Efficacy and Experience of Bacteriophages in Biofilm-Related Infections
Abstract
:1. Introduction
2. Bacteriophages
2.1. Life Cycle and Host Interactions
2.2. Advantages over Antibiotics
2.3. Limitations
2.4. In Vitro Studies
2.4.1. Single Phages
2.4.2. Phage Cocktail
2.4.3. Combination Therapy
2.5. Human Studies
3. Methodology
3.1. Lung Infections
3.2. Biofilm-Related Cardio-Vascular Devices
3.3. Biofilm-Related Chronic Infections Treated with Phages
3.4. Prosthetic Joint Infections Treated with Phages
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Høiby, N.; Bjarnsholt, T.; Moser, C.; Bassi, G.L.; Coenye, T.; Donelli, G.; Hall-Stoodley, L.; Holá, V.; Imbert, C.; Kirketerp-Møller, K.; et al. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin. Microbiol. Infect. 2015, 21 (Suppl. S1), S1–S25. [Google Scholar] [CrossRef]
- Sharma, S.; Mohler, J.; Mahajan, S.D.; Schwartz, S.A.; Bruggemann, L.; Aalinkeel, R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023, 11, 1614. [Google Scholar] [CrossRef]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef]
- Łusiak-Szelachowska, M.; Weber-Dąbrowska, B.; Górski, A. Bacteriophages and Lysins in Biofilm Control. Virol. Sin. 2020, 35, 125–133. [Google Scholar] [CrossRef]
- Twort, F.W. An investigation on the nature of ultramicroscopic viruses. Lancet 1915, 186, 1241–1243. [Google Scholar] [CrossRef]
- d’Hérelle, F. On an invisible microbe antagonistic to dysentery bacilli. Comptes Rendus Académie Sci. 1917, 165, 373–375. [Google Scholar]
- Chanishvili, N. Phage therapy—History from Twort and d’Herelle through Soviet experience to current approaches. Adv. Virus Res. 2012, 83, 3–40. [Google Scholar]
- Turner, D.; Shkoporov, A.N.; Lood, C.; Millard, A.D.; Dutilh, B.E.; Alfenas-Zerbini, P.; van Zyl, L.J.; Aziz, R.K.; Oksanen, H.M.; Poranen, M.M.; et al. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch. Virol. 2023, 168, 74. [Google Scholar] [CrossRef]
- Chegini, Z.; Khoshbayan, A.; Vesal, S.; Moradabadi, A.; Hashemi, A.; Shariati, A. Bacteriophage therapy for inhibition of multi drug-resistant uropathogenic bacteria: A narrative review. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 30. [Google Scholar] [CrossRef]
- Harada, L.K.; Silva, E.C.; Campos, W.F.; Del Fiol, F.S.; Vila, M.; Dąbrowska, K.; Krylov, V.N.; Balcão, V.M. Biotechnological applications of bacteriophages: State of the art. Microbiol. Res. 2018, 212–213, 38–58. [Google Scholar] [CrossRef]
- Wittebole, X.; De Roock, S.; Opal, S.M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 2014, 5, 226–235. [Google Scholar] [CrossRef]
- Parasion, S.; Kwiatek, M.; Gryko, R.; Mizak, L.; Malm, A. Bacteriophages as an alternative strategy for fighting biofilm development. Pol. J. Microbiol. 2014, 63, 137–145. [Google Scholar] [CrossRef]
- Pouillot, F.; Chomton, M.; Blois, H.; Courroux, C.; Noelig, J.; Bidet, P.; Bingen, E.; Bonacorsi, S. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob. Agents Chemother. 2012, 56, 3568–3575. [Google Scholar] [CrossRef]
- Meneses, L.; Brandão, A.C.; Coenye, T.; Braga, A.C.; Pires, D.P.; Azeredo, J. A systematic review of the use of bacteriophages for in vitro biofilm control. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 919–928. [Google Scholar] [CrossRef]
- Donlan, R.M. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 2009, 17, 66–72. [Google Scholar] [CrossRef]
- Pires, D.P.; Melo, L.; Vilas Boas, D.; Sillankorva, S.; Azeredo, J. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr. Opin. Microbiol. 2017, 39, 48–56. [Google Scholar] [CrossRef]
- Adnan, M.; Ali Shah, M.R.; Jamal, M.; Jalil, F.; Andleeb, S.; Nawaz, M.A.; Pervez, S.; Hussain, T.; Shah, I.; Imran, M.; et al. Isolation and characterization of bacteriophage to control multidrug-resistant Pseudomonas aeruginosa planktonic cells and biofilm. Biologicals 2020, 63, 89–96. [Google Scholar] [CrossRef]
- Jamal, M.; Hussain, T.; Das, C.R.; Andleeb, S. Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm. J. Med. Microbiol. 2015, 64 Pt 4, 454–462. [Google Scholar] [CrossRef]
- Gu, Y.; Xu, Y.; Xu, J.; Yu, X.; Huang, X.; Liu, G.; Liu, X. Identification of novel bacteriophage vB_EcoP-EG1 with lytic activity against planktonic and biofilm forms of uropathogenic Escherichia coli. Appl. Microbiol. Biotechnol. 2019, 103, 315–326. [Google Scholar] [CrossRef]
- Lungren, M.P.; Christensen, D.; Kankotia, R.; Falk, I.; Paxton, B.E.; Kim, C.Y. Bacteriophage K for reduction of Staphylococcus aureusbiofilm on central venous catheter material. Bacteriophage 2013, 3, e26825. [Google Scholar] [CrossRef]
- Fu, W.; Forster, T.; Mayer, O.; Curtin, J.J.; Lehman, S.M.; Donlan, R.M. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob. Agents Chemother. 2020, 54, 397–404. [Google Scholar] [CrossRef]
- Ryan, E.M.; Alkawareek, M.Y.; Donnelly, R.F.; Gilmore, B.F. Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol. Med. Microbiol. 2012, 65, 395–398. [Google Scholar] [CrossRef]
- Chaudhry, W.N.; Concepción-Acevedo, J.; Park, T.; Andleeb, S.; Bull, J.J.; Levin, B.R. Synergy and Order Effects of Antibiotics and Phages in Killing Pseudomonas aeruginosa Biofilms. PLoS ONE 2021, 12, e0168615. [Google Scholar] [CrossRef]
- Ślopek, S.; Durlakowa, I.; Weber-Dąbrowska, B.; Dąbrowski, M.; Kucharewicz-Krukowska, A. Results of bacteriophage treatment of suppurative bacterial infections. Detailed evaluation of the results obtained in further 150 cases. Arch. Immunol. Ther. Exp. 1984, 32, 317–335. [Google Scholar]
- Ślopek, S.; Kucharewicz-Krukowska, A.; Weber-Dąbrowska, B.; Dąbrowski, M. Results of bacteriophage treatment of suppurative bacterial infections. Evaluation of the results obtained in 370 cases. Arch. Immunol. Ther. Exp. 1985, 33, 219–240. [Google Scholar]
- Ślopek, S.; Kucharewicz-Krukowska, A.; Weber-Dąbrowska, B.; Dąbrowski, M. Results of bacteriophage treatment of suppurative bacterial infections. Analysis of treatment of suppurative staphylococcal infections. Arch. Immunol. Ther. Exp. 1985, 33, 261–273. [Google Scholar]
- Ślopek, S.; Weber-Dąbrowska, B.; Dąbrowski, M.; Kucharewicz-Krukowska, A. Results of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch. Immunol. Ther. Exp. 1987, 35, 569–583. [Google Scholar]
- Zilisteanu, C.; Ionescu, H.; Ionescu-Dorohoi, T.; Mintzer, L. Treatment of urinary infections with bacteriophage-autovaccine-antibiotics. Arch. Roum. Pathol. Exp. Microbiol. 1971, 30, 195–207. [Google Scholar]
- Doub, J.B. Bacteriophage therapy for clinical biofilm infections: Parameters that influence treatment protocols and current treatment approaches. Antibiotics 2020, 9, 799. [Google Scholar] [CrossRef]
- Furr, C.-L.L.; Lehman, S.M.; Morales, S.P.; Rosas, F.X.; Gaidamaka, A.; Bilinsky, I.P.; Grint, P.C.; Schooley, R.T.; Aslam, S. P084 Bacteriophage treatment of multidrug-resistant Pseudomonas aeruginosa pneumonia in a cystic fibrosis patient. J. Cyst. Fibros. 2018, 17, S83. [Google Scholar] [CrossRef]
- Hoyle, N.; Zhvaniya, P.; Balarjishvili, N.; Bolkvadze, D.; Nadareishvili, L.; Nizharadze, D.; Wittmann, J.; Rohde, C.; Kutateladze, M. Phage therapy against Achromobacter xylosoxidans lung infection in a patient with cystic fibrosis: A case report. Res. Microbiol. 2018, 169, 540–542. [Google Scholar] [CrossRef] [PubMed]
- Maddocks, S.; Fabijan, A.P.; Ho, J.; Lin, R.C.Y.; Ben Zakour, N.L.; Dugan, C.; Kliman, I.; Branston, S.; Morales, S.; Iredell, J.R. Bacteriophage therapy of ventilator-associated pneumonia and empyema caused by Pseudomonas aeruginosa. Am. J. Respir. Crit. Care Med. 2019, 200, 1179–1181. [Google Scholar] [CrossRef] [PubMed]
- Koff, J.L.; Chan, B.K.; Stanley, G.L.; Geer, J.H.; Grun, C.; Kazmerciak, B.; Turner, P.E. Clinical use of inhaled bacteriophages to treat multi-drug resistant Pseudomonas aeruginosa. Am. J. Respir. Crit. Care Med. 2019, 199, A7381. [Google Scholar]
- Aslam, S.; Courtwright, A.M.; Koval, C.; Lehman, S.M.; Morales, S.; Furr, C.-L.L.; Rosas, F.; Brownstein, M.J.; Fackler, J.R.; Sisson, B.M.; et al. Early clinical experience of bacteriophage therapy in 3 lung transplant recipients. Am. J. Transplant. 2019, 19, 2631–2639. [Google Scholar] [CrossRef] [PubMed]
- Dedrick, R.M.; Guerrero-Bustamante, C.A.; Garlena, R.A.; Russell, D.A.; Ford, K.; Harris, K.; Gilmour, K.C.; Soothill, J.; Jacobs-Sera, D.; Schooley, R.T.; et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 2019, 25, 730–733. [Google Scholar] [CrossRef]
- Law, N.; Logan, C.; Yung, G.; Furr, C.L.; Lehman, S.M.; Morales, S.; Rosas, F.; Gaidamaka, A.; Bilinsky, I.; Grint, P.; et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection 2019, 47, 665–668. [Google Scholar] [CrossRef]
- Stanley, G.L.; Chan, B.; Ott, I.; Mayo, E.; Harris, Z.M.; Sun, Y.; Hu, B.; Rajagopalan, G.; Turner, P.; Koff, J.L. Bacteriophage Therapy Decreases Pseudomonas aeruginosa Lung Inflammation. In: B29 Infection and immune interplay in lung injury. Am. J. Respir. Crit. Care Med. 2020, 201, A2977. [Google Scholar]
- Gainey, A.B.; Burch, A.; Brownstein, M.J.; Brown, D.E.; Fackler, J.; Horne, B.; Biswas, B.; Bivens, B.N.; Malagon, F.; Daniels, R. Combining bacteriophages with cefiderocol and meropenem/vaborbactam to treat a pan-drug resistant Achromobacter species infection in a pediatric cystic fibrosis patient. Pediatr. Pulmonol. 2020, 55, 2990–2994. [Google Scholar] [CrossRef]
- Rubalskii, E.; Ruemke, S.; Salmoukas, C.; Boyle, E.C.; Warnecke, G.; Tudorache, I.; Shrestha, M.; Schmitto, J.D.; Martens, A.; Rojas, S.V.; et al. Bacteriophage therapy for critical infections related to cardiothoracic surgery. Antibiotics 2020, 9, 232. [Google Scholar] [CrossRef]
- Dedrick, R.M.; Freeman, K.G.; Nguyen, J.A.; Bahadirli-Talbott, A.; Smith, B.E.; Wu, A.E.; Ong, A.S.; Lin, C.T.; Ruppel, L.C.; Parrish, N.M.; et al. Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nat. Med. 2021, 27, 1357–1361. [Google Scholar] [CrossRef] [PubMed]
- Lebeaux, D.; Merabishvili, M.; Caudron, E.; Lannoy, D.; Van Simaey, L.; Duyvejonck, H.; Guillemain, R.; Thumerelle, C.; Podglajen, I.; Compain, F.; et al. A case of phage therapy against pandrug-resistant Achromobacter xylosoxidans in a 12-year-old lung-transplanted cystic fibrosis patient. Viruses 2021, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Chen, H.; Zhang, M.; Zhao, Y.; Jiang, Y.; Liu, X.; Huang, W.; Ma, Y. Clinical experience of personalized phage therapy against carbapenem-resistant Acinetobacter baumannii lung infection in a patient with chronic obstructive pulmonary disease. Front. Cell. Infect. Microbiol. 2021, 11, 631585. [Google Scholar] [CrossRef] [PubMed]
- Zaldastanishvili, E.; Leshkasheli, L.; Dadiani, M.; Nadareishvili, L.; Askilashvili, L.; Kvatadze, N.; Goderdzishvili, M.; Kutateladze, M.; Balarjishvili, N. Phage therapy experience at the Eliava Phage Therapy Center: Three cases of bacterial persistence. Viruses 2021, 13, 1901. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Turner, P.E.; Kim, S.; Mojibia, H.R.; Elefteriades, J.A.; Narayan, D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol. Med. Public Health 2018, 1, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Aslam, S.; Pretorius, V.; Lehman, S.M.; Morales, S.; Schooley, R.T. Novel bacteriophage therapy for treatment of left ventricular assist device infection. J. Heart Lung Transplant. 2019, 38, 475–476. [Google Scholar] [CrossRef]
- Gilbey, T.; Ho, J.; Cooley, L.A.; Petrovic Fabijan, A.; Iredell, J.R. Adjunctive bacteriophage therapy for prosthetic valve endocarditis due to Staphylococcus aureus. Med. J. Aust. 2019, 211, 142–143.e1. [Google Scholar] [CrossRef] [PubMed]
- Ferry, T.; Boucher, F.; Fevre, C.; Perpoint, T.; Chateau, J.; Petitjean, C.; Josse, J.; Chidiac, C.; L’hostis, G.; Leboucher, G.; et al. Innovations for the treatment of a complex bone and joint infection due to XDR Pseudomonas aeruginosa including local application of a selected cocktail of bacteriophages. J. Antimicrob. Chemother. 2018, 73, 2901–2903. [Google Scholar] [CrossRef]
- Fish, R.; Kutter, E.; Bryan, D.; Wheat, G.; Kuhl, S. Resolving digital staphylococcal osteomyelitis using bacteriophage—A case report. Antibiotics 2018, 7, 87. [Google Scholar] [CrossRef]
- Onsea, J.; Soentjens, P.; Djebara, S.; Merabishvili, M.; Depypere, M.; Spriet, I.; De Munter, P.; Debaveye, Y.; Nijs, S.; Vanderschot, P.; et al. Bacteriophage application for difficult-to-treat musculoskeletal infections: Development of a standardized multidisciplinary treatment protocol. Viruses 2019, 11, 891. [Google Scholar] [CrossRef]
- Gupta, P.; Singh, H.S.; Shukla, V.K.; Nath, G.; Bhartiya, S.K. Bacteriophage therapy of chronic nonhealing wound: Clinical study. Int. J. Low. Extrem. Wounds 2019, 18, 171–175. [Google Scholar] [CrossRef]
- Kuipers, S.; Ruth, M.M.; Mientjes, M.; de Sévaux, R.G.L.; van Ingen, J. A dutch case report of successful treatment of chronic relapsing urinary tract infection with bacteriophages in a renal transplant patient. Antimicrob. Agents Chemother. 2019, 64, e01281-19. [Google Scholar] [CrossRef]
- Nir-Paz, R.; Gelman, D.; Khouri, A.; Sisson, B.M.; Fackler, J.; Alkalay-Oren, S.; Khalifa, L.; Rimon, A.; Yerushalmy, O.; Bader, R.; et al. Successful treatment of antibiotic-resistant, poly-microbial bone infection with bacteriophages and antibiotics combination. Clin. Infect. Dis. 2019, 69, 2015–2018. [Google Scholar] [CrossRef]
- Bao, J.; Wu, N.; Zeng, Y.; Chen, L.; Li, L.; Yang, L.; Zhang, Y.; Guo, M.; Li, L.; Li, J.; et al. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae. Emerg. Microbes Infect. 2020, 9, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Johri, A.V.; Johri, P.; Hoyle, N.; Pipia, L.; Nadareishvili, L.; Nizharadze, D. Case report: Chronic Bacterial Prostatitis treated with phage therapy after multiple failed antibiotic treatments. Front. Pharmacol. 2021, 12, 692614. [Google Scholar] [CrossRef]
- Van Nieuwenhuyse, B.; Galant, C.; Brichard, B.; Docquier, P.-L.; Djebara, S.; Pirnay, J.-P.; Van der Linden, D.; Merabishvili, M.; Chatzis, O. A case of in situ phage therapy against Staphylococcus aureus in a bone allograft polymicrobial biofilm infection: Outcomes and phage-antibiotic interactions. Viruses 2021, 13, 1898. [Google Scholar] [CrossRef] [PubMed]
- Tkhilaishvili, T.; Winkler, T.; Müller, M.; Perka, C.; Trampuz, A. Bacteriophages as adjuvant to antibiotics for the treatment of periprosthetic joint infection caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 64, e00924-19. [Google Scholar] [CrossRef]
- Doub, J.B.; Ng, V.Y.; Johnson, A.J.; Slomka, M.; Fackler, J.; Horne, B.; Brownstein, M.J.; Henry, M.; Malagon, F.; Biswas, B. Salvage bacteriophage therapy for a chronic MRSA prosthetic joint infection. Antibiotics 2020, 9, 241. [Google Scholar] [CrossRef] [PubMed]
- Ferry, T.; Batailler, C.; Petitjean, C.; Chateau, J.; Fevre, C.; Forestier, E.; Brosset, S.; Leboucher, G.; Kolenda, C.; Laurent, F.; et al. The potential innovative use of bacteriophages within the DAC® hydrogel to treat patients with knee megaprosthesis infection requiring “debridement antibiotics and implant retention” and soft tissue coverage as salvage therapy. Front. Med. 2020, 7, 342. [Google Scholar] [CrossRef]
- Ferry, T.; Kolenda, C.; Batailler, C.; Gustave, C.-A.; Lustig, S.; Malatray, M.; Fevre, C.; Josse, J.; Petitjean, C.; Chidiac, C.; et al. Phage therapy as adjuvant to conservative surgery and antibiotics to salvage patients with relapsing S. aureus prosthetic knee infection. Front. Med. 2020, 7, 570572. [Google Scholar] [CrossRef]
- Ferry, T.; Kolenda, C.; Batailler, C.; Gaillard, R.; Gustave, C.A.; Lustig, S.; Fevre, C.; Petitjean, C.; Leboucher, G.; Laurent, F.; et al. Case report: Arthroscopic “debridement antibiotics and implant retention” with local injection of personalized phage therapy to salvage a relapsing Pseudomonas aeruginosa prosthetic knee infection. Front. Med. 2021, 8, 569159. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Sanchez, C.; Gonzales, F.; Buckley, M.; Biswas, B.; Henry, M.; Deschenes, M.V.; Horne, B.; Fackler, J.; Brownstein, M.J.; Schooley, R.T.; et al. Successful treatment of Staphylococcus aureus prosthetic joint infection with bacteriophage therapy. Viruses 2021, 13, 1182. [Google Scholar] [CrossRef]
- Doub, J.B.; Ng, V.Y.; Wilson, E.; Corsini, L.; Chan, B.K. Successful treatment of a recalcitrant Staphylococcus epidermidis prosthetic knee infection with intraoperative bacteriophage therapy. Pharmaceuticals 2021, 14, 231. [Google Scholar] [CrossRef]
Ref. | Infection | N° | Age (Years) | Etiology | Phage Preparation | Phage Source | Phage Dose (PFU/mL) | Treatment Duration (Days) | Route of Administration | Antibiotics | Clinical Outcome | Adverse Events |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[31] | Cystic fibrosis | 1 | 26 | MDR P. aeruginosa | Phage cocktail | AmpliPhi Biosciences | NR | 56 | Intravenous | Yes | Improvement | No |
[32] | Cystic fibrosis | 1 | 17 | MDR A. xylosoxidans | Phage Cocktail | Eliava Institute | 1.5 × 108 | 80 | Oral + inhaled | Yes | Improvement | NR |
[33] | Necrotizing pneumonia | 1 | 77 | MDR P. aeruginosa | Phage cocktail | AmpliPhi Biosciences | 1.0 × 109 | 7 | Intravenous + inhaled | Yes | Resolution | No |
[34] | Cystic fibrosis | 4 | 16–38 | MDR P. aeruginosa | Single phage | NR | 3.0 × 108 | 10 | Inhaled | No | Improvement | No |
[34] | Bronchiectasis | 2 | 71–72 | MDR P. aeruginosa | Single phage | NR | 3.0 × 108 | 10 | Inhaled | No | Improvement | No |
[35] | Pneumonia-Lung transplant | 1 | 67 | MDR P. aeruginosa | Phage Cocktail | AmpliPhi Biosciences, Naval Medical Research Center | 1.0 × 109 | 134 | Intravenous + inhaled | Yes | Improvement | No |
[35] | Bronchiectasis-Lung transplant | 1 | 57 | MDR P. aeruginosa | Phage Cocktail | AmpliPhi Biosciences | 4.0 × 109 | 28 | Intravenous | Yes | Improvement | No |
[35] | Cystic fibrosis-Lung transplant | 1 | 28 | MDR B. dolosa | Single Phage | Adaptive Phage Therapeutics | 3.5 × 107 | 42 | Intravenous | Yes | Improvement | No |
[36] | Cystic fibrosis-Lung transplant | 1 | 15 | MDR M. abscessus | Phage Cocktail | Pittsburgh Bacteriophage Institute | 1.0 × 109 | 224 | Intravenous | Yes | Improvement | No |
[37] | Cystic fibrosis | 1 | 26 | MDR P. aeruginosa | Phage Cocktail | AmpliPhi Biosciences | 8.0 × 108 | 56 | Intravenous | Yes | Resolution | No |
[38] | Cystic fibrosis | 4 | NR | MDR P. aeruginosa | Single phage | Yale University | NR | 10 | Inhaled | No | Improvement | No |
[39] | Cystic fibrosis | 1 | 10 | PDR Achromobacter spp. | Single phage | Adaptive Phage Therapeutics | NR | 14 | Intravenous | Yes | Improvement | No |
[40] | Pneumonia-Heart transplant | 1 | 40 | PDR K. pneumoniae | Phage cocktail | Gabrichevsky Institute | 1.0 × 108 | 4 | Inhaled + intra-abdominal | Yes | Resolution | No |
[40] | Pneumonia-Lung transplant | 1 | 13 | P. aeruginosa | Phage cocktail | Gabrichevsky Institute | 4.0 × 1010 | NA | Local | Yes | Resolution | No |
[41] | Bronchiectasis | 1 | 81 | M. abscessus | Phage Cocktail | Pittsburgh Bacteriophage Institute | 1.0 × 109 | 180 | Intravenous | Yes | Failure | No |
[42] | Cystic fibrosis-Lung transplant | 1 | 12 | PDR A. xylosoxidans | Phage Cocktail | DSMZ collection | 5.0 × 109 | 16 | Local + inhaled | Yes | Resolution | NR |
[43] | Pneumonia-COPD | 1 | 88 | MDR A. baumannii | Single Phage | Shenzhen Institutes of Advanced Technology | 5 × 10–5 × 1010 | 16 | Inhaled | Yes | Resolution | No |
[44] | Cystic fibrosis | 1 | 43 | P. aeruginosa | Phage Cocktail | Eliava Institute | 9 × 106–1 × 107 | 1490 | Oral + inhaled | Yes | Improvement | No |
[44] | Bronchiectasis | 1 | 64 | P. aeruginosa | Single Phage | Eliava Institute | 4 × 106–6 × 106 | 1095 | Oral | No | Improvement | No |
Ref. | Device | N° | Age (Years) | Etiology | Phage Preparation | Phage Source | Phage Dose (PFU/mL) | Treatment Duration (Days) | Route of Administration | Antibiotics | Clinical Outcome | Adverse Events |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[45] | Vascular graft | 1 | 76 | P. aeruginosa | Single Phage | Yale University | 1.0 × 107 | 1 | Local | Yes | Resolution | No |
[46] | Left ventricular assist device | 1 | 65 | S. aureus | Phage Cocktail | AmpliPhi Biosciences | 3.0 × 109 | 28 | Intravenous | Yes | Resolution | No |
[47] | Prosthetic valve | 1 | 65 | S. aureus | Phage cocktail | AmpliPhi Biosciences | 1.0 × 109 | 14 | Intravenous | Yes | Improvement | No |
[40] | Vascular graft | 1 | 52 | P. aeruginosa + S. aureus + E. faecium | Phage cocktail | Gabrichevsky Institute | 1.0 × 108 | 1 | Local + oral | Yes | Resolution | No |
[40] | Vascular graft | 1 | 59 | S. aureus | Single Phage | Gabrichevsky Institute | 1.0 × 109 | 2 | Local + oral | Yes | Resolution | No |
[40] | Left ventricular assist device | 1 | 62 | S. aureus | Single Phage | Gabrichevsky Institute | 1.0 × 109 | 2 | Local + oral | Yes | Resolution | No |
[40] | Left ventricular assist device | 1 | 51 | S. aureus | Phage cocktail | Gabrichevsky Institute | 1.0 × 109 | 8 | Local + oral + inhaled | Yes | Failure | No |
[40] | Treprostinil pump | 1 | 45 | S. aureus | Single Phage | Gabrichevsky Institute | 4.0 × 1010 | 1 | Local | Yes | Resolution | No |
[40] | Prosthetic valve | 1 | 66 | E. coli | Phage cocktail | Gabrichevsky Institute | 4.0 × 1010 | 1 | Local | Yes | Resolution | No |
Ref. | Infection | N° | Age | Bacterial Pathogen | Phage Preparation | Phage Source | Phage Dose (PFU/mL) | Treatment Duration (Days) | Route of Administration | Combined Therapy | Clinical Outcome | Adverse Events |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[48] | Osteomyelitis and joint infection | 1 | 60 | XDR P. aeruginosa | Phage Cocktail | Pherecydes Pharma | 4.0 × 108 | 12 | Local | Surgery + antibiotics | Resolution | No |
[49] | Chronic wound + osteomyelitis | 1 | 63 | MSSA | Single Phage | Eliava Institute | NR | 49 | Local | Antibiotics | Resolution | NR |
[50] | Osteomyelitis (pelvis) | 1 | NR | P. aeruginosa + S. epidermidis | Phage cocktail | Queen Astrid Military Hospital | 1.0 × 107 | 10 | Local | Surgery + antibiotics | Resolution | No |
[50] | Osteomyelitis (femur) | 1 | NR | XDR P. aeruginosa + S. epidermidis | Phage cocktail | Queen Astrid Military Hospital | 1.0 × 107 | 7 | Local | Surgery + antibiotics | Resolution | No |
[50] | Osteomyelitis (femur) | 1 | NR | S. aureus + S. agalactiae | Phage cocktail | Queen Astrid Military Hospital | 1.0 × 107 | 9 | Local | Surgery + antibiotics | Resolution | No |
[50] | Osteomyelitis (femur) | 1 | NR | E. faecalis | Phage cocktail | Eliava Institute | 1.0 × 107 | 7 | Local | Surgery + antibiotics | Resolution | Yes |
[51] | Chronic wound (ulcer) | 5 | NR | S. aureus | Phage cocktail | Banaras Hindu University | 1.0 × 109 | 13 | Local | None | Resolution | No |
[51] | Chronic wound | 6 | NR | E. coli | Phage cocktail | Banaras Hindu University | 1.0 × 109 | 13 | Local | None | Resolution | No |
[51] | Chronic wound | 9 | NR | P. aeruginosa | Phage cocktail | Banaras Hindu University | 1.0 × 109 | 13 | Local | None | Resolution | No |
[52] | Chronic urinary tract infection | 1 | 58 | MDR K. pneumoniae | NR | Eliava Institute | NR | NA | Oral + local | Antibiotics | Resolution | No |
[53] | Osteomyelitis (tibia) | 1 | 42 | XDR A. baumannii + MDR K. pneumoniae | Phage Cocktail | Naval Medical Research Center and Adaptive Phage Therapeutics | 5.0 × 107 | 11 | Intravenous | Antibiotics | Resolution | No |
[54] | Chronic urinary tract infection | 1 | 63 | XDR Klebsiella pneumoniae | Phage Cocktail | Shanghai Institute of Phage | 5.0 × 108 | 5 | Local | Antibiotics | Resolution | No |
[55] | Chronic bacterial prostatitis | 1 | 33 | MRSA + S. haemolyticus+ E. faecalis + S. mitis | Phage Cocktail | Eliava Institute | 1 × 105–1 × 107 | NA | Oral + intra-rectal + intra-urethral | None | Resolution | No |
[56] | Osteomyelitis (pelvic bone allograft) | 1 | 13 | MSSA + P. mirabilis + F. magna + C. hathewayi | Phage Cocktail | Queen Astrid Military Hospital | 1.0 × 107 | 14 | Local | Surgery + antibiotics | Improvement | NR |
[44] | Chronic urinary tract infection | 1 | 72 | MDR K. pneumoniae | Phage Cocktail | Eliava Institute | 8 × 106, 7 × 108 | 365 | Oral + local | Antibiotics | Failure | NR |
Ref. | Prosthetic Infection Location | N° | Age | Bacterial Pathogen | Phage Preparation | Phage Source | Phage Dose (PFU/mL) | Treatment Duration | Route of Administration | Combined Therapy | Clinical Outcome | Adverse Events |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[57] | Knee | 1 | 80 | MDR P. aeruginosa | Single phage | Eliava Institute | 1.0 × 108 | 5 | Local | Surgery and Antibiotics | Resolution | No |
[58] | Knee | 1 | 72 | MRSA | Single Phage | Adaptive Phage Therapeutics | 5.4 × 109 | 3 | Local + intravenous | Surgery and antibiotics | Resolution | Yes |
[59] | Knee | 1 | 49 | MSSA | Phage Cocktail | Pherecydes Pharma | 1.0 × 1010 | NR | Local | Surgery and antibiotics | Improvement | No |
[60] | Knee | 1 | 80 | MSSA | Phage Cocktail | Pherecydes Pharma | 1.0 × 109 | NR | Local | Surgery and antibiotics | Resolution | NR |
[60] | Knee | 1 | 84 | MSSA | Phage Cocktail | Pherecydes Pharma | 1.0 × 109 | NR | Local | Surgery and antibiotics | Resolution | NR |
[60] | Knee | 1 | 83 | MSSA | Phage Cocktail | Pherecydes Pharma | 1.0 × 109 | NR | Local | Surgery and antibiotics | Improvement | NR |
[61] | Knee | 1 | 88 | P. aeruginosa | Phage Cocktail | Pherecydes Pharma | 1.0 × 109 | NR | Local | Surgery and Antibiotics | Resolution | NR |
[62] | Knee | 1 | 61 | MSSA | Single Phage | Adaptive Phage Therapeutics | 2.9 × 1010 | 42 | Local + intravenous | Surgery and Antibiotics | Resolution | No |
[63] | Knee | 1 | 79 | MDR S. epidermidis | Single Phage | PhagoMed | 2.0 × 1010 | NR | Local | Surgery and Antibiotics | Resolution | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordon, M.; Ramirez, P. Efficacy and Experience of Bacteriophages in Biofilm-Related Infections. Antibiotics 2024, 13, 125. https://doi.org/10.3390/antibiotics13020125
Gordon M, Ramirez P. Efficacy and Experience of Bacteriophages in Biofilm-Related Infections. Antibiotics. 2024; 13(2):125. https://doi.org/10.3390/antibiotics13020125
Chicago/Turabian StyleGordon, Monica, and Paula Ramirez. 2024. "Efficacy and Experience of Bacteriophages in Biofilm-Related Infections" Antibiotics 13, no. 2: 125. https://doi.org/10.3390/antibiotics13020125
APA StyleGordon, M., & Ramirez, P. (2024). Efficacy and Experience of Bacteriophages in Biofilm-Related Infections. Antibiotics, 13(2), 125. https://doi.org/10.3390/antibiotics13020125