Associations between Isolation Source, Clonal Composition, and Antibiotic Resistance Genes in Escherichia coli Collected in Washington State, USA
Abstract
:1. Introduction
2. Results
2.1. Characteristics of E. coli Isolates
2.2. Sequence Typing of E. coli Isolates
2.3. Predicted Antimicrobial Resistance
2.4. Antimicrobial Resistance over Time
2.5. Antimicrobial Resistance Profiles
2.6. Distribution of Specific Antimicrobial Resistance Genes
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Data Collection
5.2. Sequence Typing
5.3. Identification of AMR Genes
5.4. Definitions of Drug Resistance
5.5. Resistance Profile
5.6. Statistical Analysis
5.7. Ethical Approval
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention (U.S.). Antibiotic Resistance Threats in the United States; Centers for Disease Control and Prevention: Atlanata GA, USA, 2019. Available online: https://stacks.cdc.gov/view/cdc/82532 (accessed on 10 October 2022).
- Peng, J.-J.; Balasubramanian, B.; Ming, Y.-Y.; Niu, J.-L.; Yi, C.-M.; Ma, Y.; Liu, W.-C. Identification of antimicrobial resistance genes and drug resistance analysis of Escherichia coli in the animal farm environment. J. Infect. Public Health. 2021, 14, 1788–1795. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Mol. J. Synth. Chem. Nat. Prod. Chem. 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.L.; Singh, O.V. Microbial occurrence and antibiotic resistance in ready-to-go food items. J. Food. Sci. Technol. 2018, 55, 2600–2609. [Google Scholar] [CrossRef] [PubMed]
- Vingino, A.; Roberts, M.C.; Wainstein, M.; West, J.; Norman, S.A.; Lambourn, D.; Lahti, J.; Ruiz, R.; D’Angeli, M.; Weissman, S.J.; et al. Surveillance for Antibiotic-Resistant, E. coli in the Salish Sea Ecosystem. Antibiotics. 2021, 10, 1201. [Google Scholar] [CrossRef] [PubMed]
- McEwan, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2017, 6. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Parsons, K.; Hawkes, C.; World Health Organization. Regional Office for Europe, European Observatory on Health Systems and Policies. In Connecting Food Systems for Co-Benefits: How Can Food Systems Combine Diet-Related Health with Environmental and Economic Policy Goals? (Health Systems and Policy Analysis: Policy brief; 31); World Health Organization. Regional Office for Europe: Copenhagen, Denmark, 2018; Available online: https://apps.who.int/iris/handle/10665/331979 (accessed on 17 October 2022).
- Vila, J.; Sáez-López, E.; Johnson, J.R.; Römling, U.; Dobrindt, U.; Cantón, R.; Naas, T.; Carattoli, A.; Martínez-Medina, M.; Bosch, J.; et al. Escherichia coli: An old friend with new tidings. FEMS Microbiol Rev. 2016, 40, 437–463. [Google Scholar] [CrossRef] [PubMed]
- Ludden, C.; Raven, K.E.; Jamrozy, D.; Gouliouris, T.; Blane, B.; Coll, F.; de Goffau, M.; Naydenova, P.; Horner, C.; Hernandez-Garcia, J.; et al. One Health Genomic Surveillance of Escherichia coli Demonstrates Distinct Lineages and Mobile Genetic Elements in Isolates from Humans versus Livestock. mBio 2019, 10, e02693-18. [Google Scholar] [CrossRef]
- Frisbie, L.; Weissman, S.J.; Kapoor, H.; D’Angeli, M.; Salm, A.; Radcliff, J.; Rabinowitz, P. Antimicrobial Resistance Patterns of Urinary Escherichia coli among Outpatients in Washington State, 2013–2017: Associations with Age and Sex. Clin. Infect. Dis. 2021, 73, 1066–1074. [Google Scholar] [CrossRef]
- Hawser, S.P.; Bouchillon, S.K.; Lascols, C.; Hackel, M.; Hoban, D.J.; Badal, R.E.; Canton, R. Susceptibility of European Escherichia coli clinical isolates from intra-abdominal infections, extended-spectrum β-lactamase occurrence, resistance distribution, and molecular characterization of ertapenem-resistant isolates (SMART 2008–2009). Clin. Microbiol. Infect. 2012, 18, 253–259. [Google Scholar] [CrossRef]
- Matsui, Y.; Hu, Y.; Rubin, J.; de Assis, R.S.; Suh, J.; Riley, L.W. Multilocus sequence typing of Escherichia coli isolates from urinary tract infection patients and from fecal samples of healthy subjects in a college community. MicrobiologyOpen 2020, 9, e1032. [Google Scholar] [CrossRef] [PubMed]
- Katsarou, E.I.; Chatzopoulos, D.C.; Giannoulis, T.; Ioannidi, K.S.; Katsafadou, A.I.; Kontou, P.I.; Lianou, D.T.; Mamuris, Z.; Mavrogianni, V.S.; Michael, C.K.; et al. MLST-Based Analysis and Antimicrobial Resistance of Staphylococcus epidermidis from Cases of Sheep Mastitis in Greece. Biology 2021, 10, 170. [Google Scholar] [CrossRef] [PubMed]
- Leekitcharoenphon, P.; Johansson, M.H.K.; Munk, P.; Malorny, B.; Skarżyńska, M.; Wadepohl, K.; Moyano, G.; Hesp, A.; Veldman, K.T.; Bossers, A.; et al. Genomic evolution of antimicrobial resistance in Escherichia coli. Sci. Rep. 2021, 11, 15108. [Google Scholar] [CrossRef] [PubMed]
- Bennedsen, M.; Stuer-Lauridsen, B.; Danielsen, M.; Johansen, E. Screening for antimicrobial resistance genes and virulence factors via genome sequencing. Appl. Environ. Microbiol. 2011, 77, 2785–2787. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, L.; Kurbasic, A.; Skjøt-Rasmussen, L.; Ejrnæs, K.; Porsbo, L.J.; Pedersen, K.; Jensen, L.B.; Emborg, H.-D.; Agersø, Y.; Olsen, K.E.; et al. Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathog. Dis. 2010, 7, 537–547. [Google Scholar] [CrossRef]
- Lazarus, B.; Paterson, D.L.; Mollinger, J.L.; Rogers, B.A. Do human extraintestinal Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A Systematic Review. Clin. Infect. Dis. 2015, 60, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Sannes, M.R.; Croy, C.; Johnston, B.; Clabots, C.; Kuskowski, M.A.; Bender, J.; Smith, K.E.; Winokur, P.L.; Belongia, E.A. Antimicrobial Drug–Resistant Escherichia coli from Humans and Poultry Products, Minnesota and Wisconsin 2002–2004. Emerg. Infect. Dis. J. 2007, 13, 838. Available online: https://wwwnc.cdc.gov/eid/article/13/6/06-1576_article (accessed on 13 March 2023). [CrossRef]
- Precit, M.R.; Kauber, K.; Glover, W.A.; Weissman, S.J.; Robinson, T.; Tran, M.; D’angeli, M. Statewide surveillance of carbapenemase-producing carbapenem-resistant Escherichia coli and Klebsiella species in Washington State, October 2012–December 2017. Infect. Control Hosp. Epidemiol. 2020, 41, 716–722. [Google Scholar] [CrossRef]
- Elankumuran, P.; Browning, G.F.; Marenda, M.S.; Kidsley, A.; Osman, M.; Haenni, M.; Johnson, J.R.; Trott, D.J.; Reid, C.J.; Djordjevic, S.P. Identification of genes influencing the evolution of Escherichia coli ST372 in dogs and humans. Microb. Genomics 2023, 9, mgen000930. [Google Scholar] [CrossRef]
- Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossens, H.; Pringle, M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect. Dis. 2014, 14, 13. [Google Scholar] [CrossRef]
- Pormohammad, A.; Nasiri, M.J.; Azimi, T. Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: A systematic review and meta-analysis. Infect. Drug Resist. 2019, 12, 1181–1197. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Hasman, H.; Kaas, R.S.; Seyfarth, A.M.; Agersø, Y.; Lund, O.; Zankari, E.; Hasman, H.; Kaas, R.S.; Seyfarth, A.M.; et al. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J. Antimicrob. Chemother. 2013, 68, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Stoesser, N.; Batty, E.M.; Eyre, D.W.; Morgan, M.; Wyllie, D.H.; Elias, C.D.O.; Johnson, J.R.; Walker, A.S.; Peto, T.E.A.; Crook, D.W. Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. J. Antimicrob. Chemother. 2013, 68, 2234–2244. [Google Scholar] [CrossRef] [PubMed]
- Tyson, G.H.; McDermott, P.F.; Li, C.; Chen, Y.; Tadesse, D.A.; Mukherjee, S.; Bodeis-Jones, S.; Kabera, C.; Gaines, S.A.; Loneragan, G.H.; et al. WGS accurately predicts antimicrobial resistance in Escherichia coli. J. Antimicrob. Chemother. 2015, 70, 2763–2769. [Google Scholar] [CrossRef] [PubMed]
- Clausen, P.T.L.C.; Zankari, E.; Aarestrup, F.M.; Lund, O. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data. J. Antimicrob. Chemother. 2016, 71, 2484–2488. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.-H.; McDermott, P.F.; et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef] [PubMed]
- Hendriksen, R.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Malorny, B.; Borowiak, M.; Battisti, A.; Franco, A.; Alba, P.; Carfora, V.; Ricci, A.; et al. Final report of ENGAGE—Establishing Next Generation sequencing Ability for Genomic analysis in Europe. EFSA Support Publ. 2018, 15, 1431E. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.F.; Mohamed, K.; Fan, Y.; Achtman, M. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.M.; Luo, R.; Sadakane, K.; Lam, T.W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef]
- Multi-Locus Sequence Typing. PubMLST. Available online: https://pubmlst.org/multilocus-sequence-typing (accessed on 19 November 2022).
- Escherichia coli (Achtman)-MLST. Available online: https://pubmlst.org/bigsdb?db=pubmlst_mlst_seqdef&page=schemeInfo&scheme_id=4 (accessed on 22 February 2022).
- Florensa, A.F.; Kaas, R.S.; Clausen, P.T.L.C.; Aytan-Aktug, D.; Aarestrup, F.M. ResFinder—An open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb. Genomics. 2022, 8, 000748. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
Isolation Source | Animal | Environmental | Food | Human |
---|---|---|---|---|
Examples of common sources | Cattle, chicken, sheep, swine, canine, feline, horse, giraffe, gorilla; abscess, urine, feces, bile | Water, soil, environmental swab | Ground beef, raw turkey, raw chicken breast, retail milk, lettuce | Clinical samples: blood, feces |
Number of strains isolated between 1947–2004 | 31 | 0 | 8 | 70 |
Number of strains isolated between 2005–2015 | 74 | 6 | 11 | 252 |
Number of strains isolated between 2016–2022 | 188 | 315 | 34 | 42 |
Number of strains with no known isolation year | 3 | 6 | 1 | 408 |
Total number of strains | 296 | 327 | 54 | 772 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jewell, M.; Fuhrmeister, E.R.; Roberts, M.C.; Weissman, S.J.; Rabinowitz, P.M.; Hawes, S.E. Associations between Isolation Source, Clonal Composition, and Antibiotic Resistance Genes in Escherichia coli Collected in Washington State, USA. Antibiotics 2024, 13, 103. https://doi.org/10.3390/antibiotics13010103
Jewell M, Fuhrmeister ER, Roberts MC, Weissman SJ, Rabinowitz PM, Hawes SE. Associations between Isolation Source, Clonal Composition, and Antibiotic Resistance Genes in Escherichia coli Collected in Washington State, USA. Antibiotics. 2024; 13(1):103. https://doi.org/10.3390/antibiotics13010103
Chicago/Turabian StyleJewell, Mary, Erica R. Fuhrmeister, Marilyn C. Roberts, Scott J. Weissman, Peter M. Rabinowitz, and Stephen E. Hawes. 2024. "Associations between Isolation Source, Clonal Composition, and Antibiotic Resistance Genes in Escherichia coli Collected in Washington State, USA" Antibiotics 13, no. 1: 103. https://doi.org/10.3390/antibiotics13010103
APA StyleJewell, M., Fuhrmeister, E. R., Roberts, M. C., Weissman, S. J., Rabinowitz, P. M., & Hawes, S. E. (2024). Associations between Isolation Source, Clonal Composition, and Antibiotic Resistance Genes in Escherichia coli Collected in Washington State, USA. Antibiotics, 13(1), 103. https://doi.org/10.3390/antibiotics13010103