Neuropsychiatric Lyme Disease and Vagus Nerve Stimulation
Abstract
:1. Introduction
2. Neuropsychiatric Manifestations
2.1. Cognitive Impairment
2.2. Psychiatric Manifestations
3. Neuroimaging Studies
4. Proposed Mechanisms of Symptom Persistence
4.1. Persistent Infection
4.2. Altered Neural Activation and Dysautonomia
4.3. Immune Dysregulation
5. Treatment Based on Presumed Mechanism of Disease
6. Cranial Neuropathy and Lyme Disease
7. Vagus Nerve Stimulation
7.1. Transcutaneous VNS
7.2. Preclinical Studies
7.3. Clinical Use
7.4. Safety
7.5. Limitations of Transcutaneous VNS
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Surveillance Data|Lyme Disease|CDC. 27 October 2022. Available online: https://www.cdc.gov/lyme/datasurveillance/surveillance-data.html (accessed on 15 June 2023).
- Kugeler, K.J.; Schwartz, A.M.; Delorey, M.J.; Mead, P.S.; Hinckley, A.F. Estimating the Frequency of Lyme Disease Diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.M.; Kugeler, K.J.; Nelson, C.A.; Marx, G.E.; Hinckley, A.F. Use of Commercial Claims Data for Evaluating Trends in Lyme Disease Diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Steere, A.C.; Sikand, V.K. The presenting manifestations of Lyme disease and the outcomes of treatment. N. Engl. J. Med. 2003, 348, 2472–2474. [Google Scholar] [CrossRef] [PubMed]
- Knudtzen, F.C.; Andersen, N.S.; Jensen, T.G.; Skarphédinsson, S. Characteristics and Clinical Outcome of Lyme Neuroborreliosis in a High Endemic Area, 1995-2014: A Retrospective Cohort Study in Denmark. Clin. Infect. Dis. 2017, 65, 1489–1495. [Google Scholar] [CrossRef]
- Coyle, P.K.; Schutzer, S.E.; Deng, Z.; Krupp, L.B.; Belman, A.L.; Benach, J.L.; Luft, B.J. Detection of Borrelia burgdorferi-specific antigen in antibody-negative cerebrospinal fluid in neurologic Lyme disease. Neurology 1995, 45, 2010–2015. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, T.J.; Tata, S.; Berth, W.; Mathiason, M.A.; Agger, W.A. Antibiotic treatment duration and long-term outcomes of patients with early lyme disease from a lyme disease-hyperendemic area. Clin. Infect. Dis. 2010, 50, 512–520. [Google Scholar] [CrossRef]
- Rebman, A.W.; Aucott, J.N. Post-treatment Lyme Disease as a Model for Persistent Symptoms in Lyme Disease. Front. Med. 2020, 7, 57. [Google Scholar] [CrossRef]
- Aucott, J.N.; Yang, T.; Yoon, I.; Powell, D.; Geller, S.A.; Rebman, A.W. Risk of post-treatment Lyme disease in patients with ideally-treated early Lyme disease: A prospective cohort study. Int. J. Infect. Dis. 2022, 116, 230–237. [Google Scholar] [CrossRef]
- Wormser, G.P.; Dattwyler, R.J.; Shapiro, E.D.; Halperin, J.J.; Steere, A.C.; Klempner, M.S.; Krause, P.J.; Bakken, J.S.; Strle, F.; Stanek, G.; et al. The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2006, 43, 1089–1134. [Google Scholar] [CrossRef]
- Aucott, J.N.; Rebman, A.W.; Crowder, L.A.; Kortte, K.B. Post-treatment Lyme disease syndrome symptomatology and the impact on life functioning: Is there something here? Qual. Life Res. 2013, 22, 75–84. [Google Scholar] [CrossRef]
- Touradji, P.; Aucott, J.N.; Yang, T.; Rebman, A.W.; Bechtold, K.T. Cognitive Decline in Post-treatment Lyme Disease Syndrome. Arch. Clin. Neuropsychol. 2019, 34, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.F.; Meadows, M.E.; Vincent, L.C.; Logigian, E.L.; Steere, A.C. Memory impairment and depression in patients with Lyme encephalopathy: Comparison with fibromyalgia and nonpsychotically depressed patients. Neurology 1992, 42, 1263–1267. [Google Scholar] [CrossRef] [PubMed]
- Keilp, J.G.; Corbera, K.; Slavov, I.; Taylor, M.J.; Sackeim, H.A.; Fallon, B.A. WAIS-III and WMS-III performance in chronic Lyme disease. J. Int. Neuropsychol. Soc. 2006, 12, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Westervelt, H.J.; McCaffrey, R.J. Neuropsychological functioning in chronic Lyme disease. Neuropsychol. Rev. 2002, 12, 153–177. [Google Scholar] [CrossRef]
- Ravdin, L.D.; Hilton, E.; Primeau, M.; Clements, C.; Barr, W.B. Memory functioning in Lyme borreliosis. J. Clin. Psychiatry 1996, 57, 282–286. [Google Scholar] [PubMed]
- Pasareanu, A.R.; Mygland, Å.; Kristensen, Ø. A Woman in her 50s with manic psychosis. Tidsskr. Den Nor. Legeforening 2012, 132, 537–539. [Google Scholar] [CrossRef]
- Hess, A.; Buchmann, J.; Zettl, U.K.; Henschel, S.; Schlaefke, D.; Grau, G.; Benecke, R. Borrelia burgdorferi central nervous system infection presenting as an organic schizophrenialike disorder. Biol. Psychiatry 1999, 45, 795. [Google Scholar] [CrossRef]
- Hassett, A.L.; Radvanski, D.C.; Buyske, S.; Savage, S.V.; Gara, M.; Escobar, J.I.; Sigal, L.H. Role of psychiatric comorbidity in chronic lyme disease. Arthritis Care Res. 2008, 59, 1742–1749. [Google Scholar] [CrossRef]
- Bransfield, R.C. Neuropsychiatric Lyme Borreliosis: An Overview with a Focus on a Specialty Psychiatrist’s Clinical Practice. Healthcare 2018, 6, 104. [Google Scholar] [CrossRef]
- Doshi, S.; Keilp, J.G.; Strobino, B.; McElhiney, M.; Rabkin, J.; Fallon, B.A. Depressive Symptoms and Suicidal Ideation Among Symptomatic Patients With a History of Lyme Disease vs Two Comparison Groups. Psychosomatics 2018, 59, 481–489. [Google Scholar] [CrossRef]
- Tetens, M.M.; Haahr, R.; Dessau, R.B.; Krogfelt, K.A.; Bodilsen, J.; Andersen, N.S.; Møller, J.K.; Roed, C.; Christiansen, C.B.; Ellermann-Eriksen, S.; et al. Assessment of the Risk of Psychiatric Disorders, Use of Psychiatric Hospitals, and Receipt of Psychiatric Medication among Patients with Lyme Neuroborreliosis in Denmark. JAMA Psychiatry 2020, 78, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Fallon, B.A.; Madsen, T.; Erlangsen, A.; Benros, M.E. Lyme Borreliosis and Associations With Mental Disorders and Suicidal Behavior: A Nationwide Danish Cohort Study. Am. J. Psychiatry 2021, 178, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Halperin, J.J.; Pass, H.L.; Anand, A.K.; Luft, B.J.; Volkman, D.J.; Dattwyler, R.J. Nervous system abnormalities in Lyme disease. Ann. N. Y. Acad. Sci. 1988, 539, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Aalto, A.; Sjöwall, J.; Davidsson, L.; Forsberg, P.; Smedby, O. Brain magnetic resonance imaging does not contribute to the diagnosis of chronic neuroborreliosis. Acta Radiol. 2007, 48, 755–762. [Google Scholar] [CrossRef]
- Fallon, B.A.; Das, S.; Plutchok, J.J.; Tager, F.; Liegner, K.; Van Heertum, R. Functional brain imaging and neuropsychological testing in Lyme disease. Clin. Infect. Dis. 1997, 25 (Suppl. 1), S57–S63. [Google Scholar] [CrossRef]
- Donta, S.T.; Noto, R.B.; Vento, J.A. SPECT brain imaging in chronic Lyme disease. Clin. Nucl. Med. 2012, 37, e219–e222. [Google Scholar] [CrossRef]
- Logigian, E.L.; Johnson, K.A.; Kijewski, M.F.; Kaplan, R.F.; Becker, J.A.; Jones, K.J.; Garada, B.M.; Holman, B.L.; Steere, A.C. Reversible cerebral hypoperfusion in Lyme encephalopathy. Neurology 1997, 49, 1661–1670. [Google Scholar] [CrossRef]
- Fallon, B.A.; Lipkin, R.B.; Corbera, K.M.; Yu, S.; Nobler, M.S.; Keilp, J.G.; Petkova, E.; Lisanby, S.H.; Moeller, J.R.; Slavov, I.; et al. Regional cerebral blood flow and metabolic rate in persistent Lyme encephalopathy. Arch. Gen. Psychiatry 2009, 66, 554–563. [Google Scholar] [CrossRef]
- Coughlin, J.M.; Yang, T.; Rebman, A.W.; Bechtold, K.T.; Du, Y.; Mathews, W.B.; Lesniak, W.G.; Mihm, E.A.; Frey, S.M.; Marshall, E.S.; et al. Imaging glial activation in patients with post-treatment Lyme disease symptoms: A pilot study using [11 C]DPA-713 PET. J. Neuroinflamm. 2018, 15, 346. [Google Scholar] [CrossRef]
- Hodzic, E.; Feng, S.; Holden, K.; Freet, K.; Barthold, S. Persistence of Borrelia burgdorferi following Antibiotic Treatment in Mice. Antimicrob. Agents Chemother. 2008, 52, 1728–1736. [Google Scholar] [CrossRef]
- Embers, M.E.; Barthold, S.W.; Borda, J.T.; Bowers, L.; Doyle, L.; Hodzic, E.; Jacobs, M.B.; Hasenkampf, N.R.; Martin, D.S.; Narasimhan, S.; et al. Persistence of Borrelia burgdorferi in Rhesus Macaques following Antibiotic Treatment of Disseminated Infection. PLoS ONE 2012, 7, e29914. [Google Scholar] [CrossRef]
- Strle, K.; Drouin, E.E.; Shen, S.; Khoury, J.E.; McHugh, G.; Ruzic-Sabljic, E.; Strle, F.; Steere, A.C. Borrelia burgdorferi stimulates macrophages to secrete higher levels of cytokines and chemokines than borrelia afzelii or borrelia garinii. J. Infect. Dis. 2009, 200, 1936–1943. [Google Scholar] [CrossRef] [PubMed]
- Gadila, S.K.G.; Rosoklija, G.; Dwork, A.J.; Fallon, B.A.; Embers, M.E. Detecting Borrelia Spirochetes: A Case Study With Validation Among Autopsy Specimens. Front. Neurol. 2021, 12, 628045. [Google Scholar] [CrossRef] [PubMed]
- Liegner, K.; Duray, P.; Agricola, M.; Rosenkilde, C.; Yannuzzi, L.; Ziska, M.; Tilton, R.; Hulinska, D.; Hubbard, J.; Fallon, B. Lyme Disease and clinical spectrum of antibiotic responsive chronic meningoencephalomyelitis. J. Spirochetal Tick Borne Dis. 1997, 4, 61–73. [Google Scholar]
- Halperin, J.J.; Heyes, M.P. Neuroactive kynurenines in Lyme borreliosis. Neurology 1992, 42, 43–50. [Google Scholar] [CrossRef]
- Weissenbacher, S.; Ring, J.; Hofmann, H. Gabapentin for the Symptomatic Treatment of Chronic Neuropathic Pain in Patients with Late-Stage Lyme Borreliosis: A Pilot Study|Dermatology|Karger Publishers. Dermatology 2005, 211, 123–127. [Google Scholar] [CrossRef]
- Hanna, A.F.; Abraham, B.; Hanna, A.; Smith, A.J. Effects of intravenous ketamine in a patient with post-treatment Lyme disease syndrome. Int. Med. Case Rep. J. 2017, 10, 305–308. [Google Scholar] [CrossRef]
- Natelson, B.H.; Vu, D.; Mao, X.; Weiduschat, N.; Togo, F.; Lange, G.; Blate, M.; Kang, G.; Coplan, J.D.; Shungu, D.C. Effect of Milnacipran Treatment on Ventricular Lactate in Fibromyalgia: A Randomized, Double-blind, Placebo-controlled Trial. J. Pain 2015, 16, 1211–1219. [Google Scholar] [CrossRef]
- Parthasarathy, G.; Pattison, M.B.; Midkiff, C.C. The FGF/FGFR system in the microglial neuroinflammation with Borrelia burgdorferi: Likely intersectionality with other neurological conditions. J. Neuroinflamm. 2023, 20, 10. [Google Scholar] [CrossRef]
- Raj, S.R.; Arnold, A.C.; Barboi, A.; Claydon, V.E.; Limberg, J.K.; Lucci, V.-E.M.; Numan, M.; Peltier, A.; Snapper, H.; Vernino, S.; et al. Long-COVID postural tachycardia syndrome: An American Autonomic Society statement. Clin. Auton. Res. 2021, 31, 365–368. [Google Scholar] [CrossRef]
- Kanjwal, K.; Karabin, B.; Kanjwal, Y.; Grubb, B.P. Postural orthostatic tachycardia syndrome following Lyme disease. Cardiol. J. 2011, 18, 63–66. [Google Scholar]
- Novak, P.; Felsenstein, D.; Mao, C.; Octavien, N.R.; Zubcevik, N. Association of small fiber neuropathy and post treatment Lyme disease syndrome. PLoS ONE 2019, 14, e0212222. [Google Scholar] [CrossRef] [PubMed]
- Weis, J.J.; Ma, Y.; Erdile, L.F. Biological activities of native and recombinant Borrelia burgdorferi outer surface protein A: Dependence on lipid modification. Infect. Immun. 1994, 62, 4632–4636. [Google Scholar] [CrossRef] [PubMed]
- Jutras, B.L.; Lochhead, R.B.; Kloos, Z.A.; Biboy, J.; Strle, K.; Booth, C.J.; Govers, S.K.; Gray, J.; Schumann, P.; Vollmer, W.; et al. Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proc. Natl. Acad. Sci. USA 2019, 116, 13498–13507. [Google Scholar] [CrossRef] [PubMed]
- Jacek, E.; Fallon, B.A.; Chandra, A.; Crow, M.K.; Wormser, G.P.; Alaedini, A. Increased IFNα activity and differential antibody response in patients with a history of Lyme disease and persistent cognitive deficits. J. Neuroimmunol. 2013, 255, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Strle, K.; Stupica, D.; Drouin, E.E.; Steere, A.C.; Strle, F. Elevated Levels of IL-23 in a Subset of Patients With Post-Lyme Disease Symptoms Following Erythema Migrans. Clin. Infect. Dis. 2014, 58, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Aucott, J.N.; Soloski, M.J.; Rebman, A.W.; Crowder, L.A.; Lahey, L.J.; Wagner, C.A.; Robinson, W.H.; Bechtold, K.T. CCL19 as a Chemokine Risk Factor for Posttreatment Lyme Disease Syndrome: A Prospective Clinical Cohort Study. Clin. Vaccine Immunol. 2016, 23, 757–766. [Google Scholar] [CrossRef]
- Soloski, M.J.; Crowder, L.A.; Lahey, L.J.; Wagner, C.A.; Robinson, W.H.; Aucott, J.N. Serum inflammatory mediators as markers of human Lyme disease activity. PLoS ONE 2014, 9, e93243. [Google Scholar] [CrossRef]
- Hernández, S.A.; Ogrinc, K.; Korva, M.; Kastrin, A.; Bogovič, P.; Rojko, T.; Kelley, K.W.; Weis, J.J.; Strle, F.; Strle, K. Association of Persistent Symptoms after Lyme Neuroborreliosis and Increased Levels of Interferon-α in Blood. Emerg. Infect. Dis. 2023, 29, 1091–1101. [Google Scholar] [CrossRef]
- Garcia-Monco, J.C.; Seidman, R.J.; Benach, J.L. Experimental immunization with Borrelia burgdorferi induces development of antibodies to gangliosides. Infect. Immun. 1995, 63, 4130–4137. [Google Scholar] [CrossRef]
- Chandra, A.; Wormser, G.P.; Klempner, M.S.; Trevino, R.P.; Crow, M.K.; Latov, N.; Alaedini, A. Anti-neural antibody reactivity in patients with a history of Lyme borreliosis and persistent symptoms. Brain Behav. Immun. 2010, 24, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Sigal, L.H. Cross-reactivity between Borrelia burgdorferi flagellin and a human axonal 64,000 molecular weight protein. J. Infect. Dis. 1993, 167, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
- Sigal, L.H. Lyme disease: A review of aspects of its immunology and immunopathogenesis. Annu. Rev. Immunol. 1997, 15, 63–92. [Google Scholar] [CrossRef] [PubMed]
- Sigal, L.H.; Tatum, A.H. Lyme disease patients’ serum contains IgM antibodies to Borrelia burgdorferi that cross-react with neuronal antigens. Neurology 1988, 38, 1439–1442. [Google Scholar] [CrossRef]
- Alaedini, A.; Latov, N. Antibodies against OspA epitopes of Borrelia burgdorferi cross-react with neural tissue. J. Neuroimmunol. 2005, 159, 192–195. [Google Scholar] [CrossRef]
- Fallon, B.A.; Strobino, B.; Reim, S.; Stoner, J.; Cunningham, M.W. Anti-lysoganglioside and other anti-neuronal autoantibodies in post-treatment Lyme Disease and Erythema Migrans after repeat infection. Brain Behav. Immun.-Health 2020, 2, 100015. [Google Scholar] [CrossRef]
- Lantos, P.M.; Rumbaugh, J.; Bockenstedt, L.K.; Falck-Ytter, Y.T.; Aguero-Rosenfeld, M.E.; Auwaerter, P.G.; Baldwin, K.; Bannuru, R.R.; Belani, K.K.; Bowie, W.R.; et al. Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR): 2020 Guidelines for the Prevention, Diagnosis, and Treatment of Lyme Disease. Arthritis Care Res. 2021, 73, 1–9. [Google Scholar] [CrossRef]
- Krupp, L.B.; Hyman, L.G.; Grimson, R.; Coyle, P.K.; Melville, P.; Ahnn, S.; Dattwyler, R.; Chandler, B. Study and treatment of post Lyme disease (STOP-LD): A randomized double masked clinical trial. Neurology 2003, 60, 1923–1930. [Google Scholar] [CrossRef]
- Fallon, B.A.; Keilp, J.G.; Corbera, K.M.; Petkova, E.; Britton, C.B.; Dwyer, E.; Slavov, I.; Cheng, J.; Dobkin, J.; Nelson, D.R.; et al. A randomized, placebo-controlled trial of repeated IV antibiotic therapy for Lyme encephalopathy. Neurology 2008, 70, 992–1003. [Google Scholar] [CrossRef]
- Fallon, B.A.; Petkova, E.; Keilp, J.G.; Britton, C.B. A Reappraisal of the U.S. Clinical Trials of Post-Treatment Lyme Disease Syndrome. Open Neurol. J. 2012, 6, 79–87. [Google Scholar] [CrossRef]
- Klempner, M.S.; Hu, L.T.; Evans, J.; Schmid, C.H.; Johnson, G.M.; Trevino, R.P.; Norton, D.; Levy, L.; Wall, D.; McCall, J.; et al. Two controlled trials of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. N. Engl. J. Med. 2001, 345, 85–92. [Google Scholar] [CrossRef]
- Astin, R.; Banerjee, A.; Baker, M.R.; Dani, M.; Ford, E.; Hull, J.H.; Lim, P.B.; McNarry, M.; Morten, K.; O’Sullivan, O.; et al. Long COVID: Mechanisms, risk factors and recovery. Exp. Physiol. 2023, 108, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.; Berkley, J. Diminished Epidermal Nerve Fiber Density in Patients with Antibodies to Outer Surface Protein A (OspA) of B. burgdorferi Improves with Intravenous Immunoglobulin Therapy. In Proceedings of the American Academy of Neurology Annual Meeting, Seattle, WA, USA, 25 April–2 May 2009; p. A55. Available online: https://www.researchgate.net/publication/291971596_Diminished_Epidermal_Nerve_Fiber_Density_in_Pa-tients_with_Antibodies_to_Outer_Surface_Protein_A_OspA_of_B_burgdorferi_Improves_with_Intravenous_Immunoglobulin_Therapy_Katz_A_Berkley_JM_Neurology_20097 (accessed on 13 April 2023).
- Dotevall, L.; Hagberg, L. Successful oral doxycycline treatment of Lyme disease-associated facial palsy and meningitis. Clin. Infect. Dis. 1999, 28, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Halperin, J.J. Lyme disease: A multisystem infection that affects the nervous system. Continuum 2012, 18, 1338–1350. [Google Scholar] [CrossRef] [PubMed]
- Roos, K.L. Neurologic Complications of Lyme Disease. Continuum 2021, 27, 1040–1050. [Google Scholar] [CrossRef]
- Halperin, J.J. Chronic Lyme disease: Misconceptions and challenges for patient management. Infect. Drug Resist. 2015, 8, 119–128. [Google Scholar] [CrossRef]
- Lu, Y.; Zand, R. Characteristics of Lyme optic neuritis: A case report of Lyme associated bilateral optic neuritis and systematic review of the literature. BMC Neurol. 2022, 22, 113. [Google Scholar] [CrossRef]
- Jha, P.; Rodrigues Pereira, S.G.; Thakur, A.; Jhaj, G.; Bhandari, S. A Case of Optic Neuritis Secondary to Lyme Disease. WMJ 2018, 117, 83–87. [Google Scholar]
- Drenckhahn, A.; Spors, B.; Knierim, E. Acute isolated partial oculomotor nerve palsy due to Lyme neuroborreliosis in a 5 year old girl. Eur. J. Paediatr. Neurol. 2016, 20, 977–979. [Google Scholar] [CrossRef]
- Savas, R.; Sommer, A.; Gueckel, F.; Georgi, M. Isolated oculomotor nerve paralysis in Lyme disease: MRI. Neuroradiology 1997, 39, 139–141. [Google Scholar] [CrossRef]
- Dixit, A.; Garcia, Y.; Tesoriero, L.; Berman, C.; Rizzo, V. Diplopia: A Rare Manifestation of Neuroborreliosis. Case Rep. Neurol. Med. 2018, 2018, 9720843. [Google Scholar] [CrossRef] [PubMed]
- Bababeygy, S.R.; Quiros, P.A. Isolated trochlear palsy secondary to Lyme neuroborreliosis. Int. Ophthalmol. 2011, 31, 493–495. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Neubauer, B.A.; Waltz, S.; Stephani, U. Neuroborreliosis and isolated trochlear palsy. Eur. J. Paediatr. Neurol. 1998, 2, 275–276. [Google Scholar] [CrossRef] [PubMed]
- Winward, K.E.; Smith, J.L.; Culbertson, W.W.; Paris-Hamelin, A. Ocular Lyme borreliosis. Am. J. Ophthalmol. 1989, 108, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Biswas, S. Self-limiting fourth and sixth cranial nerve palsy after Lyme disease. J. Pediatr. Ophthalmol. Strabismus 2010, 47, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Köchling, J.; Freitag, H.J.; Bollinger, T.; Herz, A.; Sperner, J. Lyme disease with lymphocytic meningitis, trigeminal palsy and silent thalamic lesion. Eur. J. Paediatr. Neurol. 2008, 12, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Budhram, A.; Le, C.; Jenkins, M.E. Lyme Disease Presenting With Raeder Syndrome. Headache 2018, 58, 317–318. [Google Scholar] [CrossRef]
- Murphy, M.A.; Szabados, E.M.; Mitty, J.A. Lyme disease associated with postganglionic Horner syndrome and Raeder paratrigeminal neuralgia. J. Neuroophthalmol. 2007, 27, 123–124. [Google Scholar] [CrossRef]
- Mashburn, C.J.; Greene, A.M.; DePoe, S.A. Case Report: An Isolated Abducens Palsy Secondary to Lyme Disease. Optom. Vis. Sci. 2022, 99, 394–399. [Google Scholar] [CrossRef]
- Mastrianni, J.A.; Galetta, S.L.; Raps, E.C.; Liu, G.T.; Volpe, N.J. Isolated fascicular abducens nerve palsy and Lyme disease. J. Neuroophthalmol. 1994, 14, 2–5. [Google Scholar] [CrossRef]
- Lundin, M.S.; Sandel, S.L.; Suciu, C.M.; Spicehandler, D.A. Lyme disease with erythema migrans presenting concurrently with optic nerve perineuritis and abducens nerve palsy. BMJ Case Rep. 2020, 13, e231889. [Google Scholar] [CrossRef] [PubMed]
- Lell, M.; Schmid, A.; Stemper, B.; Maihöfner, C.; Heckmann, J.G.; Tomandl, B.F. Simultaneous involvement of third and sixth cranial nerve in a patient with Lyme disease. Neuroradiology 2003, 45, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Sowula, K.; Szaleniec, J.; Dworak, M.; Przeklasa, M.; Maraj, M.; Ceranowicz, P.; Tomik, J. Vertigo as One of the Symptoms of Lyme Disease. J. Clin. Med. 2021, 10, 2814. [Google Scholar] [CrossRef]
- Sowula, K.; Szaleniec, J.; Stolcman, K.; Ceranowicz, P.; Kocoń, S.; Tomik, J. Association between Sudden Sensorineural Hearing Loss and Lyme Disease. J. Clin. Med. 2021, 10, 1130. [Google Scholar] [CrossRef] [PubMed]
- Furtner, M.; Patjas, M.; Frauscher, B.; Schmutzhard, E.; Willeit, J. A case of Lyme neuroborreliosis with bilateral recurrent laryngeal nerve palsy. JRSM Short. Rep. 2010, 1, 56. [Google Scholar] [CrossRef]
- Martínez-Balzano, C.D.; Greenberg, B. Bilateral vocal cord paralysis requiring tracheostomy due to neuroborreliosis. Chest 2014, 146, e153–e155. [Google Scholar] [CrossRef]
- Puri, B.K.; Shah, M.; Monro, J.A.; Kingston, M.C.; Julu, P.O. Respiratory modulation of cardiac vagal tone in Lyme disease. World J. Cardiol. 2014, 6, 502–506. [Google Scholar] [CrossRef]
- Olchovsky, D.; Pines, A.; Sadeh, M.; Kaplinsky, N.; Frankl, O. Multifocal neuropathy and vocal cord paralysis in relapsing fever. Eur. Neurol. 1982, 21, 340–342. [Google Scholar] [CrossRef]
- Ochoa Sangrador, C.; Gudino Curto, P.; Bajo Delgado, A.F.; Hernández González, N. Probable neuroborreliosis con parálisis de los nervios hipogloso y vago. An. Pediatr. 2014, 81, 267–269. [Google Scholar] [CrossRef]
- Zhou, S.-Y.; Lu, Y.-X.; Yao, H.; Owyang, C. Spatial organization of neurons in the dorsal motor nucleus of the vagus synapsing with intragastric cholinergic and nitric oxide/VIP neurons in the rat. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G1201–G1209. [Google Scholar] [CrossRef]
- Littlejohn, E.L.; Espinoza, L.; Lopez, M.M.; Smith, B.N.; Boychuk, C.R. GABAA receptor currents in the dorsal motor nucleus of the vagus in females: Influence of ovarian cycle and 5α-reductase inhibition. J. Neurophysiol. 2019, 122, 2130–2141. [Google Scholar] [CrossRef] [PubMed]
- Batson, S.; Shankar, R.; Conry, J.; Boggs, J.; Radtke, R.; Mitchell, S.; Barion, F.; Murphy, J.; Danielson, V. Efficacy and safety of VNS therapy or continued medication management for treatment of adults with drug-resistant epilepsy: Systematic review and meta-analysis. J. Neurol. 2022, 269, 2874–2891. [Google Scholar] [CrossRef]
- Bottomley, J.M.; LeReun, C.; Diamantopoulos, A.; Mitchell, S.; Gaynes, B.N. Vagus nerve stimulation (VNS) therapy in patients with treatment resistant depression: A systematic review and meta-analysis. Compr. Psychiatry 2019, 98, 152156. [Google Scholar] [CrossRef] [PubMed]
- Ventureyra, E.C. Transcutaneous vagus nerve stimulation for partial onset seizure therapy. A new concept. Childs Nerv. Syst. 2000, 16, 101–102. [Google Scholar] [CrossRef]
- Yakunina, N.; Kim, S.S.; Nam, E.-C. Optimization of Transcutaneous Vagus Nerve Stimulation Using Functional MRI. Neuromodulation 2017, 20, 290–300. [Google Scholar] [CrossRef]
- Kraus, T.; Hösl, K.; Kiess, O.; Schanze, A.; Kornhuber, J.; Forster, C. BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J. Neural Transm. 2007, 114, 1485–1493. [Google Scholar] [CrossRef] [PubMed]
- Kraus, T.; Kiess, O.; Hösl, K.; Terekhin, P.; Kornhuber, J.; Forster, C. CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal—A pilot study. Brain Stimul. 2013, 6, 798–804. [Google Scholar] [CrossRef]
- Dietrich, S.; Smith, J.; Scherzinger, C.; Hofmann-Preiss, K.; Freitag, T.; Eisenkolb, A.; Ringler, R. A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI. Biomed. Tech. 2008, 53, 104–111. [Google Scholar] [CrossRef]
- Frangos, E.; Ellrich, J.; Komisaruk, B.R. Non-invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: fMRI Evidence in Humans. Brain Stimul. 2015, 8, 624–636. [Google Scholar] [CrossRef]
- Verma, N.; Mudge, J.D.; Kasole, M.; Chen, R.C.; Blanz, S.L.; Trevathan, J.K.; Lovett, E.G.; Williams, J.C.; Ludwig, K.A. Auricular Vagus Neuromodulation—A Systematic Review on Quality of Evidence and Clinical Effects. Front. Neurosci. 2021, 15, 664740. Available online: https://www.frontiersin.org/articles/10.3389/fnins.2021.664740 (accessed on 1 June 2023). [CrossRef]
- Redgrave, J.; Day, D.; Leung, H.; Laud, P.J.; Ali, A.; Lindert, R.; Majid, A. Safety and tolerability of Transcutaneous Vagus Nerve stimulation in humans; a systematic review. Brain Stimul. 2018, 11, 1225–1238. [Google Scholar] [CrossRef]
- Badran, B.W.; Huffman, S.M.; Dancy, M.; Austelle, C.W.; Bikson, M.; Kautz, S.A.; George, M.S. A pilot randomized controlled trial of supervised, at-home, self-administered transcutaneous auricular vagus nerve stimulation (taVNS) to manage long COVID symptoms. Bioelectron. Med. 2022, 8, 13. [Google Scholar] [CrossRef]
- Tracey, K.J. The inflammatory reflex. Nature 2002, 420, 853–859. [Google Scholar] [CrossRef]
- Pavlov, V.A.; Tracey, K.J. The vagus nerve and the inflammatory reflex—Linking immunity and metabolism. Nat. Rev. Endocrinol. 2012, 8, 743–754. [Google Scholar] [CrossRef]
- Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000, 405, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Huffman, W.J.; Subramaniyan, S.; Rodriguiz, R.M.; Wetsel, W.C.; Grill, W.M.; Terrando, N. Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul. 2019, 12, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Go, Y.-Y.; Ju, W.-M.; Lee, C.-M.; Chae, S.-W.; Song, J.-J. Different Transcutaneous Auricular Vagus Nerve Stimulation Parameters Modulate the Anti-Inflammatory Effects on Lipopolysaccharide-Induced Acute Inflammation in Mice. Biomedicines 2022, 10, 247. [Google Scholar] [CrossRef] [PubMed]
- Ilanges, A.; Shiao, R.; Shaked, J.; Luo, J.-D.; Yu, X.; Friedman, J.M. Brainstem ADCYAP1+ neurons control multiple aspects of sickness behaviour. Nature 2022, 609, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Akoolo, L.; Djokic, V.; Rocha, S.C.; Ulloa, L.; Parveen, N. Sciatic-Vagal Nerve Stimulation by Electroacupuncture Alleviates Inflammatory Arthritis in Lyme Disease-Susceptible C3H Mice. Front. Immunol. 2022, 13, 930287. [Google Scholar] [CrossRef]
- Koopman, F.A.; Chavan, S.S.; Miljko, S.; Grazio, S.; Sokolovic, S.; Schuurman, P.R.; Mehta, A.D.; Levine, Y.A.; Faltys, M.; Zitnik, R.; et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2016, 113, 8284–8289. [Google Scholar] [CrossRef]
- Drewes, A.M.; Brock, C.; Rasmussen, S.E.; Møller, H.J.; Brock, B.; Deleuran, B.W.; Farmer, A.D.; Pfeiffer-Jensen, M. Short-term transcutaneous non-invasive vagus nerve stimulation may reduce disease activity and pro-inflammatory cytokines in rheumatoid arthritis: Results of a pilot study. Scand. J. Rheumatol. 2021, 50, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Aranow, C.; Atish-Fregoso, Y.; Lesser, M.; Mackay, M.; Anderson, E.; Chavan, S.; Zanos, T.P.; Datta-Chaudhuri, T.; Bouton, C.; Tracey, K.J.; et al. Transcutaneous auricular vagus nerve stimulation reduces pain and fatigue in patients with systemic lupus erythematosus: A randomised, double-blind, sham-controlled pilot trial. Ann. Rheum. Dis. 2021, 80, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Kaniusas, E.; Kampusch, S.; Tittgemeyer, M.; Panetsos, F.; Gines, R.F.; Papa, M.; Kiss, A.; Podesser, B.; Cassara, A.M.; Tanghe, E.; et al. Current Directions in the Auricular Vagus Nerve Stimulation I—A Physiological Perspective. Front. Neurosci. 2019, 13, 854. Available online: https://www.frontiersin.org/articles/10.3389/fnins.2019.00854 (accessed on 1 June 2023). [CrossRef] [PubMed]
- George, M.S.; Sackeim, H.A.; Marangell, L.B.; Husain, M.M.; Nahas, Z.; Lisanby, S.H.; Ballenger, J.C.; Rush, A.J. Vagus nerve stimulation. A potential therapy for resistant depression? Psychiatr. Clin. N. Am. 2000, 23, 757–783. [Google Scholar] [CrossRef]
- Austelle, C.W.; O’Leary, G.H.; Thompson, S.; Gruber, E.; Kahn, A.; Manett, A.J.; Short, B.; Badran, B.W. A Comprehensive Review of Vagus Nerve Stimulation for Depression. Neuromodulation 2022, 25, 309–315. [Google Scholar] [CrossRef]
- Berry, S.M.; Broglio, K.; Bunker, M.; Jayewardene, A.; Olin, B.; Rush, A.J. A patient-level meta-analysis of studies evaluating vagus nerve stimulation therapy for treatment-resistant depression. Med. Devices 2013, 6, 17–35. [Google Scholar] [CrossRef]
- Grimonprez, A.; Raedt, R.; Baeken, C.; Boon, P.; Vonck, K. The antidepressant mechanism of action of vagus nerve stimulation: Evidence from preclinical studies. Neurosci. Biobehav. Rev. 2015, 56, 26–34. [Google Scholar] [CrossRef]
- Groves, D.A.; Brown, V.J. Vagal nerve stimulation: A review of its applications and potential mechanisms that mediate its clinical effects. Neurosci. Biobehav. Rev. 2005, 29, 493–500. [Google Scholar] [CrossRef]
- Tarn, J.; Evans, E.; Traianos, E.; Collins, A.; Stylianou, M.; Parikh, J.; Bai, Y.; Guan, Y.; Frith, J.; Lendrem, D.; et al. The Effects of Noninvasive Vagus Nerve Stimulation on Fatigue in Participants With Primary Sjögren’s Syndrome. Neuromodulation 2023, 26, 681–689. [Google Scholar] [CrossRef]
- Natelson, B.H.; Stegner, A.J.; Lange, G.; Khan, S.; Blate, M.; Sotolongo, A.; DeLuca, M.; Van Doren, W.W.; Helmer, D.A. Vagal nerve stimulation as a possible non-invasive treatment for chronic widespread pain in Gulf Veterans with Gulf War Illness. Life Sci. 2021, 282, 119805. [Google Scholar] [CrossRef]
- Natelson, B.H.; Blate, M.; Soto, T. Transcutaneous Vagus Nerve Stimulation in the Treatment of Long Covid-Chronic Fatigue Syndrome. medRxiv 2022. [Google Scholar] [CrossRef]
- Safi, S.; Ellrich, J.; Neuhuber, W. Myelinated Axons in the Auricular Branch of the Human Vagus Nerve. Anat. Rec. 2016, 299, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Burger, A.M.; Verkuil, B. Transcutaneous nerve stimulation via the tragus: Are we really stimulating the vagus nerve? Brain Stimul. 2018, 11, 945–946. [Google Scholar] [CrossRef] [PubMed]
- Schuerman, W.L.; Nourski, K.V.; Rhone, A.E.; Howard, M.A.; Chang, E.F.; Leonard, M.K. Human intracranial recordings reveal distinct cortical activity patterns during invasive and non-invasive vagus nerve stimulation. Sci. Rep. 2021, 11, 22780. [Google Scholar] [CrossRef]
- Thompson, S.L.; O’Leary, G.H.; Austelle, C.W.; Gruber, E.; Kahn, A.T.; Manett, A.J.; Short, B.; Badran, B.W. A Review of Parameter Settings for Invasive and Non-invasive Vagus Nerve Stimulation (VNS) Applied in Neurological and Psychiatric Disorders. Front. Neurosci. 2021, 15, 709436. [Google Scholar] [CrossRef]
- Ruhnau, P.; Zaehle, T. Transcranial Auricular Vagus Nerve Stimulation (taVNS) and Ear-EEG: Potential for Closed-Loop Portable Non-invasive Brain Stimulation. Front. Human Neurosci. 2021, 15, 699473. Available online: https://www.frontiersin.org/articles/10.3389/fnhum.2021.699473 (accessed on 1 June 2023). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biniaz-Harris, N.; Kuvaldina, M.; Fallon, B.A. Neuropsychiatric Lyme Disease and Vagus Nerve Stimulation. Antibiotics 2023, 12, 1347. https://doi.org/10.3390/antibiotics12091347
Biniaz-Harris N, Kuvaldina M, Fallon BA. Neuropsychiatric Lyme Disease and Vagus Nerve Stimulation. Antibiotics. 2023; 12(9):1347. https://doi.org/10.3390/antibiotics12091347
Chicago/Turabian StyleBiniaz-Harris, Nicholas, Mara Kuvaldina, and Brian A. Fallon. 2023. "Neuropsychiatric Lyme Disease and Vagus Nerve Stimulation" Antibiotics 12, no. 9: 1347. https://doi.org/10.3390/antibiotics12091347
APA StyleBiniaz-Harris, N., Kuvaldina, M., & Fallon, B. A. (2023). Neuropsychiatric Lyme Disease and Vagus Nerve Stimulation. Antibiotics, 12(9), 1347. https://doi.org/10.3390/antibiotics12091347