The Impact of Viral and Bacterial Co-Infections and Home Antibiotic Treatment in SARS-CoV-2 Hospitalized Patients at the Policlinico Tor Vergata Hospital, Rome, Italy
Abstract
:1. Introduction
2. Results
Study Population
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Data Collection
4.3. Laboratory Analyses
- -
- Human immunodeficiency virus (HIV) (Alinity HIV, Abbott Molecular, Des Plaines, IL, USA);
- -
- Hepatitis C antibodies (Alinity HCV, Abbott Molecular, Des Plaines, IL, USA);
- -
- Hepatitis B antibodies (HBcAb, HBSAb, HBSAg, HBeAb, HBeAg) (Alinity HBV, Abbott Molecular, Des Plaines, IL, USA);
- -
- Urinary antigens for Legionella pneumophila and Streptococcus pneumoniae (Sofia Legionella FIA Quidel, Sofia S.pneumoniae FIA Quidel, San Diego, CA, USA);
- -
- Pharyngeal swab for respiratory viruses (Biofire Filmarray Respiratory 2.1 plus Panel, BioFire Diagnostics, LLC, Salt Lake City, UT, USA; it detects viral PCR for respiratory sincitial virus, metapneumovirus, coronaviruses, influenza virus, parainfluenza virus, rhinovirus/enterovirus);
- -
- QuantiFERON®-TB Gold Plus (QFT-Plus) assay (Qiagen, Hilden, Germany).
4.4. Definitions: Patient Classification
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, D.L.; Rossman, J.S.; Jarić, I. Dating first cases of COVID-19. PLoS Pathog. 2021, 17, e1009620. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.; Ye, D.; Liu, Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int. J. Antimicrob. Agents 2020, 55, 105948. [Google Scholar] [CrossRef] [PubMed]
- Osuchowski, M.F.; Winkler, M.S.; Skirecki, T.; Cajander, S.; Shankar-Hari, M.; Lachmann, G.; Monneret, G.; Venet, F.; Bauer, M.; Brunkhorst, F.M.; et al. The COVID-19 puzzle: Deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir. Med. 2021, 9, 622–642. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Monteforte, B.; Gupta, A.; Jiang, W.; May, L.; Hsieh, Y.; Dugas, A. The frequency of influenza and bacterial coinfection: A systematic review and meta-analysis. Influ. Other Respir. Viruses 2016, 10, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, I.M.; Nicolau, D.P.; Nailor, M.D.; Aslanzadeh, J.; Ross, J.W.; Kuti, J.L. Antibiotic Utilization and Opportunities for Stewardship Among Hospitalized Patients With Influenza Respiratory Tract Infection. Infect. Control. Hosp. Epidemiol. 2016, 37, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; George, R.; Nguyen-Van-Tam, J.S. Bacterial Pneumonia and Pandemic Influenza Planning. Emerg. Infect. Dis. 2008, 14, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.N.; Akter, S.; Mishu, I.D.; Islam, M.R.; Rahman, M.S.; Akhter, M.; Islam, I.; Hasan, M.M.; Rahaman, M.; Sultana, M.; et al. Microbial co-infections in COVID-19: Associated microbiota and underlying mechanisms of pathogenesis. Microb. Pathog. 2021, 156, 104941. [Google Scholar] [CrossRef] [PubMed]
- Westblade, L.F.; Simon, M.S.; Satlin, M.J. Bacterial Coinfections in Coronavirus Disease 2019. Trends Microbiol. 2021, 29, 930–941. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, Q.; Xiao, Y.; Wu, C.; Jiang, Z.; Liu, L.; Qu, J. Clinical and etiological analysis of co-infections and secondary infections in COVID-19 patients: An observational study. Clin. Respir. J. 2021, 15, 815–825. [Google Scholar] [CrossRef]
- Choudhury, I.; Han, H.; Manthani, K.; Gandhi, S.; Dabhi, R. COVID-19 as a Possible Cause of Functional Exhaustion of CD4 and CD8 T-Cells and Persistent Cause of Methicillin-Sensitive Staphylococcus aureus Bacteremia. Cureus [Internet]. 4 Luglio 2020. Volume 12. Available online: https://www.cureus.com/articles/34829-covid-19-as-a-possible-cause-of-functional-exhaustion-of-cd4-and-cd8-t-cells-and-persistent-cause-of-methicillin-sensitive-staphylococcus-aureus-bacteremia (accessed on 8 December 2022).
- Garcia-Vidal, C.; Sanjuan, G.; Moreno-García, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M.; et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study. Clin. Microbiol. Infect. 2021, 27, 83–88. [Google Scholar] [CrossRef]
- Alosaimi, B.; Naeem, A.; Hamed, M.E.; Alkadi, H.S.; Alanazi, T.; Al Rehily, S.S.; Almutairi, A.Z.; Zafar, A. Influenza co-infection associated with severity and mortality in COVID-19 patients. Virol. J. 2021, 18, 127. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Wang, C.Y.; Hsueh, P.R. Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? J. Microbiol. Immunol. Infect. 2020, 53, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar] [CrossRef] [PubMed]
- Rothe, K.; Feihl, S.; Schneider, J.; Wallnöfer, F.; Wurst, M.; Lukas, M.; Treiber, M.; Lahmer, T.; Heim, M.; Dommasch, M.; et al. Rates of bacterial co-infections and antimicrobial use in COVID-19 patients: A retrospective cohort study in light of antibiotic stewardship. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected. Interim guidance. Pediatr. Med. Rodz. 2020, 16, 9–26. [Google Scholar] [CrossRef]
- Gautret, P.; Lagier, J.C.; Parola, P.; Meddeb, L.; Mailhe, M.; Doudier, B.; Raoult, D.; Courjon, J.; Colson, P.; La Scola, B.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 56, 105949. [Google Scholar] [CrossRef]
- Khezri, M.R.; Zolbanin, N.M.; Ghasemnejad-Berenji, M.; Jafari, R. Azithromycin: Immunomodulatory and antiviral properties for SARS-CoV-2 infection. Eur. J. Pharmacol. 2021, 905, 174191. [Google Scholar] [CrossRef]
- Lai, C.C.; Chen, S.Y.; Ko, W.C.; Hsueh, P.R. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents. 2021, 57, 106324. [Google Scholar] [CrossRef]
- Musuuza, J.S.; Watson, L.; Parmasad, V.; Putman-Buehler, N.; Christensen, L.; Safdar, N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251170. [Google Scholar] [CrossRef]
- Vaughn, V.M.; Gandhi, T.N.; Petty, L.A.; Patel, P.K.; Prescott, H.C.; Malani, A.N.; Flanders, S.A.; Ratz, D.; McLaughlin, E.; Chopra, V. Empiric Antibacterial Therapy and Community-onset Bacterial Coinfection in Patients Hospitalized With Coronavirus Disease 2019 (COVID-19): A Multi-hospital Cohort Study. Clin. Infect. Dis. 2021, 72, e533–e541. [Google Scholar] [CrossRef] [PubMed]
- Bengoechea, J.A.; Bamford, C.G. SARS-CoV-2, bacterial co-infections, and AMR: The deadly trio in COVID-19? EMBO Mol. Med. 2020, 12, e12560. [Google Scholar] [CrossRef] [PubMed]
- Iannetta, M.; Buccisano, F.; Fraboni, D.; Malagnino, V.; Campogiani, L.; Teti, E.; Sarmati, L.; Rossi, B.; Di Lorenzo, A.; Crea, A.; et al. Baseline T-lymphocyte subset absolute counts can predict both outcome and severity in SARS-CoV-2 infected patients: A single center study. Sci. Rep. 2021, 11, 12762. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, A.; Tedde, S.; Pace, P.G.; Campogiani, L.; Ansaldo, L.; Lodi, A.; Zordan, M.; Barreca, F.; Caldara, F.; Rossi, B.; et al. Validation of the T-Lymphocyte Subset Index (TLSI) as a Score to Predict Mortality in Unvaccinated Hospitalized COVID-19 Patients. Biomedicines 2022, 10, 2788. [Google Scholar] [CrossRef] [PubMed]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Gudiol, C.; Durà-Miralles, X.; Aguilar-Company, J.; Hernández-Jiménez, P.; Martínez-Cutillas, M.; Fernandez-Avilés, F.; Machado, M.; Vázquez, L.; Martín-Dávila, P.; de Castro, N.; et al. Co-infections and superinfections complicating COVID-19 in cancer patients: A multicentre, international study. J. Infect. 2021, 83, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo, J.L. Respiratory co-and superinfections in COVID-19. Rev. Esp. Quimioter. 2021, 34 (Suppl. S1), 69–71. [Google Scholar] [CrossRef]
- European Observatory on Health Systems and Policies; Jarman, H.; Greer, S.L.; Rozenblum, S.; Wismar, M. In and out of lockdowns, and what is a lockdown anyway? Policy issues in transitions. Eurohealth 2020, 26, 93–98. [Google Scholar]
- De Francesco, M.A.; Pollara, C.; Gargiulo, F.; Giacomelli, M.; Caruso, A. Circulation of Respiratory Viruses in Hospitalized Adults before and during the COVID-19 Pandemic in Brescia, Italy: A Retrospective Study. Int. J. Environ. Res. Public Health 2021, 18, 9525. [Google Scholar] [CrossRef]
- Nenna, R.; Matera, L.; Licari, A.; Manti, S.; Di Bella, G.; Pierangeli, A.; Palamara, A.T.; Nosetti, L.; Leonardi, S.; Marseglia, G.L.; et al. An Italian Multicenter Study on the Epidemiology of Respiratory Syncytial Virus During SARS-CoV-2 Pandemic in Hospitalized Children. Front. Pediatr. 2022, 10, 930281. [Google Scholar] [CrossRef]
- Moreno-García, E.; Puerta-Alcalde, P.; Letona, L.; Meira, F.; Dueñas, G.; Chumbita, M.; Garcia-Vidal, C.; Grafia, L.; Castro, P.; Soriano, A.; et al. Bacterial co-infection at hospital admission in patients with COVID-19. Int. J. Infect. Dis. 2022, 118, 197–202. [Google Scholar] [CrossRef]
- Antinori, S.; Bonfanti, P.; Bruno, R. Vademecum per la Cura delle Persone con Malattia da COVID-19; Edizione 2.0, 13 Marzo 2020; SIMIT Società Italiana di Malattie Infettive e Tropicali Sezione Regione Lombardia: Milan, Italy, 2020; p. 15. [Google Scholar]
- Bartoletti, M.; Azap, O.; Barac, A.; Bussini, L.; Ergonul, O.; Krause, R.; Paño-Pardo, J.R.; Power, N.R.; Sibani, M.; Szabo, B.G.; et al. ESCMID COVID-19 living guidelines: Drug treatment and clinical management. Clin. Microbiol. Infect. 2022, 28, 222–238. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.P.; Patel, P.K.; Nori, P. Involving antimicrobial stewardship programs in COVID-19 response efforts: All hands on deck. Infect. Control. Hosp. Epidemiol. 2020, 41, 744–745. [Google Scholar] [CrossRef] [PubMed]
- Imeneo, A.; Alessio, G.; Di Lorenzo, A.; Campogiani, L.; Lodi, A.; Barreca, F.; Iannetta, M.; Andreoni, M.; Dori, L.; Spalliera, I.; et al. In Patients with Severe COVID-19, the Profound Decrease in the Peripheral Blood T-Cell Subsets Is Correlated with an Increase of QuantiFERON-TB Gold Plus Indeterminate Rates and Reflecting a Reduced Interferon-Gamma Production. Life 2022, 12, 244. [Google Scholar] [CrossRef] [PubMed]
- Solanich, X.; Fernández-Huerta, M.; Basaez, C.; Antolí, A.; Rocamora-Blanch, G.; Corbella, X.; Santin, M.; Alcaide, F. Clinical Significance of Indeterminate QuantiFERON-TB Gold Plus Assay Results in Hospitalized COVID-19 Patients with Severe Hyperinflammatory Syndrome. J. Clin. Med. 2021, 10, 918. [Google Scholar] [CrossRef] [PubMed]
- Alessio, G.; Imeneo, A.; Di Lorenzo, A.; Rossi, B.; Sorace, C.; Compagno, M.; Alcaide, F.; Coppola, L.; Campogiani, L.; Malagnino, V.; et al. Longitudinal Evaluation of the QuantiFERON-TB Gold Plus Assay in Hospitalized COVID-19 Patients with a First Indeterminate Result: Resolution of Inflammation and Restoration of T-Lymphocyte Counts and Interferon-Gamma Production. Microbiol. Spectr. 2022, 10, e0185822. [Google Scholar] [CrossRef] [PubMed]
- Di EIS, S. EpiCentro [Internet]. Available online: https://www.epicentro.iss.it/ (accessed on 14 December 2022).
- Sarkar, S.; Khanna, P.; Singh, A.K. The Impact of Neutrophil-Lymphocyte Count Ratio in COVID-19: A Systematic Review and Meta-Analysis. J. Intensive Care Med. 2022, 37, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Boettler, T.; Marjot, T.; Newsome, P.N.; Mondelli, M.U.; Maticic, M.; Cordero, E.; Jalan, R.; Moreau, R.; Cornberg, M.; Berg, T. Impact of COVID-19 on the care of patients with liver disease: EASL-ESCMID position paper after 6 months of the pandemic. JHEP Rep. 2020, 2, 100169. [Google Scholar] [CrossRef]
- Yip, T.C.F.; Gill, M.; Wong, G.L.H.; Liu, K. Management of hepatitis B virus reactivation due to treatment of COVID-19. Hepatol. Int. 2022, 16, 257–268. [Google Scholar] [CrossRef]
Overall Population 482 Patients | |
---|---|
Age (median [IQR]) | 65 (53–76) |
Sex (M/F) | 294/188 (61%/39%) |
Time to hospitalization from symptom onset (median [IQR]) | 6 (3–9) |
CCI (median (IQR)) | 4 (2–5) |
Comorbidities | |
Cardiovascular | 284 (58%) |
Diabetes | 101 (21%) |
Obesity | 97 (20.1%) |
Psychiatric/Neurologic | 64 (13.3%) |
Pulmonary | 61 (12.6%) |
Endocrinologic | 61 (12.6%) |
Renal | 57 (11.8%) |
Solid Tumor | 54 (11.2%) |
Cerebrovascular | 35 (7.3%) |
Hematologic | 28 (5.8%) |
Immuno/Rheumatologic | 28 (5.8%) |
Hepatitis | 25 (5.5%) |
Dialysis | 20 (4.1%) |
Other | 170 (35.3%) |
Oxygen Supply | 366 (75.9%) |
AA/VMK/NRM/NIV/OTI | 116/110/8/212/36 (24.1%/22.8%/1.6%/44%/7.5%) |
Overall mortality | 71 (14.7%) |
30-day mortality | 60 (12.4%) |
Overall Population 482 Patients | |
QuantiFERON-TB Gold | 442 pts |
Positive/indeterminate/negative | 43/125/274 (9.7%/28.3%/62%) |
Hepatitis screening | 472 pts |
HBcAb+ | 100 (21.2%) |
HbsAg+ | 6 (1.3%) |
Anti-HCV+ | 10 (2.1%) |
Urinary antigen | 482 pts |
Legionella pneumophila | 0 |
Streptococcus pneumoniae | 15 (3.5%) |
Pharyngeal swab–respiratory viruses | 389 pts |
Positive swabs | 0 |
Blood cultures within 48 h from hospitalization | 237 (49.2%) |
Positive/negative | 28/209 (11.8%/88.2%) |
Contaminant/Infection | 21/7 (75%/25%) |
Home antibiotic treatment | 151 (31.3%) |
With 1 antibiotic | 136 (90.1%) |
macrolides | 98 (64.9%) |
oral beta-lactams | 34 (22.5%) |
fluoroquinolones | 4 (2.7%) |
With more than 1 antibiotic | 15 (9.9%) |
Non-Severe 226 Patients (46.9%) | Severe 256 Patients (53.1%) | p-Value | Survivors 422 Patients (87.6%) | Non-Survivors 60 Patients (12.4%) | p-Value | |
---|---|---|---|---|---|---|
Age (median (IQR)) | 64 (51–77) | 65 (55–74) | 0.745 | 63 (51–74) | 77 (69–82.2) | <0.001 |
Sex (M/F) | 136/90 (60.2%/39.8%) | 158/98 (61.7%/38.3%) | 0.729 | 260/162 (38.4%/61.6%) | 34/26 (56.7%/43.3%) | 0.462 |
Time to hospitalization from symptom onset (median (IQR)) | 6 (3–8.5) | 7 (4–10) | 0.100 | 5.5 (3–9) | 7 (4–9) | 0.261 |
CCI (median (IQR)) | 4 (1–5) | 3.5 (2–5) | 0.501 | 3 (1–5) | 5 (4–7) | <0.001 |
Comorbidities | ||||||
Cardiovascular | 135 (59.7%) | 149 (58.2%) | 0.733 | 238 (56.4%) | 46 (76.7%) | 0.003 |
Diabetes | 44 (19.5%) | 57 (22.3%) | 0.452 | 85 (20.1%) | 16 (26.7%) | 0.245 |
Obesity | 33 (14.6%) | 64 (25%) | 0.004 | 82 (19.4%) | 15 (25%) | 0.314 |
Psychiatric/Neurologic | 28 (12.4%) | 36 (14.1%) | 0.589 | 54 (12.8%) | 10 (16.7%) | 0.408 |
Pulmonary | 28 (12.4%) | 33 (12.9%) | 0.869 | 51 (12.1%) | 10 (16.7%) | 0.318 |
Endocrinologic | 23 (10.2%) | 38 (14.8%) | 0.124 | 53 (12.6%) | 8 (13.3%) | 0.866 |
Renal | 35 (15.5%) | 22 (8.6%) | 0.019 | 44 (10.4%) | 13 (21.7%) | 0.012 |
Solid Tumor | 21 (9.3%) | 33 (12.9%) | 0.211 | 40 (9.5%) | 14 (23.3%) | 0.001 |
Cerebrovascular | 20 (8.8%) | 15 (5.8%) | 0.207 | 26 (6.2%) | 9 (15%) | 0.014 |
Hematologic | 11 (4.9%) | 17 (6.6%) | 0.406 | 20 (4.7%) | 8 (13.3%) | 0.008 |
Immuno/Rheumatologic | 14 (6.2%) | 14 (5.5%) | 0.734 | 25 (5.9%) | 3 (5%) | 0.775 |
Hepatitis | 14 (6.2%) | 11 (4.3%) | 0.348 | 24 (5.7%) | 1 (1.7%) | 0.189 |
Dialysis | 17 (7.5%) | 3 (1.2%) | <0.001 | 16 (3.8%) | 4 (6.7%) | 0.296 |
Other | 82 (36.3%) | 88 (34.4%) | 0.662 | 155 (36.7%) | 15 (25%) | 0.075 |
Oxygen Supply (AA/VMK/NRM/NIV/OTI) | // | // | // | 113/105/4/194/6 (26.8/24.9/0.9/46/1.4) | 3/5/4/18/30 (5/8.3/6.7/30/50) | <0.001 |
QuantiFERON-TB Gold (positive/indeterminate/negative) | 28/32/151 (13.3/15.2/71.6) | 15/93/123 (6.5/40.3/53.2) | <0.001 | 42/100/247 (10.8/25.7/63.5) | 1/25/27 (1.9/47.2/50.9) | 0.002 |
HBcAb+ | 51 (23.2%) | 49 (19%) | 0.322 | 85 (20.5%) | 15 (25.9%) | 0.352 |
HbsAg+ | 1 (0.4%) | 5 (2%) | 0.139 | 6 (1.4%) | 0 | 0.356 |
Anti-HCV+ | 6 (2.7%) | 4 (1.6%) | 0.391 | 10 (2.4%) | 0 | 0.232 |
Urinary antigen (L. pneumophila/S. pneumoniae) | 0/10 (0%/5.1%) | 0/5 (0%/2.1%) | 0.091 | 0/15 (0%/4%) | 0/0 | 0.143 |
Pharyngeal swab–respiratory viruses | 0 | 0 | 0 | 0 | ||
Blood cultures within 48 h from hospitalization | 106 | 132 | 204 | 34 | ||
Positive/negative | 11/95 (10.4%/89.6%) | 17/115 (12.9%/87.1%) | 0.552 | 20/184 (9.8%/90.2%) | 8/26 (23.5%/76.5%) | 0.021 |
Contaminant/Infection | 7/4 (63.6%/36.4%) | 14/3 (82.3%/17.7%) | 0.264 | 14/6 (70%/30%) | 7/1 (87.5%/12.5%) | 0.334 |
Home antibiotic treatment | 53 (23.4%) | 98 (38.3%) | <0.001 | 136 (32.2%) | 15 (25%) | 0.259 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Lorenzo, A.; Campogiani, L.; Iannetta, M.; Iannazzo, R.; Imeneo, A.; Alessio, G.; D’Aquila, V.; Massa, B.; Fato, I.; Rindi, L.V.; et al. The Impact of Viral and Bacterial Co-Infections and Home Antibiotic Treatment in SARS-CoV-2 Hospitalized Patients at the Policlinico Tor Vergata Hospital, Rome, Italy. Antibiotics 2023, 12, 1348. https://doi.org/10.3390/antibiotics12091348
Di Lorenzo A, Campogiani L, Iannetta M, Iannazzo R, Imeneo A, Alessio G, D’Aquila V, Massa B, Fato I, Rindi LV, et al. The Impact of Viral and Bacterial Co-Infections and Home Antibiotic Treatment in SARS-CoV-2 Hospitalized Patients at the Policlinico Tor Vergata Hospital, Rome, Italy. Antibiotics. 2023; 12(9):1348. https://doi.org/10.3390/antibiotics12091348
Chicago/Turabian StyleDi Lorenzo, Andrea, Laura Campogiani, Marco Iannetta, Roberta Iannazzo, Alessandra Imeneo, Grazia Alessio, Veronica D’Aquila, Barbara Massa, Ilenia Fato, Lorenzo Vittorio Rindi, and et al. 2023. "The Impact of Viral and Bacterial Co-Infections and Home Antibiotic Treatment in SARS-CoV-2 Hospitalized Patients at the Policlinico Tor Vergata Hospital, Rome, Italy" Antibiotics 12, no. 9: 1348. https://doi.org/10.3390/antibiotics12091348
APA StyleDi Lorenzo, A., Campogiani, L., Iannetta, M., Iannazzo, R., Imeneo, A., Alessio, G., D’Aquila, V., Massa, B., Fato, I., Rindi, L. V., Malagnino, V., Teti, E., Andreoni, M., & Sarmati, L. (2023). The Impact of Viral and Bacterial Co-Infections and Home Antibiotic Treatment in SARS-CoV-2 Hospitalized Patients at the Policlinico Tor Vergata Hospital, Rome, Italy. Antibiotics, 12(9), 1348. https://doi.org/10.3390/antibiotics12091348