chawla, M.; Verma, J.; Gupta, R.; Das, B. Antibiotic Potentiators against Multidrug-Resistant Bacteria: Discovery, Development, and Clinical Relevance. Front. Microbiol. 2022, 13, 887251. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.M.; Richmond, G.E.; Piddock, L.J. Multidrug Efflux Pumps in Gram-Negative Bacteria and Their Role in Antibiotic Resistance. Future Microbiol. 2014, 9, 1165–1177. [Google Scholar] [CrossRef]
- Villagra, N.A.; Fuentes, J.A.; Jofre, M.R.; Hidalgo, A.A.; Garcia, P.; Mora, G.C. The carbon source influences the efflux pump-mediated antimicrobial resistance in clinically important Gram-negative bacteria. J. Antimicrob. Chemother. 2012, 67, 921–927. [Google Scholar] [CrossRef]
- Samanta, S.; Agarwal, S.; Nair, K.K.; Harris, R.A.; Swart, H. Biomolecular assisted synthesis and mechanism of silver and gold nanoparticles. Mater. Res. Express 2019, 6, 82009. [Google Scholar] [CrossRef]
- Barman, K.; Chowdhury, D.; Baruah, P.K. Bio-synthesized silver nanoparticles using Zingiber officinale rhizome extract as efficient catalyst for the degradation of environmental pollutants. Inorg. Nano-Met. Chem. 2019, 50, 57–65. [Google Scholar] [CrossRef]
- Li, N.; Zhao, P.; Astruc, D. Anisotropic Gold Nanoparticles: Synthesis, Properties, Applications, and Toxicity. Angew. Chem. 2014, 53, 1756–1789. [Google Scholar] [CrossRef]
- Fan, Y.; Pauer, A.C.; Gonzales, A.A.; Fenniri, H. Enhanced antibiotic activity of ampicillin conjugated to gold nanoparticles on PEGylated rosette nanotubes. Int. J. Nanomed. 2019, 14, 7281–7289. [Google Scholar] [CrossRef]
- Halawani, E.M.; Alzahrani, S.S.; Gad El-Rab, S.M. Biosynthesis Strategy of Gold Nanoparticles and Biofabrication of a Novel Amoxicillin Gold Nanodrug to Overcome the Resistance of Multidrug-Resistant Bacterial Pathogens MRSA and E. Coli. Biomimetics 2023, 8, 452. [Google Scholar] [CrossRef]
- Kaur, A.; Kumar, R. Untangling the Effect of Surfactants as an Intermediate at Gold Nanoparticle-Antibiotic Interface for Enhanced Bactericidal Effect. ES Food Agrofor. 2022, 7, 30–40. [Google Scholar] [CrossRef]
- Shaikh, S.; Rizvi, S.M.D.; Shakil, S.; Hussain, T.; Alshammari, T.M.; Ahmad, W.; Tabrez, S.; Al-Qahtani, M.H.; Abuzenadah, A.M. Synthesis and Characterization of Cefotaxime Conjugated Gold Nanoparticles and Their Use to Target Drug-Resistant CTX-M-Producing Bacterial Pathogens. J. Cell. Biochem. 2017, 118, 2802–2808. [Google Scholar] [CrossRef] [PubMed]
- Hagbani, T.A.; Yadav, H.; Moin, A.; Lila, A.S.; Mehmood, K.; Alshammari, F.; Khan, S.; Khafagy, E.S.; Hussain, T.; Rizvi, S.M.; et al. Enhancement of Vancomycin Potential against Pathogenic Bacterial Strains via Gold Nano-Formulations: A Nano-Antibiotic Approach. Materials 2022, 15, 1108. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, J.; Wang, L.; Ran, B.; Jia, Y.; Zhang, L.; Yang, G.; Shao, H.; Jiang, X. Pharmaceutical Intermediate-Modified Gold Nanoparticles: Against Multidrug-Resistant Bacteria and Wound-Healing Application via an Electrospun Scaffold. ACS Nano 2017, 11, 5737–5745. [Google Scholar] [CrossRef] [PubMed]
- Fuller, M.; Whiley, H.; Koper, I. Antibiotic delivery using gold nanoparticles. SN Appl. Sci. 2020, 2, 1022. [Google Scholar] [CrossRef]
- Shaker, M.A.; Shaaban, M.I. Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: In vitro antibacterial study. Int. J. Pharm. 2017, 525, 71–84. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Q.; Xie, Z.; Song, X.; Gong, J. Determination and Correlation of Solubility Data and Dissolution Thermodynamic Data of Cefixime Trihydrate in Seven Pure Solvents. J. Chem. Eng. Data 2014, 59, 1915–1921. [Google Scholar] [CrossRef]
- Estes Bright, L.M.; Garren, M.R.; Douglass, M.; Handa, H. Synthesis and Characterization of Nitric Oxide-Releasing Ampicillin as a Potential Strategy for Combatting Bacterial Biofilm Formation. ACS Appl. Mater. Interfaces 2023, 15, 15185–15194. [Google Scholar] [CrossRef]
- Golmohamadpour, A.; Bahramian, B.; Khoobi, M.; Pourhajibagher, M.; Barikani, H.R.; Bahador, A. Antimicrobial photodynamic therapy assessment of three indocyanine green-loaded metal-organic frameworks against Enterococcus faecalis. Photodiagn. Photodyn. Ther. 2018, 23, 331–338. [Google Scholar] [CrossRef]
- Post, S.J.; Shapiro, J.A.; Wuest, W.M. Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance. MedChemComm 2019, 10, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Ghai, I.; Bajaj, H.; Arun Bafna, J.; El Damrany Hussein, H.A.; Winterhalter, M.; Wagner, R. Ampicillin permeation across Ompf, the major outer-membrane channel in Escherichia coli. J. Biol. Chem. 2018, 293, 7030–7037. [Google Scholar] [CrossRef]
- Choo, E.J.; Chambers, H.F. Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia. Infect. Chemother. 2016, 48, 267. [Google Scholar] [CrossRef]
- Shi, W.; Li, K.; Ji, Y.; Jiang, Q.; Wang, Y.; Shi, M.; Mi, Z. Carbapenem and cefoxitin resistance of Klebsiella pneumoniae strains associated with porin Ompk36 loss and DHA-1-β-lactamase production. Braz. J. Microbiol. 2013, 44, 435–442. [Google Scholar] [CrossRef]
- Moustaoui, H.; Movia, D.; Dupont, N.; Bouchemal, N.; Casale, S.; Djaker, N.; Savarin, P.; Prina-Mello, A.; de la Chapelle, M.L.; Spadavecchia, J. Tunable Design of Gold(III)–Doxorubicin Complex–Pegylated Nanocarrier. the Golden Doxorubicin for Oncological Applications. ACS Appl. Mater. Interfaces 2016, 8, 19946–19957. [Google Scholar] [CrossRef] [PubMed]
- Justo, J.A.; Bosso, J.A. Adverse Reactions Associated with Systemic Polymyxin Therapy. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2014, 35, 28–33. [Google Scholar] [CrossRef]
- Sotgiu, G.; D’Ambrosio, L.; Centis, R.; Tiberi, S.; Esposito, S.; Dore, S.; Spanevello, A.; Migliori, G. Carbapenems to Treat Multidrug and Extensively Drug-Resistant Tuberculosis: A Systematic Review. Int. J. Mol. Sci. 2016, 17, 373. [Google Scholar] [CrossRef]
- Alhadrami, H.A.; Orfali, R.; Hamed, A.A.; Ghoneim, M.M.; Hassan, H.M.; Hassane, A.S.; Rateb, M.E.; Sayed, A.M.; Gamaleldin, N.M. Flavonoid-Coated Gold Nanoparticles as Efficient Antibiotics against Gram-Negative Bacteria—Evidence from in Silico-Supported in Vitro Studies. Antibiotics 2021, 10, 968. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Osonga, F.J.; Akgul, A.; Miller, R.M.; Eshun, G.B.; Yazgan, I.; Akgul, A.; Sadik, O.A. Antimicrobial Activity of a New Class of Phosphorylated and Modified Flavonoids. ACS Omega 2019, 4, 12865–12871. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, M.; Lee, J.H.; Lee, J. Development of gold nanoparticles coated with silica containing the antibiofilm drug cinnamaldehyde and their effects on pathogenic bacteria. Int. J. Nanomed. 2017, 12, 2813–2828. [Google Scholar] [CrossRef] [PubMed]
- Riaz, S.; Fatima, R.N.; Hussain, I.; Tanweer, T.; Nawaz, A.; Menaa, F.; Janjua, H.A.; Alam, T.; Batool, A.; Naeem, A.; et al. Effect of Flavonoid-Coated Gold Nanoparticles on Bacterial Colonization in Mice Organs. Nanomaterials 2020, 10, 1769. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Xie, Y.; Zhang, Q.; Zhang, W.; Jiang, X.; Lin, J. Biological Safe Gold Nanoparticle-Modified Dental Aligner Prevents the Porphyromonas gingivalis Biofilm Formation. ACS Omega 2020, 5, 18685–18692. [Google Scholar] [CrossRef]
- Mitra, P.; Chakraborty, P.K.; Saha, P.; Ray, P.; Basu, S. Antibacterial efficacy of acridine derivatives conjugated with gold nanoparticles. Int. J. Pharm. 2014, 473, 636–643. [Google Scholar] [CrossRef]
- Wang, L.; Natan, M.; Zheng, W.; Zheng, W.; Liu, S.; Jacobi, G.; Perelshtein, I.; Gedanken, A.; Banin, E.; Jiang, X. Small molecule-decorated gold nanoparticles for preparing antibiofilm fabrics. Nanoscale Adv. 2020, 2, 2293–2302. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cha, R.; Zhao, X.; Guo, H.; Luo, H.; Wang, M.; Zhou, F.; Jiang, X. Gold Nanoparticles Cure Bacterial Infection with Benefit to Intestinal Microflora. ACS Nano 2019, 13, 5002–5014. [Google Scholar] [CrossRef] [PubMed]
- Anwar, A.; Khalid, S.; Perveen, S.; Ahmed, S.; Siddiqui, R.; Khan, N.A.; Shah, M.R. Synthesis of 4-(dimethylamino)pyridine propylthioacetate coated gold nanoparticles and their antibacterial and photophysical activity. J. Nanobiotechnol. 2018, 16, 6. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.F.; Huang, C.Z.; Li, Y.F. Hybridization Detection of DNA by Measuring Organic Small Molecule Amplified Resonance Light Scattering Signals. J. Phys. Chem. B 2007, 111, 4535–4538. [Google Scholar] [CrossRef]
- Bentin, T.; Nielsen, P.E. Superior Duplex DNA Strand Invasion by Acridine Conjugated Peptide Nucleic Acids. J. Am. Chem. Soc. 2003, 125, 6378–6379. [Google Scholar] [CrossRef]
Name of the Bacteria | Type of the Bacteria | Resistance to Antibiotics (Classes) | Infections Caused | Refs. |
---|---|---|---|---|
Staphylococcus aureus | Small round-shaped, Gram-positive bacteria | Methicillin, vancomycin, tetracycline, quinolone, fluoroquinolones, penicillin, phenicol, lipopeptide, aminoglycosides | Nosocomial infections, soft tissue infections, endocarditis, pneumonia, suppurative diseases, respiratory tract infections, fatal sepsis. | [42] |
Escherichia coli | Rod-shaped, Gram-negative bacteria | Carbapenems, aminoglycosides, β-lactams, quinolone, polymyxins | Urinary tract infections, hospital-acquired infections. | [9] |
Klebsiella pneumoniae | Rod-shaped, Gram-negative bacteria | β-Lactams, carbapenems, aminoglycosides, rifamycins | Pneumonia, urinary tract infections, bloodstream infections, skin infections. | [9] |
Klebsiella oxytoca | Rod-shaped, Gram-negative bacteria | Aminoglycosides, cephalosporin, carbapenems, fluoroquinolones, tetracycline, chloramphenicol | Bacteremia, antibiotic-associated hemorrhagic colitis, mild diarrhoea, urinary tract infections, bloodstream Infections. | [43] |
Pseudomonas aeruginosa | Rod-shaped, Gram-negative bacteria | β-Lactams, carbapenems, fluoroquinolones, aminoglycosides, quinolone | Nosocomial infections, urinary tract infections, pneumonia, skin infections, chronic lung disease like cystic fibrosis. | [44] |
Acinetobacter baumannii | Short rod-shaped, Gram-negative bacteria | Carbapenem, imipenem, aminoglycosides, Fluoroquinolones | Urinary tract infections, bloodstream infections, hospital- acquired infections. | [9] |
Proteus mirabilis | Rod-shaped, Gram-negative bacteria | Penicillin, folate inhibitors, quinolone | Gastrointestinal tract infections, crohn’s disease, respiratory tract infections, skin infections, bloodstream infections. | [45] |
Enterococcus faecalis | Slightly oval shaped, Gram-positive bacteria | Glycopeptides, oxazolidinone, lipopeptide | Abdominal infections, pelvic infections, septicaemia. | [46] |
Porphyromonas gingivalis | Rod-shaped, Gram-negative bacteria | Tetracyclines, penicillin, lincosamides, nitroimidazole | Periodontal disease. | [47] |
Micrococcus luteus | Sphere-shaped, Gram-positive bacteria | Macrolides, cephalosporin, penicillin | Hepatic and brain abscess, bacteremia, bloodstream infections. | [48] |
Aeromonas hydrophila | Rod-shaped, Gram-negative bacteria | Penicillin, ampicillin, tetracycline | Bacteremia, diarrhoea, gastroenteristrics, urinary tract infections. | [49] |
Staphylococcus epidermidis | Grape-like clusters shaped, Gram-positive bacteria | Vancomycin, glycopeptides, rifamycins | Bloodstream infections, surgical site infections. | [50] |
Name of Antibiotics | Class of Antibiotics | Size and Shape of AuNPs | Time, Temperature of Synthesis and UV Absorption Peak of AuNPs | Tested Bacteria | MIC | Remarks | Refs. |
---|---|---|---|---|---|---|---|
Cefixime | Cephalosporin | Spherical, size ranging from 25 to 50 nm. | 2.5 h 532 nm | S. aureus | 45 ± 0.12 μg/mL (correspond to 3.24 μg of cefixime) | Efficiency of cefixime increased by 8 times when conjugated with AuNPs. | [5] |
Amoxicillin | Penicillin | Irregular shapes including triangular, hexagonal, spherical, etc. | 18 min and 50 °C | P. aeruginosa, S. aureus | 1.5 µg/mL | A 60% and 70% reduction in the viability was obtained for S. aureus and P. aeruginosa biofilm, respectively. | [6] |
Amoxicillin | Penicillin | Hexagonal and spherical shape, size between 15.99 and 24.71 nm. | 1 h and 25 °C 534 nm | MRSA, E. coli | 3.6–8 µg/mL | The synthesised coated AuNPs exhibited a MIC 12–31 times less compared to pure amoxicillin. | [59] |
Ampicillin | Penicillin | 1.43 ± 0.5 nm. | 24 h and room temp | MRSA, S. aureus | 0.58 μg/mL against S. aureus and 4 μg/mL for MRSA | The MIC reduced by 18% against S. aureus bacteria and 10–20 times against MRSA as compared to ampicillin alone. | [58] |
Amikacin | Aminoglycoside | All possesses spherical morphology, for citrate- AuNPs, the average particle size is 3.3 nm, for PVP-AuNPs average size is 11.5 nm and for Tween 20-AuNP average size is 6.25 nm. | 2 h and room temp. 533, 537 and 535 for citrate, Tween 20 and PVP capped AuNPs, respectively. | E. coli, S. aureus | - | All the amikacin-coated AuNPs fabricated using different surfactants exhibit enhanced antibacterial activity against both the bacterial strains compared to amikacin alone. | [60] |
Cefotaxime | Cephalosporin | All possess spherical shape and are monodispersed. Average size of pure AuNPs and Cefotaxime conjugated AuNPs were reported as 6.87 ± 2.43 and 17.55 ± 2.95 nm, respectively. | 48 h and 40 °C 542 nm | E. coli, K. pneumoniae | 1.009 μg/mL for E. coli and 2.018 μg/mL for K. pneumoniae | Conjugation of cefotaxime introduced antibacterial activity to the AuNPs, as pure AuNPs not show any antibacterial properties. | [61] |
Vancomycin | Glycopeptide | Spherical shape and monodispersed with an average size 24 nm. | 48 h and 40 °C 524 nm | E. coli, K. oxytoca, P. aeruginosa, S. aureus | 93.44 μg/mL for E. coli, 70.84 μg/mL for K. oxytoca, 60.65 μg/mL for P. aeruginosa, 30.63 μg/mL for S. aureus | Vancomycin-coated AuNPs enhanced the antibacterial activity of the drug by 1.6, 1.4, 1.6 and 1.8-fold against K. oxytoca, E. coli, S. aureus and P. aeruginosa bacteria. | [62] |
Cefoxitin | Cephalosporin | Spherical, poly-dispersed and size between 2 and 12 nm. | 48 h and 40 °C 518 nm | E. coli, K. pneumoniae | MIC 50 value for E. coli is 1.5 µg/mL and for K. pneumoniae 2.5 µg/mL | AuNPs are found to be efficient for delivering the drug to both the bacterial strains and transform the antibiotic from an unresponsive drug to an effective one. | [32] |
Doxycycline | Tetracycline | Spherical, average size was 13 ± 1.2 nm. | 15 min 540 nm | S. aureus E. coli, K. pneumoniae, A. baumannii, P. aeruginosa | 2 μg/mL | MIC value for doxycycline conjugated AuNPs was reduced by almost 16 times as compared to doxycycline alone. | [11] |
6-Amino-penicillanic acid | - | ~3 nm | ~1 h in ice water bath | E. coli, K. pneumoniae P. aeruginosa, MDR E. coli and MDR K. pneumoniae | 2.5 μg/mL for E. coli, 5 μg/mL for K. pneumoniae and for the rest of the bacterial strain, it was 1 μg/mL | MIC value of pure 6-aminopenicillanic acid molecule was greater than 250 μg/mL. But for MDR E. coli and K. pneumoniae bacteria it was decreased to 5 μg/mL when coated in AuNPs. | [63] |
Colistin | Polymyxins | - | - | E. coli | 0.23 ± 0.03 µg/mL | On conjugation with AuNPs the MIC of colistin reduced by 6.8 fold. | [64] |
Imipenem and Meropenem | Carbapenems | 35–200 nm | 20 min 530 nm | K. pneumoniae, P. mirabilis, A. baumanii | 2.5 µg/mL for K. pneumoniae And for P. mirabilis and A. baumanii, MIC value is ~1.25 µg/mL | Imipenem-loaded AuNPs demonstrated decreased MIC of imipenem by four times, and meropenem-loaded AuNPs demonstrated a three times decrease in the MIC of meropenem. | [65] |
Heterocyclic Compounds | Size of AuNPs | UV Absorption Peak | Tested Bacteria | Antimicrobial Activity | Refs. |
---|---|---|---|---|---|
4,6-Diamino- 2-pyrimidinethiol | Less than 4 nm | 510 nm | P. gingivalis | Inhibited the growth of bacteria as well as biofilm formation and up to a concentration of 104 CFU/mL bacterial growth was arrested. | [81] |
Acridine derivatives | 15–20 nm | 525 nm | B. subtilis E. coli | 9-Aminoacridine hydrochloride hydrate- and acridine orange-coated AuNPs showed enhanced antimicrobial activity. | [82] |
3-Amino-1,2,4 triazole- 5-thiol, 6-Amino-2- mercaptobenzothiazole, 2-Amino-6-mercaptopurine, 6-Aminopenicillanic acid, 2-Mercaptoimidazole | 4–7 nm | - | S. aureus E. coli MDR K. pneumoniae | 2-Mercaptoimidazole and 3-amino-1,2,4-triazole-5-thiol-coated AuNPs reduced the viability of MRSA by 4.1 and 3.5 logs, respectively. 2-Mercaptoimidazole-coated AuNPs reduced the viability of biofilm produced by MDR K. pneumoniae, MDR E. coli and E. coli by 1.3, 1 and 1.9 logs, respectively. | [83] |
4,6-Diamino-2- pyrimidinethiol | 12.90 and 16.57 nm for pure and coated AuNPs | 520 nm | E. coli | Compared to the antimicrobial drug levofloxacin, conjugated AuNPs showed superior activity in curing bacterial infections without affecting the intestinal microflora. | [84] |
4-Dimethyl aminopyridinium propylthioacetate | 5–20 nm | 520 nm | E. coli | Conjugation with AuNPs enhanced the antimicrobial properties of the 4-Dimethyl aminopyridinium propylthioacetate ligand. Further, combination of the heterocyclic compound-coated AuNPs with a pefoxacin drug reduced the MIC value by almost half compared to the pure drug. | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarma, P.P.; Rai, A.; Baruah, P.K. Recent Advances in the Development of Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance. Antibiotics 2024, 13, 124. https://doi.org/10.3390/antibiotics13020124
Sarma PP, Rai A, Baruah PK. Recent Advances in the Development of Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance. Antibiotics. 2024; 13(2):124. https://doi.org/10.3390/antibiotics13020124
Chicago/Turabian StyleSarma, Partha Pratim, Akhilesh Rai, and Pranjal K. Baruah. 2024. "Recent Advances in the Development of Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance" Antibiotics 13, no. 2: 124. https://doi.org/10.3390/antibiotics13020124
APA StyleSarma, P. P., Rai, A., & Baruah, P. K. (2024). Recent Advances in the Development of Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance. Antibiotics, 13(2), 124. https://doi.org/10.3390/antibiotics13020124