Antifungal Use and Resistance in a Lower–Middle-Income Country: The Case of Lebanon
Abstract
:1. Introduction
2. Results
2.1. Antifungal Use in Human Medicine
2.2. Antifungal Use in Agriculture and Veterinary Medicine
2.3. Antifungal Resistance in Human Medicine and Environment
Study Period | Study Design | Sample Type (n) | Species (n) | Susceptibility Testing Method | Prevalence of Antifungal Resistance (%) ¶ | Ref. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FLZ | KTZ | ITZ | PCZ | VRZ | MIZ | CPF | MCF | ADF | AMB | FLU | ||||||
2020–1 | Retrospective case control | Urine (n = 20); deep tracheal aspirates (DTA) (n = 26); blood (n = 8); wounds (n = 4) | Candida auris (n = 58) | E-test; Vitek-2 | 100 | 3 | 0 | 0 | 100 | [27] | ||||||
2021 | Case report | Blood (n = 2); urine (n = 2); DTA (n = 2) | Candida duobushaemulonii (n = 1) | Vitek-2 | R | R | S | [28] | ||||||||
2021 | Cross-sectional | Peripheral blood (n = 4); central line catheter (n = 1); DTA (n = 12); Urine (n = 8); skin (n = 2); bronchoalveolar lavage (BAL) (n = 1) | C. auris (n = 28) | Vitek-2 | 100 | 25 | 3 | 0 | 0 | 100 | [29] | |||||
2020 | Case report | Blood (n = 2); urine (n = 3); DTA (n = 10); skin (n = 1) | C. auris (n = 14) | E-test | 100 | 0 | 0 | 100 | [30] | |||||||
2014–9 | Cross-sectional | Urine (n = 22); skin (n = 26); vaginal swab (n = 18); ear, nose, and throat (ENT) (n = 3); stool (n = 5); lower respiratory tract (n = 11); pus (n = 3); catheter (n = 2); blood (n = 1); gastric fluid (n = 1); cerebrospinal fluid (n = 1) | Candida albicans (n = 29) | Micro-broth dilution | 24.1 | 24.1 | 20.7 | 13.8 | 13.8 | 41.4 | 13.8 | [31] | ||||
Candida glabrata (n = 18) | 22.2 | 16.7 | 11 | 33 | 16.7 | 61.1 | 11.1 | |||||||||
Candida parapsilosis (n = 12) | 8.3 | 75 | 8.3 | 0 | 41.7 | 33.3 | 8.3 | |||||||||
Candida tropicalis (n = 10) | 20 | 40 | 50 | 0 | 20 | 60 | 10 | |||||||||
Kluyveromyces marxianus (n = 6) | 0 | 0 | 0 | 0 | 33.3 | 0 | 0 | |||||||||
Pichia kudriavzevii (n = 5) | 100 | 20 | 0 | 0 | 20 | 20 | 60 | |||||||||
2016–8 | Cross-sectional | Urine (n = 393), vaginal swabs (n = 147), [sputum, blood, cerebrospinal fluid (CSF), miscellaneous] (n = 460) | C. glabrata (n = 408) | Micro-broth dilution | 100 | NA | NA | 1.5 | 0 | 0 | [32] | |||||
C. tropicalis (n = 231) | 95.7 | 96.1 | 0 | NA | 0 | 0.4 | ||||||||||
C. parapsilosis (n = 103) | 93.2 | 100 | 0 | 0 | 0 | 0 | ||||||||||
P. kudriavzevii (n = 35) | NA | NA | NA | NA | NA | NA | ||||||||||
K. marxianus (n = 72) | NA | NA | NA | NA | NA | NA | ||||||||||
2019 | Cohort prospective | Water samples collected across Lebanon (n = 84) | K. marxianus (n = 12) | Disc diffusion | 41.6 | 33.3 | 50 | [33] | ||||||||
2015–6 | Cross-sectional | Vaginal discharge (n = 258) | C. albicans (n = 40) | E-test | 10 | 12.5 | 2.5 | 2.5 | [34] | |||||||
2014 | Cross-sectional | Stool (n = 41) | C. glabrata (n = 6) | Fungitest™ (BioRad®) | 0 | 0 | 0 | 0 | 0 | 0 | [35] | |||||
C. albicans (n = 2) | 0 | 0 | 0 | 0 | 0 | 0 | ||||||||||
C. parapsilosis (n = 1) | S | S | S | S | S | S | ||||||||||
C. tropicalis (n = 1) | S | S | S | S | S | S | ||||||||||
2005–14 | Cohort retrospective | Urine (28%); blood (25%); respiratory tract (19%); fluids (15%); wounds/abscesses (11%); catheters (2%) | C. albicans (n = 68) | E-test | 2 | 44 | 4.5 | 0 | [36] | |||||||
C. tropicalis (n = 72) | 16.4 | 55.5 | 10.5 | 0 | ||||||||||||
C. glabrata (n = 46) | 28.7 | 70.5 | 25 | 0 | ||||||||||||
C. parapsilosis (n = 10) | 4.7 | 25 | 0 | 0 | ||||||||||||
P. kudriavzevii (n = 8) | 68 | 0 | 0 | 0 | ||||||||||||
2010–1 | Cross-sectional | Urine (n = 31); sputum (n = 23); tracheal aspirates (n = 12); BAL (n = 11); body fluids (n = 3); abscesses (n = 2); pus swabs (n = 2); abdominal swab (n = 1) | Candida spp. (n = 83) C. albicans (n = 69) | E-test | 69.5 | 63.5 | 11.7 | 37.6 | [37] | |||||||
C. glabrata (n = 8), and | ||||||||||||||||
C. tropicalis (n = 6)] | ||||||||||||||||
2009 | Cross-sectional | Sputum (n = 35); stool (n = 24); urine (n = 17); DTA (n = 9); vagina (n = 8); bronchial alveolar wash (n = 8); wound (n = 5); abdominal fluid (n = 2); tooth abscess (n = 1); pus (n = 1); penile swab (n = 1); peritoneal fluid (n = 1); nail (n = 1); blood (n = 1); Jackson–Pratt drainage (n = 1); cerebrospinal fluid (n = 1) | C. albicans (n = 116) | E-test; micro-broth dilution | 5.2 | 6 | 12.1 | 7.8 | 0 | 1.7 | [38] | |||||
1995–6 | Cross-sectional | Respiratory (n = 35); urine (n = 16); blood (n = 4); wound (n = 8); ear (n = 3), catheter (n = 2); abdominal fluid (n = 2) | C. albicans (n = 48) | E-test | 33 | 19 | 21 | 0 | 6 | [39] | ||||||
C. tropicalis (n = 12) | 33 | 67 | 67 | 0 | 0 | |||||||||||
C. parapsilosis (n = 6) | 0 | 0 | 0 | 0 | 0 | |||||||||||
C. glabrata (n = 2) | 0 | 0 | 0 | 0 | 0 | |||||||||||
P. kudriavzevii (n = 2) | 100 | 0 | 0 | 0 | 100 | |||||||||||
2022 | Cross-sectional | Plant beds (n = 67); hospital flowers (n = 5); construction sites (n = 25); flowers beds (n = 50); parks (n = 32); green houses (n = 28); hospital plant beds (n = 6); agriculture fields (n = 49) | Aspergillus fumigatus (n = 26) | Micro-broth dilution | 0 | 0 | 0 | [26] | ||||||||
Aspergillus neoellipticus (n = 1) | S | S | S | |||||||||||||
Aspergillus fischeri (n = 1) | S | R | S | |||||||||||||
2011–9 | Cross-sectional | Ears (n = 60); respiratory (n = 8); nails (n = 5) | Aspergillus niger (n = 40) | Micro-broth dilution | 32.5 | 25 | 12.5 | 20 | [24] | |||||||
Aspergillus flavus (n = 20) | 20 | 30 | 40 | 70 | ||||||||||||
Aspergillus tubingensis (n = 4) | 50 | 50 | 25 | 25 | ||||||||||||
A. fumigatus (n = 3) | 33.3 | 33.3 | 0 | 0 | ||||||||||||
Aspergillus terreus (n = 3) | 33.3 | 33.3 | 33.3 | 100 | ||||||||||||
Other Aspergillus (n = 3) | 66.7 | 66.7 | 66.7 | 66.7 |
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Abbara, A.; Rawson, T.M.; Karah, N.; El-Amin, W.; Hatcher, J.; Tajaldin, B.; Dar, O.; Dewachi, O.; Abu Sitta, G.; Uhlin, B.E.; et al. Antimicrobial resistance in the context of the Syrian conflict: Drivers before and after the onset of conflict and key recommendations. Int. J. Infect. Dis. 2018, 73, 1–6. [Google Scholar] [CrossRef]
- Abbara, A.; Rawson, T.M.; Karah, N.; El-Amin, W.; Hatcher, J.; Tajaldin, B.; Dar, O.; Dewachi, O.; Abu Sitta, G.; Uhlin, B.E.; et al. A summary and appraisal of existing evidence of antimicrobial resistance in the Syrian conflict. Int. J. Infect. Dis. 2018, 75, 26–33. [Google Scholar] [CrossRef]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv113. [Google Scholar] [CrossRef]
- Fisher, M.C.; Gurr, S.J.; Cuomo, C.A.; Blehert, D.S.; Jin, H.; Stukenbrock, E.H.; Stajich, J.E.; Kahmann, R.; Boone, C.; Denning, D.W.; et al. Threats posed by the fungal kingdom to humans, wildlife, and agriculture. mBio 2020, 11, e00449-20. [Google Scholar] [CrossRef]
- Rudramurthy, S.M.; Paul, R.A.; Chakrabarti, A.; Mouton, J.W.; Meis, J.F. Invasive aspergillosis by Aspergillus flavus: Epidemiology, diagnosis, antifungal Resistance, and management. J. Fungi 2019, 5, 55. [Google Scholar] [CrossRef]
- Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L.E. Antifungal Drug Resistance: Molecular mechanisms in Candida albicans and beyond. Chem. Rev. 2021, 121, 3390–3411. [Google Scholar] [CrossRef]
- Gow, N.A.R.; Johnson, C.; Berman, J.; Coste, A.T.; Cuomo, C.A.; Perlin, D.S.; Bicanic, T.; Harrison, T.S.; Wiederhold, N.; Bromley, M.; et al. The importance of antimicrobial resistance in medical mycology. Nat. Commun. 2022, 13, 5352. [Google Scholar] [CrossRef]
- Rogers, T.R.; Verweij, P.E.; Castanheira, M.; Dannaoui, E.; White, P.L.; Arendrup, M.C. Molecular mechanisms of acquired antifungal drug resistance in principal fungal pathogens and EUCAST guidance for their laboratory detection and clinical implications. J. Antimicrob. Chemother. 2022, 77, 2053–2073. [Google Scholar] [CrossRef]
- Jukic, E.; Blatzer, M.; Posch, W.; Steger, M.; Binder, U.; Lass-Flörl, C.; Wilflingseder, D. Oxidative stress response tips the balance in Aspergillus terreus amphotericin B resistance. Antimicrob. Agents Chemother. 2017, 61, e00670-17. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Hoy, M.J.; Heitman, J. Fungal pathogens. Curr. Biol. 2020, 30, R1163–R1169. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, A.; Osman, M.; Dabboussi, F.; Rafei, R.; Mallat, H.; Papon, N.; Bouchara, J.P.; Hamze, M. Recent trends in the epidemiology, diagnosis, treatment, and mechanisms of resistance in clinical Aspergillus species: A general review with a special focus on the Middle Eastern and North African region. J. Infect. Public. Health 2020, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Canuto, M.M.; Rodero, F.G. Antifungal drug resistance to azoles and polyenes. Lancet Infect. Dis. 2002, 2, 550–563. [Google Scholar] [CrossRef]
- Kassem, I.I.; Osman, M.; Jaafar, H.; El Omari, K. Refugee settlements, sewage pollution, COVID-19 and the unfolding cholera outbreak in Lebanon. J. Travel. Med. 2022, 29, taac142. [Google Scholar] [CrossRef]
- Kassem, I.I.; Osman, M. A brewing storm: The impact of economic collapse on the access to antimicrobials in Lebanon. J. Glob. Antimicrob. Resist. 2022, 29, 313–315. [Google Scholar] [CrossRef]
- Osman, M.; Cummings, K.J.; El Omari, K.; Kassem, I.I. Catch-22: War, refugees, COVID-19, and the scourge of antimicrobial resistance. Front. Med. 2022, 9, 921921. [Google Scholar] [CrossRef]
- Bastos, R.W.; Rossato, L.; Goldman, G.H.; Santos, D.A. Fungicide effects on human fungal pathogens: Cross-resistance to medical drugs and beyond. PLoS Pathog. 2021, 17, e1010073. [Google Scholar] [CrossRef]
- Brauer, V.S.; Rezende, C.P.; Pessoni, A.M.; De Paula, R.G.; Rangappa, K.S.; Nayaka, S.C.; Gupta, V.K.; Almeida, F. Antifungal agents in agriculture: Friends and foes of public health. Biomolecules 2019, 9, 521. [Google Scholar] [CrossRef]
- Jørgensen, L.N.; Heick, T.M. Azole Use in agriculture, horticulture, and wood preservation—Is it indispensable? Front. Cell Infect. Microbiol. 2021, 11, 730297. [Google Scholar] [CrossRef]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef]
- Arastehfar, A.; Gabaldón, T.; Garcia-Rubio, R.; Jenks, J.D.; Hoenigl, M.; Salzer, H.J.F.; Ilkit, M.; Lass-Flörl, C.; Perlin, D.S. Drug-Resistant Fungi: An emerging challenge threatening our limited antifungal armamentarium. Antibiotics 2020, 9, 877. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.; Kasir, D.; Kassem, I.I.; Hamze, M. Shortage of appropriate diagnostics for antimicrobial resistance in Lebanese clinical settings: A crisis amplified by COVID-19 and economic collapse. J. Glob. Antimicrob. Resist. 2021, 27, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.; Bidon, B.; Abboud, C.; Zakaria, A.; Hamze, B.; Achcar, M.E.; Mallat, H.; Dannaoui, E.; Dabboussi, F.; Papon, N.; et al. Species distribution and antifungal susceptibility of Aspergillus clinical isolates in Lebanon. Future Microbiol. 2021, 16, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Al Omari, S.; Al Mir, H.; Wrayde, S.; Merhabi, S.; Dhaybi, I.; Jamal, S.; Chahine, M.; Bayaa, R.; Tourba, F.; Tantawi, H.; et al. First Lebanese antibiotic awareness week campaign: Knowledge, attitudes and practices towards antibiotics. J. Hosp. Infect. 2019, 101, 475–479. [Google Scholar] [CrossRef]
- Khalife, S.; Resendiz-Sharpe, A.; Lagrou, K.; Frealle, E. Molecular identification and azole susceptibility testing of Aspergillus section Fumigati isolated from soil samples in Lebanon. J. Mycol. Med. 2022, 32, 101242. [Google Scholar] [CrossRef]
- Allaw, F.; Haddad, S.F.; Habib, N.; Moukarzel, P.; Naji, N.S.; Kanafani, Z.A.; Ibrahim, A.; Zahreddine, N.K.; Spernovasilis, N.; Poulakou, G.; et al. COVID-19 and C. auris: A case-control study from a tertiary care center in Lebanon. Microorganisms 2022, 10, 1011. [Google Scholar] [CrossRef]
- Awada, B.; Alam, W.; Chalfoun, M.; Araj, G.; Bizri, A.R. COVID-19 and Candida duobushaemulonii superinfection: A case report. J. Mycol. Med. 2021, 31, 101168. [Google Scholar] [CrossRef]
- Reslan, L.; Araj, G.F.; Finianos, M.; El Asmar, R.; Hrabak, J.; Dbaibo, G.; Bitar, I. Molecular characterization of Candida auris isolates at a major tertiary care center in Lebanon. Front. Microbiol. 2021, 12, 770635. [Google Scholar] [CrossRef]
- Allaw, F.; Kara Zahreddine, N.; Ibrahim, A.; Tannous, J.; Taleb, H.; Bizri, A.R.; Dbaibo, G.; Kanj, S.S. First Candida auris outbreak during a COVID-19 pandemic in a tertiary-care center in Lebanon. Pathogens 2021, 10, 157. [Google Scholar] [CrossRef]
- Osman, M.; Al Bikai, A.; Rafei, R.; Mallat, H.; Dabboussi, F.; Hamze, M. Species distribution and antifungal susceptibility patterns of clinical Candida isolates in North Lebanon: A pilot cross-sectional multicentric study. J. Mycol. Med. 2020, 30, 100986. [Google Scholar] [CrossRef] [PubMed]
- Husni, R.; Bou Zerdan, M.; Samaha, N.; Helou, M.; Mahfouz, Y.; Saniour, R.; Hourani, S.; Kolanjian, H.; Afif, C.; Azar, E.; et al. Characterization and susceptibility of non-albicans Candida isolated from various clinical specimens in Lebanese hospitals. Front. Public. Health 2023, 11, 1115055. [Google Scholar] [CrossRef]
- Halawi, M.H.; Nasser, R.; Yassine, W.; Yusef, H.; Borjac, J.; Zeaiter, Z. First case of identification of Candida kefyr and Pichia kluyveri in Lebanese water. Water Air Soil. Pollut. 2020, 231, 108. [Google Scholar] [CrossRef]
- Ghaddar, N.; Anastasiadis, E.; Halimeh, R.; Ghaddar, A.; Dhar, R.; AlFouzan, W.; Yusef, H.; El Chaar, M. Prevalence and antifungal susceptibility of Candida albicans causing vaginal discharge among pregnant women in Lebanon. BMC Infect. Dis. 2020, 20, 32. [Google Scholar] [CrossRef] [PubMed]
- Christophy, R.; Osman, M.; Mallat, H.; Achkar, M.; Ziedeh, A.; Moukaddem, W.; Dabboussi, F.; Hamze, M. Prevalence, antibiotic susceptibility and characterization of antibiotic resistant genes among carbapenem-resistant Gram-negative bacilli and yeast in intestinal flora of cancer patients in North Lebanon. J. Infect. Public. Health 2017, 10, 716–720. [Google Scholar] [CrossRef] [PubMed]
- Araj, G.F.; Asmar, R.G.; Avedissian, A.Z. Candida profiles and antifungal resistance evolution over a decade in Lebanon. J. Infect. Dev. Ctries. 2015, 9, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Bitar, I.; Khalaf, R.A.; Harastani, H.; Tokajian, S. Identification, typing, antifungal resistance profile, and biofilm formation of Candida albicans isolates from Lebanese hospital patients. Biomed. Res. Int. 2014, 2014, 931372. [Google Scholar] [CrossRef]
- Basma, R.; Barada, G.; Ojaimi, N.; Khalaf, R.A. Susceptibility of Candida albicans to common and novel antifungal drugs, and relationship between the mating type locus and resistance, in Lebanese hospital isolates. Mycoses 2009, 52, 141–148. [Google Scholar] [CrossRef]
- Araj, G.F.; Daher, N.K.; Tabbarah, Z.A. Antifungal susceptibility of Candida isolates at the American University of Beirut Medical Center. Int. J. Antimicrob. Agents 1998, 10, 291–296. [Google Scholar] [CrossRef]
- Rahme, D.; Ayoub, M.; Shaito, K.; Saleh, N.; Assaf, S.; Lahoud, N. First trend analysis of antifungals consumption in Lebanon using the World Health Organization collaborating center for drug statistics methodology. BMC Infect. Dis. 2022, 22, 882. [Google Scholar] [CrossRef]
- Hoenigl, M.; Seidel, D.; Sprute, R.; Cunha, C.; Oliverio, M.; Goldman, G.H.; Ibrahim, A.S.; Carvalho, A. COVID-19-associated fungal infections. Nat. Microbiol. 2022, 7, 1127–1140. [Google Scholar] [CrossRef]
- Osman, M.; Al Bikai, A.; Rafei, R.; Mallat, H.; Dabboussi, F.; Hamze, M. Update on invasive fungal infections in the Middle Eastern and North African region. Braz. J. Microbiol. 2020, 51, 1771–1789. [Google Scholar] [CrossRef] [PubMed]
- Kołaczkowska, A.; Kołaczkowski, M. Drug resistance mechanisms and their regulation in non-albicans Candida species. J. Antimicrob. Chemother. 2016, 71, 1438–1450. [Google Scholar] [CrossRef] [PubMed]
- Papon, N.; Courdavault, V.; Clastre, M.; Bennett, R.J. Emerging and emerged pathogenic Candida species: Beyond the Candida albicans paradigm. PLoS Pathog. 2013, 9, e1003550. [Google Scholar] [CrossRef] [PubMed]
- Bouglita, W.; Rabhi, S.; Raich, N.; Bouabid, C.; Belghith, C.; Slimani, O.; Hkimi, C.; Ghedira, K.; Karess, R.E.; Guizani-Tabbane, L.; et al. Microbiological and molecular screening of Candida spp. isolated from genital tract of asymptomatic pregnant women. J. Mycol. Med. 2022, 71, 1589. [Google Scholar] [CrossRef] [PubMed]
- Salah, H.; Sundararaju, S.; Dalil, L.; Salameh, S.; Al-Wali, W.; Tang, P.; Ben Abid, F.; Tsui, C.K.M. Genomic epidemiology of Candida auris in Qatar reveals hospital transmission dynamics and a South Asian origin. J. Fungi 2021, 7, 240. [Google Scholar] [CrossRef] [PubMed]
- Kaki, R. Risk factors and mortality of the newly emerging Candida auris in a university hospital in Saudi Arabia. Mycology 2023, 14, 256–263. [Google Scholar] [CrossRef]
- Koleri, J.; Petkar, H.M.; Rahman, S.; Al Soub, H.A.; Rahman, S.; AlMaslamani, M.A. Candida auris blood stream infection–A descriptive study from Qatar. BMC Infect. Dis. 2023, 23, 513. [Google Scholar] [CrossRef]
- Badiee, P.; Alborzi, A.; Moeini, M.; Haddadi, P.; Farshad, S.; Japoni, A.; Ziyaeyan, M. Antifungal susceptibility of the Aspergillus species by Etest and CLSI reference methods. Arch. Iran. Med. 2012, 15, 429–432. [Google Scholar]
- Ener, B.; Ergin, Ç.; Gülmez, D.; Ağca, H.; Tikveşli, M.; Aksoy, S.A.; Otkun, M.; Siğ, A.K.; Öğünç, D.; Özhak, B.; et al. Frequency of azole resistance in clinical and environmental strains of Aspergillus fumigatus in Turkey: A multicentre study. J. Antimicrob. Chemother. 2022, 77, 1894–1898. [Google Scholar] [CrossRef]
- Erdem, E.; Yagmur, M.; Boral, H.; Ilkit, M.; Ersoz, R.; Seyedmousavi, S. Aspergillus flavus keratitis: Experience of a tertiary eye clinic in Turkey. Mycopathologia 2017, 182, 379–385. [Google Scholar] [CrossRef]
- Ozmerdiven, G.E.; Ak, S.; Ener, B.; Agca, H.; Cilo, B.D.; Tunca, B.; Akalin, H. First determination of azole resistance in Aspergillus fumigatus strains carrying the TR34/L98H mutations in Turkey. J. Infect. Chemother. 2015, 21, 581–586. [Google Scholar] [CrossRef]
- Gheith, S.; Saghrouni, F.; Bannour, W.; Ben Youssef, Y.; Khelif, A.; Normand, A.C.; Piarroux, R.; Ben Said, M.; Njah, M.; Ranque, S. In vitro susceptibility to amphotericin B, itraconazole, voriconazole, posaconazole and caspofungin of Aspergillus spp. isolated from patients with haematological malignancies in Tunisia. Springerplus 2014, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Salah, H.; Lackner, M.; Houbraken, J.; Theelen, B.; Lass-Florl, C.; Boekhout, T.; Almaslamani, M.; Taj-Aldeen, S.J. The emergence of rare clinical Aspergillus species in Qatar: Molecular characterization and antifungal susceptibility profiles. Front. Microbiol. 2019, 10, 1677. [Google Scholar] [CrossRef] [PubMed]
- Al-Wathiqi, F.; Ahmad, S.; Khan, Z. Molecular identification and antifungal susceptibility profile of Aspergillus flavus isolates recovered from clinical specimens in Kuwait. BMC Infect. Dis. 2013, 13, 126. [Google Scholar] [CrossRef] [PubMed]
- Toda, M.; Beer, K.D.; Kuivila, K.M.; Chiller, T.M.; Jackson, B.R. Trends in agricultural triazole fungicide use in the United States, 1992–2016 and possible implications for antifungal-resistant fungi in human disease. Environ. Health Perspect. 2021, 129, 055001. [Google Scholar] [CrossRef] [PubMed]
Antifungal Class | Brand Name | Active Drug | Route | Available in Pharmacies | Manufacturer Origin | Recommended Dose | Indication |
---|---|---|---|---|---|---|---|
Azoles | Canesten | Clotrimazole | Topical | Yes | Germany | 5 g daily | Cutaneous candidiasis, dermatophyte infections |
Daktarin | Miconazole | Topical | Yes | Belgium | 5 g daily | Cutaneous or oropharyngeal candidiasis | |
Dermofix | Setraconazole | Topical | Yes | Spain | Variable ^, daily or BID | Cutaneous candidiasis, dermatophyte infections, pytiriasis | |
Diflucan | Fluconazole | PO *, IV | Yes | France | 200 mg daily + | Candidiasis, cryptococcal meningitis, coccidiomycosis | |
Econaz | Econazole | Topical | Yes | Lebanon | Variable ^, daily or BID | Cutaneous candidiasis, dermatophyte infections | |
Fongamil | Omoconazole | Topical | Yes | France | Variable ^, daily or BID | Cutaneous candidiasis, dermatophyte infections | |
Lomexin | Fenticonazole | Topical | Yes | Lebanon | 5 g BID | Vulvovaginal candidiasis | |
Nizoral | Ketoconazole | Topical | Yes | Belgium | Variable ^, twice weekly | Tinea capitis | |
Noxafil | Posaconazole | PO | Yes | Netherlands | 300 mg daily, 300 mg BID | Aspergillosis, candidiasis | |
Sporanox | Itraconazole | PO | Yes | Lebanon | 200 mg BID | Aspergillosis, candidiasis | |
Travogen | Isoconazole | Topical | Yes | Italy | Variable ^, daily | Cutaneous candidiasis, dermatophyte infections | |
V-fend | Voriconazole | PO, IV | Yes | PO: Germany, IV: France | 200 mg BID | Candidiasis, candidemia, aspergillosis, Scedosporium infection, Fusarium infection | |
Allylamines | Lamisil | Terbinafine | PO, Topical | Yes | PO:Germany, Topical: Switzerland | PO: 250 mg daily. Topical: variable ^. daily or BID | Onychomycosis |
Echinocandins | Cancidas | Caspofungin | IV | No § | France | 70 mg once then 50 mg daily | Invasive candidiasis, invasive aspergillosis, neutropenic fever |
Ecalta | Anidulafungin | IV | No § | Belgium | 200 mg once then 100 mg daily | Invasive candidiasis, invasive aspergillosis, neutropenic fever | |
Mycamine | Micafungin | IV | No § | Japan | 100 mg daily | Invasive candidiasis, invasive aspergillosis, neutropenic fever | |
Polyenes | Ambisome | Amphotericin-B liposome | IV | No § | Ireland | 3–10 mg/kg | Invasive candidiasis, invasive aspergillosis, neutropenic fever, cryptococcal meningitis, |
Medistan | Nystatin | Topical | Yes | Lebanon | 40,000 to 60,000 U QID | oropharyngeal candidiasis |
Antifungal Class | Use | Brand Name | Active Molecule (Formulation) | Treated Animals/Plants | Treatment Indications | Withdrawal Time | Manufacturer Origin |
---|---|---|---|---|---|---|---|
Triazoles | Systemic fungicide | Sakay (liquid formulation) | Difenoconazole (250 g in 1 L) | Winter wheat, oilseed rape, brussels sprouts, cabbage, broccoli/calabrese, cauliflower | Broad spectrum | 7 days | Malaysia |
Copper | Preventive fungicide | Fungatox (powder) | Copper oxychloride (2.50 g in 1 L) | Onion, garlic, apple, pear, tonsils, grapes, cowpeas, peas, olives, citrus, chickpeas, spinach | Alternaria spp., Phytophthora spp. | 3–15 days | India |
Triazoles | Systemic fungicide | Topas 100 EC (liquid formulation) | Penconazole (100 g in 1 L) | Apple tree, pear tree, quince, strawberry, cucumber, melon, zucchini, eggplant, peppers, tomato | Broad spectrum | 3–35 days | Switzerland |
Aryloxypyrimidine | Preventive, systemic and curative fungicide | Amistar top (liquid formulation) | Azoxystrobin (200 g in 1 L) + difenoconazole (125 g in 1 L) | Barley, grapes, maize, onions, peas, potatoes, ryegrass seed crops, sweetcorn, field tomatoes, wheat | Broad spectrum | 3–7 days | United Kingdom |
Thioureas | Preventive and curative fungicide | Gypson (powder) | Thiophanate methyl (70% WP) | Apples, pears, small grains, cucurbits, peanuts, garlic, onions, almonds, potatoes, tobacco, vegetables, bananas, figs, brassicas, citrus, and strawberries. | Broad spectrum | 3–7 days | China |
Anilinopyrimidine | Systemic fungicide | Kuile (liquid formulation) | Pyrimethanil (40% SC) | Grapes, tomatoes, strawberries | Botrytis cinerea | 3–7 days | China |
Polyene | Systemic fungicide | Nystatin (tablet or oral liquid) | Nystatin | Cats, dogs, reptiles, birds | Candida, fungal infections in the mouth or gastrointestinal tract | 1 to 2 days | |
Inorganic sulfur | Systemic fungicide | Lime sulfur (cream) | Calcium polysulfide (calcium hydroxide and sulfur) (0.16 g in 100 g) | All animals | Dermatophyte infections | 1 time daily for 1 week, then 2 times per week for 2 more weeks | United States |
Carboxylic acid amides | Systemic fungicide | Anti-mycotoxins (powder) | 1,3-Beta glucan (125 mg in 1 kg) + mannan oligosaccharide (90 mg in 1 kg) + formic acid (100 mg in 1 kg) + acetic acid (100 mg in 1 kg) + propionic acid (100 mg in 1 kg) | Birds | Aspergillus flavus, Aspergillus parasiticus, Penicillium spp., Aspergillus spp., Fusarium spp., Byssochlamys spp. | None | Egypt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassoun, N.; Kassem, I.I.; Hamze, M.; El Tom, J.; Papon, N.; Osman, M. Antifungal Use and Resistance in a Lower–Middle-Income Country: The Case of Lebanon. Antibiotics 2023, 12, 1413. https://doi.org/10.3390/antibiotics12091413
Hassoun N, Kassem II, Hamze M, El Tom J, Papon N, Osman M. Antifungal Use and Resistance in a Lower–Middle-Income Country: The Case of Lebanon. Antibiotics. 2023; 12(9):1413. https://doi.org/10.3390/antibiotics12091413
Chicago/Turabian StyleHassoun, Nesrine, Issmat I. Kassem, Monzer Hamze, Jad El Tom, Nicolas Papon, and Marwan Osman. 2023. "Antifungal Use and Resistance in a Lower–Middle-Income Country: The Case of Lebanon" Antibiotics 12, no. 9: 1413. https://doi.org/10.3390/antibiotics12091413
APA StyleHassoun, N., Kassem, I. I., Hamze, M., El Tom, J., Papon, N., & Osman, M. (2023). Antifungal Use and Resistance in a Lower–Middle-Income Country: The Case of Lebanon. Antibiotics, 12(9), 1413. https://doi.org/10.3390/antibiotics12091413