Bloodstream Infection in the Intensive Care Unit: Evolving Epidemiology and Microbiology
Abstract
:1. Introduction
2. Classification Schemes
3. Epidemiology and Microbiology
4. COVID-19 and ICU BSI
5. Multi-Drug-Resistant Organisms
5.1. Carbapenem-Resistant Enterobacterales
5.2. Acinetobacter
5.3. Methicillin-Resistant Staphylococcus aureus
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Timsit, J.F.; Ruppé, E.; Barbier, F.; Tabah, A.; Bassetti, M. Bloodstream infections in critically ill patients: An expert statement. Intensive Care Med. 2020, 46, 266–284. [Google Scholar] [CrossRef]
- Tabah, A.; Lipman, J.; Barbier, F.; Buetti, N.; Timsit, J.F.; on behalf of the Escmid Study Group for Infections in Critically III Patients—ESGCIP. Use of Antimicrobials for Bloodstream Infections in the Intensive Care Unit, a Clinically Oriented Review. Antibiotics 2022, 11, 362. [Google Scholar] [CrossRef]
- Allel, K.; Stone, J.; Undurraga, E.A.; Day, L.; Moore, C.E.; Lin, L.; Furuya-Kanamori, L.; Jacob, L. The impact of inpatient bloodstream infections caused by antibiotic-resistant bacteria in low- and middle-income countries: A systematic review and meta-analysis. PLoS Med. 2023, 20, e1004199. [Google Scholar] [CrossRef]
- Taddei, E.; Pafundi, P.C.; Masciocchi, C.; Fiori, B.; Segala, F.V.; Antenucci, L.; Guerriero, S.; Pastorino, R.; Scarsi, N.; Damiani, A.; et al. Epidemiology, time course, and risk factors for hospital-acquired bloodstream infections in a cohort of 14,884 patients before and during the COVID-19 pandemic. Infect. Dis. 2023, 55, 776–785. [Google Scholar] [CrossRef]
- Bassetti, M.; Righi, E.; Carnelutti, A. Bloodstream infections in the Intensive Care Unit. Virulence 2016, 7, 267–279. [Google Scholar] [CrossRef]
- Timsit, J.F.; Baleine, J.; Bernard, L.; Calvino-Gunther, S.; Darmon, M.; Dellamonica, J.; Desruennes, E.; Leone, M.; Lepape, A.; Leroy, O.; et al. Expert consensus-based clinical practice guidelines management of intravascular catheters in the intensive care unit. Ann. Intensive Care 2020, 10, 118. [Google Scholar] [CrossRef]
- Buetti, N.; Timsit, J.F. Management and Prevention of Central Venous Catheter-Related Infections in the ICU. Semin. Respir. Crit. Care Med. 2019, 40, 508–523. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ruigómez, M.; Aguado, J.M. Curr. Duration of antibiotic therapy in central venous catheter-related bloodstream infection due to Gram negative bacilli. Curr. Opin. Infect. Dis. 2021, 34, 681–685. [Google Scholar] [CrossRef]
- Gouel-Cheron, A.; Swihart, B.J.; Warner, S.; Mathew, L.; Strich, J.R.; Mancera, A.; Follmann, D.; Kadri, S.S. Epidemiology of ICU-Onset Bloodstream Infection: Prevalence, Pathogens, and Risk Factors among 150,948 ICU Patients at 85 U.S. Hospitals. Crit. Care Med. 2022, 50, 1725–1736. [Google Scholar] [CrossRef] [PubMed]
- Tabah, A.; Buetti, N.; Staiquly, Q.; Ruckly, S.; Akova, M.; Aslan, A.T.; Leone, M.; Conway Morris, A.; Bassetti, M.; Arvaniti, K.; et al. Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: The EUROBACT-2 international cohort study. Intensive Care Med. 2023, 49, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Crespo, P.M.M.; Lanz-García, J.F.; Bravo-Ferrer, J.; Cantón-Bulnes, M.L.; Sousa Domínguez, A.; Goikoetxea Aguirre, J.; Reguera-Iglesias, J.M.; León Jiménez, E.; Armiñanzas Castillo, C.; Mantecón Vallejo, M.Á.; et al. Revisiting the epidemiology of bloodstream infections and healthcare-associated episodes: Results from a multicentre prospective cohort in Spain (PRO-BAC Study). Int. J. Antimicrob. Agents 2021, 58, 106352. [Google Scholar] [CrossRef]
- El-Sokkary, R.; Uysal, S.; Erdem, H.; Kullar, R.; Pekok, A.U.; Amer, F.; Grgić, S.; Carevic, B.; El-Kholy, A.; Liskova, A.; et al. Profiles of multidrug-resistant organisms among patients with bacteremia in intensive care units: An international ID-IRI survey. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2323–2334. [Google Scholar] [CrossRef]
- Gao, C.A.; Markov, N.S.; Stoeger, T.; Pawlowski, A.; Kang, M.; Nannapaneni, P.; Grant, R.A.; Pickens, C.; Walter, J.M.; Kruser, J.M.; et al. Machine learning links unresolving secondary pneumonia to mortality in patients with severe pneumonia, including COVID-19. J. Clin. Investig. 2023, 133, e170682. [Google Scholar] [CrossRef]
- Buetti, N.; Ruckly, S.; de Montmollin, E.; Reignier, J.; Terzi, N.; Cohen, Y.; Siami, S.; Dupuis, C.; Timsit, J.F. COVID-19 increased the risk of ICU-acquired bloodstream infections: A case-cohort study from the multicentric OUTCOMEREA network. Intensive Care Med. 2021, 47, 180–187. [Google Scholar] [CrossRef]
- Massart, N.; Maxime, V.; Fillatre, P.; Razazi, K.; Ferre, A.; Monk, P.; Legay, F.; Voiriot, G.; Amara, M.; Santi, F.; et al. Characteristics and prognosis of bloodstream infection in patients with COVID-19 admitted in the ICU: An ancillary study of the COVID-ICU study. Ann. Intensive Care 2021, 11, 183. [Google Scholar] [CrossRef]
- Buetti, N.; Tabah, A.; Loiodice, A.; Ruckly, S.; Aslan, A.T.; Montrucchio, G.; Cortegiani, A.; Saltoglu, N.; Kayaslan, B.; Aksoy, F.; et al. Different epidemiology of bloodstream infections in COVID-19 compared to non COVID-19 critically ill patients: A descriptive analysis of the Eurobact II study. Crit. Care 2022, 26, 319. [Google Scholar] [CrossRef]
- Diekema, D.J.; Hsueh, P.R.; Mendes, R.E.; Pfaller, M.A.; Rolston, K.V.; Sader, H.S.; Jones, R.N. The Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother. 2019, 63, e00355-19. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Zhao, C.; Chen, H.; Li, H.; Wang, H.; Cares Network, O.B.O.T. Prospective multi-center evaluation on risk factors, clinical characteristics and outcomes due to carbapenem resistance in Acinetobacter baumannii complex bacteraemia: Experience from the Chinese Antimicrobial Resistance Surveillance of Nosocomial Infections (CARES) Network. J. Med. Microbiol. 2020, 69, 949–959. [Google Scholar]
- Zhang, Y.; Wang, Q.; Yin, Y.; Chen, H.; Jin, L.; Gu, B.; Xie, L.; Yang, C.; Ma, X.; Li, H.; et al. Epidemiology of Carbapenem-Resistant Enterobacteriaceae Infections: Report from the China CRE Network. Antimicrob. Agents Chemother. 2018, 62, e01882-17. [Google Scholar] [CrossRef]
- Guh, A.Y.; Bulens, S.N.; Mu, Y.; Jacob, J.T.; Reno, J.; Scott, J.; Wilson, L.E.; Vaeth, E.; Lynfield, R.; Shaw, K.M.; et al. Epidemiology of Carbapenem-Resistant Enterobacteriaceae in 7 US Communities, 2012–2013. JAMA 2015, 314, 1479–1487. [Google Scholar] [CrossRef]
- Manageiro, V.; Romão, R.; Moura, I.B.; Sampaio, D.A.; Vieira, L.; Ferreira, E.; Network EuSCAPE-Portugal; Caniça, M. Molecular Epidemiology and Risk Factors of Carbapenemase-Producing Enterobacteriaceae Isolates in Portuguese Hospitals: Results From European Survey on Carbapenemase-Producing Enterobacteriaceae (EuSCAPE). Front. Microbiol. 2018, 9, 2834. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, Z.; Sun, Z. Antimicrobial resistance trends in bloodstream infections at a large teaching hospital in China: A 20-year surveillance study (1998–2017). Antimicrob. Resist. Infect. Control 2019, 8, 86. [Google Scholar] [CrossRef]
- Satlin, M.J.; Chen, L.; Patel, G.; Gomez-Simmonds, A.; Weston, G.; Kim, A.C.; Seo, S.K.; Rosenthal, M.E.; Sperber, S.J.; Jenkins, S.G.; et al. Multicenter Clinical and Molecular Epidemiological Analysis of Bacteremia Due to Carbapenem-Resistant Enterobacteriaceae (CRE) in the CRE Epicenter of the United States. Antimicrob. Agents Chemother. 2017, 61, e02349-16. [Google Scholar] [CrossRef]
- Pérez-Galera, S.; Bravo-Ferrer, J.M.; Paniagua, M.; Kostyanev, T.; de Kraker, M.E.A.; Feifel, J.; Sojo-Dorado, J.; Schotsman, J.; Cantón, R.; Daikos, G.L.; et al. Risk factors for infections caused by carbapenem-resistant Enterobacterales: An international matched case-control-control study (EURECA). EClinicalMedicine 2023, 57, 101871. [Google Scholar] [CrossRef]
- Alenazi, T.A.; Shaman, M.S.B.; Suliman, D.M.; Alanazi, T.A.; Altawalbeh, S.M.; Alshareef, H.; Lahreche, D.I.; Al-Azzam, S.; Araydah, M.; Karasneh, R.; et al. The Impact of Multidrug-Resistant Acinetobacter baumannii Infection in Critically Ill Patients with or without COVID-19 Infection. Healthcare 2023, 11, 487. [Google Scholar] [CrossRef]
- Papathanakos, G.; Andrianopoulos, I.; Papathanasiou, A.; Priavali, E.; Koulenti, D.; Koulouras, V. Colistin-Resistant Acinetobacter Baumannii Bacteremia: A Serious Threat for Critically Ill Patients. Microorganisms 2020, 8, 287. [Google Scholar] [CrossRef]
- Gu, Y.; Jiang, Y.; Zhang, W.; Yu, Y.; He, X.; Tao, J.; Hou, X.; Wang, H.; Deng, M.; Zhou, M.; et al. Risk factors and outcomes of bloodstream infections caused by Acinetobacter baumannii: A case-control study. Diagn Microbiol. Infect. Dis. 2021, 99, 115229. [Google Scholar] [CrossRef]
- Diekema, D.J.; Pfaller, M.A.; Shortridge, D.; Zervos, M.; Jones, R.N. Twenty-Year Trends in Antimicrobial Susceptibilities Among Staphylococcus aureus From the SENTRY Antimicrobial Surveillance Program. Open Forum. Infect. Dis. 2019, 6, S47–S53. [Google Scholar] [CrossRef]
- Edgeworth, J.D.; Batra, R.; Wulff, J.; Harrison, D. Reductions in Methicillin-resistant Staphylococcus aureus, Clostridium difficile Infection and Intensive Care Unit-Acquired Bloodstream Infection Across the United Kingdom Following Implementation of a National Infection Control Campaign. Clin. Infect. Dis. 2020, 70, 2530–2540. [Google Scholar] [CrossRef]
- Shulder, S.; Tamma, P.D.; Kings, S.; Dzintars, K.; Escobar, D.; Livorsi, D.J.; Malani, A.N.; Palacio, D.; Spivak, E.S.; Zimmerman, M.; et al. Infectious Diseases Consultation Associated with Reduced Mortality in Gram-Negative Bacteremia. Clin. Infect. Dis. 2023, 77, 1234–1237. [Google Scholar] [CrossRef]
- Ramanathan, S.; Albarillo, F.S.; Fitzpatrick, M.A.; Suda, K.J.; Poggensee, L.; Vivo, A.; Evans, M.E.; Jones, M.; Safdar, N.; Pfeiffer, C.; et al. Infectious Disease Consults of Pseudomonas aeruginosa Bloodstream Infection and Impact on Health Outcomes. Open Forum Infect. Dis. 2022, 9, ofac456. [Google Scholar] [CrossRef] [PubMed]
Authors | Reference | Study Name | Years Studied | Methodology | Geography | Subjects | Most Common Pathogens in ICU BSI | Findings of Note |
---|---|---|---|---|---|---|---|---|
Gouel-Cheron A., et al. | [9] | NR | 2009–2015 | Observational, retrospective, administrative database | US | A total of 150,948 patients in the ICU | S. aureus, S. pneumoniae, E. coli | In total, 4.2% of patients in the ICU suffered a BSI, 12% arose in the ICU |
Tabah A., et al. | [10] | EUROBACT-2 | 2019–2021 | Observational, prospective, cohort | Global except for US | A total of 2600 patients in the ICU with hospital-acquired BSI treated in the ICU | Klebsiella spp., Enterococcus spp., S. aureus, P. aeruginosa | The median time to appropriate antibiotic therapy was 1 day in BSIs due to generally susceptible pathogens vs. 4 days in cases of DTR infections |
Perez-Crespo P.M.M., et al. | [11] | PROBAC | 2016–2017 | Observational, prospective, cohort | Spain | A total of 6345 hospitalized patients with BSI (1708 subjects with severe sepsis or septic shock) | E. coli, S. aureus, Klebsiella spp. | Most common secondary sites for ICU BSIs were CVCs and the urinary tract |
Authors | Reference | Years | Study Design | Geography | Subjects | Prevalence of BSI in COVID-19 | Notable Observations |
---|---|---|---|---|---|---|---|
Buetti N., et al. | [14] | 2020 | Retrospective case control | France | A total of 321 subjects with COVID-19, 1029 controls without COVID-19 |
|
|
Massart N., et al. | [15] | 2020 | Secondary analysis of prospective observational study | International | A total of 4010 patients with COVID-19 cared for in the ICU |
|
|
Buetti N., et al. | [16] | 2019–2021 | Secondary analysis of prospective observational study | International | A total of 829 patients with BSI (30.4% with COVID-19) |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munro, C.; Zilberberg, M.D.; Shorr, A.F. Bloodstream Infection in the Intensive Care Unit: Evolving Epidemiology and Microbiology. Antibiotics 2024, 13, 123. https://doi.org/10.3390/antibiotics13020123
Munro C, Zilberberg MD, Shorr AF. Bloodstream Infection in the Intensive Care Unit: Evolving Epidemiology and Microbiology. Antibiotics. 2024; 13(2):123. https://doi.org/10.3390/antibiotics13020123
Chicago/Turabian StyleMunro, Carly, Marya D. Zilberberg, and Andrew F. Shorr. 2024. "Bloodstream Infection in the Intensive Care Unit: Evolving Epidemiology and Microbiology" Antibiotics 13, no. 2: 123. https://doi.org/10.3390/antibiotics13020123
APA StyleMunro, C., Zilberberg, M. D., & Shorr, A. F. (2024). Bloodstream Infection in the Intensive Care Unit: Evolving Epidemiology and Microbiology. Antibiotics, 13(2), 123. https://doi.org/10.3390/antibiotics13020123