Hospital Antibiotic Consumption before and during the COVID-19 Pandemic in Hungary
Abstract
:1. Introduction
2. Results
3. Discussion
Strengths and limitations
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arsenault, C.; Gage, A.; Kim, M.K.; Kapoor, N.R.; Akweongo, P.; Amponsah, F.; Aryal, A.; Asai, D.; Awoonor-Williams, J.K.; Ayele, W.; et al. COVID-19 and resilience of healthcare systems in ten countries. Nat. Med. 2022, 28, 1314–1324. [Google Scholar] [CrossRef] [PubMed]
- Trentini, F.; Marziano, V.; Guzzetta, G.; Tirani, M.; Cereda, D.; Poletti, P.; Merler, S. Corresponding author IN IT SC IT SC 2. Pressure on the Health-Care System and Intensive Care Utilization During the COVID-19 Outbreak in the Lombardy Region of Italy: A Retrospective Observational Study in 43,538 Hospitalized Patients. Am. J. Epidemiol. 2022, 191, 137–146. [Google Scholar] [CrossRef]
- Kapsner, L.A.; Kampf, M.O.; Seuchter, S.A.; Gruendner, J.; Gulden, C.; Mate, S.; Mang, J.M.; Schüttler, C.; Deppenwiese, N.; Krause, L.; et al. Reduced Rate of Inpatient Hospital Admissions in 18 German University Hospitals during the COVID-19 Lockdown. Front. Public Health 2021, 8, 594117. [Google Scholar] [CrossRef]
- Bodilsen, J.; Nielsen, P.B.; Søgaard, M.; Dalager-Pedersen, M.; Speiser, L.O.Z.; Yndigegn, T.; Nielsen, H.; Larsen, T.B.; Skjøth, F. Hospital admission and mortality rates for non-covid diseases in Denmark during COVID-19 pandemic: Nationwide population based cohort study. BMJ 2021, 373, n1135. [Google Scholar] [CrossRef]
- Huttner, B.D.; Catho, G.; Pano-Pardo, J.R.; Pulcini, C.; Schouten, J. COVID-19: Don’t neglect antimicrobial stewardship principles! Clin. Microbiol. Infect. 2020, 26, 808–810. [Google Scholar] [CrossRef]
- Afshinnekoo, E.; Bhattacharya, C.; Burguete-García, A.; Castro-Nallar, E.; Deng, Y.; Desnues, C.; Dias-Neto, E.; Elhaik, E.; Iraola, G.; Jang, S.; et al. COVID-19 drug practices risk antimicrobial resistance evolution. Lancet Microbe 2021, 2, e135–e136. [Google Scholar] [CrossRef] [PubMed]
- Perrella, A.; Fortinguerra, F.; Pierantozzi, A.; Capoluongo, N.; Carannante, N.; Lo Vecchio, A.; Bernardi, F.F.; Trotta, F.; Cangini, A. Hospital Antibiotic Use during COVID-19 Pandemic in Italy. Antibiotics 2023, 12, 168. [Google Scholar] [CrossRef] [PubMed]
- Vlahović-Palčevski, V.; Rubinić, I.; Payerl Pal, M. Impact of the COVID-19 pandemic on hospital antimicrobial consumption in Croatia. J. Antimicrob. Chemother. 2022, 77, 2713–2717. [Google Scholar] [CrossRef]
- Andrews, A.; Budd, E.L.; Hendrick, A.; Ashiru-Oredope, D.; Beech, E.; Hopkins, S.; Gerver, S.; Muller-Pebody, B.; the AMU COVID-19 Stakeholder Group. Surveillance of antibacterial usage during the COVID-19 pandemic in England, 2020. Antibiotics 2021, 10, 841. [Google Scholar] [CrossRef]
- Nakitanda, A.O.; Karlsson, P.; Löfling, L.; Cesta, C.E.; Odsbu, I. Antimicrobial use in Sweden during the COVID-19 pandemic: Prescription fill and inpatient care requisition patterns. BMC Infect. Dis. 2022, 22, 492. [Google Scholar] [CrossRef]
- Friedli, O.; Gasser, M.; Cusini, A.; Fulchini, R.; Vuichard-Gysin, D.; Tobler, R.H.; Wassilew, N.; Plüss-Suard, C.; Kronenberg, A. Impact of the COVID-19 Pandemic on Inpatient Antibiotic Consumption in Switzerland. Antibiotics 2022, 11, 792. [Google Scholar] [CrossRef] [PubMed]
- Siewierska, M.; Gajda, M.; Opalska, A.; Brudło, M.; Krzyściak, P.; Gryglewska, B.; Różańska, A.; Wójkowska-Mach, J. Hospital antibiotic consumption—An interrupted time series analysis of the early and late phases of the COVID-19 pandemic in Poland, a retrospective study. Pharmacol. Rep. 2023, 75, 715–725. [Google Scholar] [CrossRef]
- Grau, S.; Hernández, S.; Echeverría-Esnal, D.; Almendral, A.; Ferrer, R.; Limón, E.; Horcajada, J.P.; Catalan Infection Control and Antimicrobial Stewardship Program (VINCat-PROA). Antimicrobial consumption among 66 acute care hospitals in catalonia: Impact of the covid-19 pandemic. Antibiotics 2021, 10, 943. [Google Scholar] [CrossRef] [PubMed]
- Grau, S.; Echeverria-Esnal, D.; Gómez-Zorrilla, S.; Navarrete-Rouco, M.E.; Masclans, J.R.; Espona, M.; Gracia-Arnillas, M.P.; Duran, X.; Comas, M.; Horcajada, J.P.; et al. Evolution of antimicrobial consumption during the first wave of COVID-19 pandemic. Antibiotics 2021, 10, 132. [Google Scholar] [CrossRef] [PubMed]
- Elseviers, M.; Wettermark, B.; Almarsdóttir, A.B.; Andersen, M.; Benko, R.; Bennie, M.; Eriksson, I.; Godman, B.; Krska, J.; Poluzzi, E.; et al. Drug Utilization Research: Methods and Applications, 2nd ed.; Wiley: Hoboken, NJ, USA, 2024. [Google Scholar]
- World Health Organization (WHO) [Internet]. Available online: https://www.who.int/ (accessed on 15 January 2024).
- Benedek, Z.; Molnár-Gallatz, Z. A COVID-19-járvány miatt bevezetett járványügyi intézkedések hatása a hasi sebészeti ellátásra a Bajcsy-Zsilinszky Kórházban. Orvosi Hetilap 2021, 162, 1761–1768. [Google Scholar] [CrossRef] [PubMed]
- Nemzeti Egészségbiztosítási Alapkezelő- Kórházi Ágyszám- és Betegforgalmi Kimutatás. Available online: https://www.neak.gov.hu/felso_menu/szakmai_oldalak/publikus_forgalmi_adatok/gyogyito_megelozo_forgalmi_adat/fekvobeteg_szakellatas_stat/korhazi_agyszam (accessed on 1 January 2023).
- Clinical Management of COVID-19: Living Guideline, [Internet]. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2023.2 (accessed on 23 August 2023).
- Minisztériuma, E.E.; A 2020. évben azonosított új koronavírus (SARS-CoV-2) okozta fertőzések (COVID-19) megelőzésének és terápiájának kézikönyve. 25:2020. Available online: https://mok.hu/public/media/source/kepek/Koronav%C3%ADrus/Magyar%20Koronav%C3%ADrus%20K%C3%A9zik%C3%B6nyv_0328_emmi.pdf (accessed on 25 March 2020.).
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Chedid, M.; Waked, R.; Haddad, E.; Chetata, N.; Saliba, G.; Choucair, J. Antibiotics in treatment of COVID-19 complications: A review of frequency, indications, and efficacy. J. Infect. Public Health 2021, 14, 570–576. Available online: https://pubmed.ncbi.nlm.nih.gov/33848886/ (accessed on 24 August 2023). [CrossRef]
- A Nemzeti Népegészségügyi Központ tájékoztatója a Nemzeti Nozokomiális Surveillancerendszer kötelező moduljainak 2021. évi eredményeiről. Available online: https://www.antsz.hu/data/cms109485/NNSR_jelentes_2021_1_resz_Kotelezo_surveillance_modulok.pdf (accessed on 29 September 2023).
- A Nemzeti Népegészségügyi Központ tájékoztatója a Nemzeti Nozokomiális Surveillancerendszer kötelező moduljainak 2020. évi eredményeiről. Available online: https://www.antsz.hu/data/cms101434/NNSR_jelentes_2020_1._resz_kotelezo_surveillance_modulok.pdf (accessed on 21 April 2022).
- A Nemzeti Népegészségügyi Központ tájékoztatója a Nemzeti Nozokomiális Surveillancerendszer kötelező moduljainak 2019. évi eredményeiről. Available online: https://www.antsz.hu/data/cms101374/NNSR_jelentes_2019_1._resz_kotelezo_surveillance_modulok.pdf (accessed on 6 April 2022).
- Ecdc. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report for 2022. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2022 (accessed on 17 November 2023).
- Ecdc. Antimicrobial Resistance in the EU/EEA (EARS-Net) AER for 2021. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2021 (accessed on 17 November 2022).
- Bleyzac, N.; Goutelle, S.; Bourguignon, L.; Tod, M. Azithromycin for COVID-19: More Than Just an Antimicrobial? Clin. Drug Investig. 2020, 40, 683–686. [Google Scholar] [CrossRef]
- Sultana, J.; Cutroneo, P.M.; Crisafulli, S.; Puglisi, G.; Caramori, G.; Trifirò, G. Azithromycin in COVID-19 Patients: Pharmacological Mechanism, Clinical Evidence and Prescribing Guidelines. Drug Saf. 2020, 43, 691–698. [Google Scholar] [CrossRef]
- Butler, C.C.; Dorward, J.; Yu, L.M.; Gbinigie, O.; Hayward, G.; Saville, B.R.; Van Hecke, O.; Berry, N.; Detry, M.; Saunders, C.; et al. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): A randomised, controlled, open-label, adaptive platform trial. Lancet 2021, 397, 1063–1074. Available online: https://pubmed.ncbi.nlm.nih.gov/33676597/ (accessed on 24 August 2023).
- Hambalek, H.; Matuz, M.; Ruzsa, R.; Engi, Z.; Visnyovszki, Á.; Papfalvi, E.; Hajdú, E.; Doró, P.; Viola, R.; Soós, G.; et al. Impact of the COVID-19 Pandemic on Ambulatory Care Antibiotic Use in Hungary: A Population-Based Observational Study. Antibiotics 2023, 12, 970. [Google Scholar] [CrossRef] [PubMed]
- ECDC European Centre for Disease Prevention and Control (ECDC) Antimicrobial Consumption Database (ESAC-Net). Available online: https://www.ecdc.europa.eu/en/antimicrobial-consumption/surveillance-and-disease-data/database (accessed on 27 April 2023).
- Hungarian Central Statistical Office. Available online: https://www.ksh.hu/nepesseg-es-nepmozgalom (accessed on 1 October 2011).
- WHOCC—ATC/DDD Index. Available online: https://www.whocc.no/atc_ddd_index/?code=J01&showdescription=no (accessed on 27 April 2023).
Years | DDDs * | DDD/1000 Inhabitants/Day (DID) | DDD/ 100 Patient-Days (DHPD) | DDD/ Discharge | |
---|---|---|---|---|---|
Pre-COVID years | 2010 | 4,363,348 | 1.19 | 21.97 | 1.77 |
2011 | 3,838,936 | 1.05 | 19.45 | 1.54 | |
2012 | 3,947,868 | 1.09 | 20.61 | 1.66 | |
2013 | 3,866,325 | 1.07 | 20.14 | 1.61 | |
2014 | 4,019,441 | 1.11 | 20.96 | 1.66 | |
2015 | 4,016,330 | 1.12 | 21.53 | 1.68 | |
2016 | 3,796,523 | 1.06 | 20.33 | 1.59 | |
2017 | 4,005,607 | 1.12 | 22.01 | 1.75 | |
2018 | 3,997,055 | 1.12 | 22.16 | 1.76 | |
2019 | 4,142,182 | 1.16 | 23.33 | 1.83 | |
Pandemic years | 2020 | 4,308,489 | 1.21 | 32.19 | 2.45 |
2021 | 3,989,643 | 1.12 | 33.65 | 2.42 |
Pre-COVID Years’ Antibiotic Use Expressed in DDD per 100 Patient-Days (DHPD) | Pandemic Years’ Antibiotic Use Expressed in DDD per 100 Patient-Days (DHPD) | Change from 2019 to 2020 (%) * | Included in the Prediction Interval | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ATC Code | Name of Antibiotic Groups | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Coefficient (Trend 2010–2019) | p Value (Trend 2010–2019) | 2020 | 2021 | |
J01 | 21.97 | 19.45 | 20.61 | 20.14 | 20.96 | 21.53 | 20.33 | 22.01 | 22.16 | 23.33 | 32.19 | 33.65 | 37.96 | 0.238 | 0.055 | no ** | no | |
J01 | Parenteral antibiotics | 7.3 | 7.5 | 8.3 | 8.3 | 9.0 | 9.2 | 9.4 | 10.5 | 10.7 | 10.8 | 17.4 | 19.4 | 61.31 | 0.411 | 0.000 | no | no |
J01A | Tetracyclines | 0.60 | 0.54 | 0.58 | 0.60 | 0.62 | 0.68 | 0.54 | 0.59 | 0.64 | 2.05 | 1.49 | 1.90 | −27.23 | 0.083 | 0.103 | yes | yes |
J01CA | Penicillins with extended spectrum | 0.47 | 0.50 | 0.38 | 0.36 | 0.38 | 0.29 | 0.36 | 0.32 | 0.38 | 0.39 | 0.45 | 0.49 | 15.12 | −0.012 | 0.083 | yes | no |
J01CE (CE) | Beta-lactamase-sensitive penicillins | 0.13 | 0.08 | 0.08 | 0.08 | 0.03 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.06 | 0.06 | 402.94 | −0.013 | 0.000 | no | no |
J01CR | Penicillin combinations including beta-lactamase inhibitors | 5.31 | 4.94 | 5.25 | 4.97 | 5.25 | 5.05 | 4.83 | 5.11 | 5.03 | 5.04 | 5.69 | 6.13 | 12.90 | −0.019 | 0.287 | no | no |
J01DB | First-generation cephalosporins | 0.35 | 0.41 | 0.46 | 0.48 | 0.54 | 0.55 | 0.58 | 0.63 | 0.68 | 0.74 | 0.89 | 1.02 | 21.24 | 0.040 | 0.036 | no | no |
J01DC | Second-generation cephalosporins | 2.15 | 1.76 | 1.83 | 1.95 | 1.95 | 2.06 | 2.03 | 2.19 | 2.20 | 2.23 | 2.34 | 2.14 | 5.04. | 0.036 | 0.004 | yes | yes |
J01DD | Third-generation cephalosporins | 2.26 | 2.38 | 2.65 | 2.70 | 2.75 | 2.97 | 2.82 | 3.19 | 3.40 | 3.70 | 6.30 | 6.99 | 70.46 | 0.142 | 0.000 | no | no |
J01DE | Fourth-generation cephalosporins | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.03 | 0.01 | 0.03 | 0.06 | 0.06 | 78.35 | 0.000 | 0.541 | no | no |
J01DH | Carbapenems | 0.41 | 0.45 | 0.52 | 0.60 | 0.67 | 0.76 | 0.79 | 0.88 | 0.98 | 1.02 | 1.74 | 2.03 | 70.89 | 0.071 | 0.000 | no | no |
J01E | Sulphonamides and trimethoprim | 0.70 | 0.58 | 0.61 | 0.63 | 0.61 | 0.67 | 0.67 | 0.68 | 0.69 | 0.68 | 0.78 | 0.86 | 14.59 | 0.007 | 0.140 | yes | no |
J01FA | Macrolides | 2.17 | 1.30 | 1.44 | 1.32 | 1.43 | 1.68 | 1.34 | 1.64 | 1.70 | 1.84 | 4.30 | 3.70 | 133.68 | 0.007 | 0.836 | ||
J01FF | Lincosamides | 0.87 | 0.78 | 0.83 | 0.74 | 0.84 | 0.77 | 0.71 | 0.74 | 0.75 | 0.73 | 0.84 | 0.82 | 14.73 | −0.013 | 0.020 | ||
J01G | Aminoglycosides | 0.67 | 0.63 | 0.59 | 0.57 | 0.58 | 0.57 | 0.55 | 0.55 | 0.34 | 0.39 | 0.67 | 0.61 | 69.58 | −0.029 | 0.001 | no | no |
J01M | Quinolones | 5.00 | 4.20 | 4.13 | 3.93 | 3.91 | 4.08 | 3.94 | 4.04 | 3.77 | 2.91 | 3.69 | 3.49 | 26.97 | −0.134 | 0.006 | yes | yes |
J01XA | Glycopeptide antibacterials | 0.23 | 0.30 | 0.33 | 0.30 | 0.34 | 0.37 | 0.27 | 0.44 | 0.46 | 0.39 | 0.63 | 0.74 | 62.04 | 0.018 | 0.010 | no | no |
J01XD01 | Imidazole derivates (metronidazole) | 0.51 | 0.57 | 0.66 | 0.60 | 0.71 | 0.72 | 0.75 | 0.81 | 0.86 | 0.88 | 1.90 | 2.05 | 115.42 | 0.040 | 0.000 | no | no |
Other *** | 0.10 | 0.04 | 0.25 | 0.29 | 0.33 | 0.29 | 0.12 | 0.15 | 0.26 | 0.30 | 0.35 | 0.54 | 17.30 |
2010 | 2019 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Group of ATC | Systemic INN * | DDD per 100 Patient-Days | % | cum ** % | Group of ATC | Systemic INN * | DDD per 100 Patient-Days | % | cum ** % | |
1. | J01CR02 | Co-amoxiclav | 5.1 | 23.3 | 23.3 | J01CR02 | Co-amoxiclav | 4.7 | 20.0 | 20.0 |
2. | J01MA02 | Ciprofloxacin | 2.8 | 12.9 | 36.2 | J01DD04 | Ceftriaxone | 3.3 | 14.3 | 34.3 |
3. | J01DC02 | Cefuroxime | 2.1 | 9.5 | 45.7 | J01DC02 | Cefuroxime | 2.2 | 9.5 | 43.7 |
4. | J01DD04 | Ceftriaxone | 1.6 | 7.2 | 52.9 | J01AA02 | Doxycycline | 2.0 | 8.6 | 52.4 |
5. | J01FA09 | Clarithromycin | 1.3 | 6.1 | 59.0 | J01MA02 | Ciprofloxacin | 1.4 | 6.1 | 58.4 |
6. | J01MA12 | Levofloxacin | 1.0 | 4.3 | 63.3 | J01FA09 | Clarithromycin | 1.4 | 5.9 | 64.4 |
7. | J01FF01 | Clindamycin | 0.9 | 4.0 | 67.3 | J01MA12 | Levofloxacin | 1.0 | 4.1 | 68.5 |
8. | J01FA10 | Azithromycin | 0.8 | 3.4 | 70.7 | J01XD01 | Metronidazole | 0.9 | 3.8 | 72.2 |
9. | J01EE01 | Sulfamethoxazol-trimethoprim | 0.7 | 3.2 | 73.9 | J01DB04 | Cefazolin | 0.7 | 3.2 | 75.4 |
10. | J01MA14 | Moxifloxacin | 0.6 | 2.6 | 76.5 | J01FF01 | Clindamycin | 0.7 | 3.1 | 78.5 |
Pandemic years | ||||||||||
2020 | 2021 | |||||||||
Group of ATC | Systemic INN * | DDD per 100 patient-days | % | cum ** % | Group of ATC | Systemic INN * | DDD per 100 patient-days | % | cum ** % | |
1. | J01DD04 | Ceftriaxone | 5.9 | 18.2 | 18.2 | J01DD04 | Ceftriaxone | 6.5 | 19.3 | 19.3 |
2. | J01CR02 | Co-amoxiclav | 5.1 | 15.9 | 34.1 | J01CR02 | Co-amoxiclav | 5.4 | 15.9 | 35.2 |
3. | J01DC02 | Cefuroxime | 2.3 | 7.2 | 41.3 | J01DC02 | Cefuroxime | 2.1 | 6.2 | 41.4 |
4. | J01FA10 | Azithromycin | 2.2 | 7.0 | 48.3 | J01XD01 | Metronidazole | 2.0 | 6.1 | 47.5 |
5. | J01FA09 | Clarithromycin | 2.0 | 6.4 | 54.6 | J01FA10 | Azithromycin | 2.0 | 6.0 | 53.5 |
6. | J01XD01 | Metronidazole | 1.9 | 5.9 | 60.5 | J01AA02 | Doxycycline | 1.8 | 5.2 | 58.7 |
7. | J01MA12 | Levofloxacin | 1.5 | 4.8 | 65.3 | J01FA09 | Clarithromycin | 1.7 | 5.0 | 63.7 |
8. | J01MA02 | Ciprofloxacin | 1.5 | 4.6 | 69.9 | J01MA12 | Levofloxacin | 1.6 | 4.8 | 68.5 |
9. | J01AA02 | Doxycycline | 1.4 | 4.4 | 74.4 | J01MA02 | Ciprofloxacin | 1.3 | 3.8 | 72.3 |
10. | J01DH51 | Imipenem + cilastatin | 1.0 | 3.1 | 77.4 | J01DH51 | Imipenem + cilastatin | 1.0 | 3.0 | 75.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruzsa, R.; Benkő, R.; Hambalek, H.; Papfalvi, E.; Csupor, D.; Nacsa, R.; Csatordai, M.; Soós, G.; Hajdú, E.; Matuz, M. Hospital Antibiotic Consumption before and during the COVID-19 Pandemic in Hungary. Antibiotics 2024, 13, 102. https://doi.org/10.3390/antibiotics13010102
Ruzsa R, Benkő R, Hambalek H, Papfalvi E, Csupor D, Nacsa R, Csatordai M, Soós G, Hajdú E, Matuz M. Hospital Antibiotic Consumption before and during the COVID-19 Pandemic in Hungary. Antibiotics. 2024; 13(1):102. https://doi.org/10.3390/antibiotics13010102
Chicago/Turabian StyleRuzsa, Roxána, Ria Benkő, Helga Hambalek, Erika Papfalvi, Dezső Csupor, Róbert Nacsa, Márta Csatordai, Gyöngyvér Soós, Edit Hajdú, and Mária Matuz. 2024. "Hospital Antibiotic Consumption before and during the COVID-19 Pandemic in Hungary" Antibiotics 13, no. 1: 102. https://doi.org/10.3390/antibiotics13010102
APA StyleRuzsa, R., Benkő, R., Hambalek, H., Papfalvi, E., Csupor, D., Nacsa, R., Csatordai, M., Soós, G., Hajdú, E., & Matuz, M. (2024). Hospital Antibiotic Consumption before and during the COVID-19 Pandemic in Hungary. Antibiotics, 13(1), 102. https://doi.org/10.3390/antibiotics13010102