Characterization of Antibiotic Treatment among Children Aged 0–59 Months Hospitalized for Acute Bacterial Gastroenteritis in Israel
Abstract
:1. Introduction
2. Results
2.1. Antibiotic Treatment among Children Hospitalized with Bacterial AGE
2.2. Antibiotic Agents
2.3. Correlates of Appropriate Antibiotic Treatment for Bacterial AGE or Dysentery
3. Discussion
4. Materials and Methods
4.1. Study Population and Design
4.2. Data Collection and Definitions
4.3. Classification of the Infections
4.4. Statistical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Florez, I.D.; Nino-Serna, L.F.; Beltran-Arroyave, C.P. Acute infectious diarrhea and gastroenteritis in children. Curr. Infect. Dis. Rep. 2020, 22, 4. [Google Scholar] [CrossRef]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Kotloff, K.L.; Nasrin, D.; Blackwelder, W.C.; Wu, Y.; Farag, T.; Panchalingham, S.; Sow, S.O.; Sur, D.; Zaidi, A.K.; Faruque, A.S.; et al. The incidence, aetiology, and adverse clinical consequences of less severe diarrhoeal episodes among infants and children residing in low-income and middle-income countries: A 12-month case-control study as a follow-on to the Global Enteric Multicenter Study. Lancet Glob. Health 2019, 7, e568–e584. [Google Scholar] [CrossRef] [PubMed]
- Kotloff, K.L.; Platts-Mills, J.A.; Nasrin, D.; Roose, A.; Blackwelder, W.C.; Levine, M.M. Global burden of diarrheal diseases among children in developing countries: Incidence, etiology, and insights from new molecular diagnostic techniques. Vaccine 2017, 35, 6783–6789. [Google Scholar] [CrossRef] [PubMed]
- Platts-Mills, J.A.; Liu, J.; Rogawski, E.T.; Kabir, F.; Lertsethtakarn, P.; Siguas, M.; Khan, S.S.; Praharaj, I.; Murei, A.; Nshama, R.; et al. Use of quantitative molecular diagnostic methods to assess the aetiology, burden, and clinical characteristics of diarrhoea in children in low-resource settings: A reanalysis of the MAL-ED cohort study. Lancet Glob. Health 2018, 6, e1309–e1318. [Google Scholar] [CrossRef]
- Kotloff, K.L. Bacterial diarrhoea. Curr. Opin. Pediatr. 2022, 34, 147–155. [Google Scholar] [CrossRef]
- Troeger, C.; Blacker, B.F.; Khalil, I.A.; Rao, P.C.; Cao, S.; Zimsen, S.R.; Albertson, S.B.; Stanaway, J.D.; Deshpande, A.; Abebe, Z.; et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018, 18, 1211–1228. [Google Scholar] [CrossRef]
- Guarino, A.; Aguilar, J.; Berkley, J.; Broekaert, I.; Vazquez-Frias, R.; Holtz, L.; Vecchio, A.L.; Meskini, T.; Moore, S.; Medina, J.F.R.; et al. Acute gastroenteritis in children of the world: What needs to be done? J. Pediatr. Gastroenterol. Nutr. 2020, 70, 694–701. [Google Scholar] [CrossRef]
- Rivera-Dominguez, G.; Ward, G. Pediatric gastroenteritis—StatPearls—NCBI Bookshelf. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499939/ (accessed on 3 April 2023).
- Operario, D.J.; Platts-Mills, J.A.; Nadan, S.; Page, N.; Seheri, M.; Mphahlele, J.; Praharaj, I.; Kang, G.; Araujo, I.T.; Leite, J.P.G.; et al. Etiology of severe acute watery diarrhea in children in the global rotavirus surveillance network using quantitative polymerase chain reaction. J. Infect. Dis. 2017, 216, 220–227. [Google Scholar] [CrossRef]
- Ugboko, H.U.; Nwinyi, O.C.; Oranusi, S.U.; Oyewale, J.O. Childhood diarrhoeal diseases in developing countries. Heliyon 2020, 6, e03690. [Google Scholar] [CrossRef]
- Schierenberg, A.; Bruijning-Verhagen, P.C.; van Delft, S.; Bonten, M.J.; de Wit, N.J. Antibiotic treatment of gastroenteritis in primary care. J. Antimicrob. Chemother. 2019, 74, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Kotloff, K.L.; Riddle, M.S.; Platts-Mills, J.A.; Pavlinac, P.; Zaidi, A.K. Shigellosis. Lancet 2018, 391, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, M.A.D.C.; Lins, M.T.C.; Silva, G.A.P.D. Acute diarrhea with blood: Diagnosis and drug treatment. J. Pediatr. (Rio. J.) 2020, 96, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Teshome, B.; Teklemariam, Z.; Admassu Ayana, D.; Marami, D.; Asaminew, N. Salmonella and Shigella among patients with diarrhea at public health facilities in Adama, Ethiopia: Prevalence, antimicrobial susceptibility pattern, and associated factors. SAGE Open Med. 2019, 7, 2050312119846041. [Google Scholar] [CrossRef] [PubMed]
- Shad, A.A.; Shad, W.A. Shigella sonnei: Virulence and antibiotic resistance. Arch. Microbiol. 2021, 203, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Das, J.K.; Ali, A.; Salam, R.A.; Bhutta, Z.A. Antibiotics for the treatment of Cholera, Shigella and Cryptosporidium in children. BMC Public Health 2013, 13 (Suppl. S3), S10. [Google Scholar] [CrossRef]
- Kim, Y.J.; Park, K.H.; Park, D.A.; Park, J.; Bang, B.W.; Lee, S.S.; Lee, E.J.; Lee, H.J.; Hong, S.K.; Kim, Y.R. Guideline for the antibiotic use in acute gastroenteritis. Infect. Chemother. 2019, 51, 217–243. [Google Scholar] [CrossRef]
- Sansonetti, P.; Bergounioux, J. Shigellosis. In Harrison’s Principles of Internal Medicine, 21st ed.; Loscalzo, J., Fauci, A., Kasper, D., Hauser, S., Longo, D., Jameson, J., Eds.; McGraw Hill: New York, NY, USA, 2022; Volume 1, pp. 1298–1301. [Google Scholar]
- Ferrari, R.G.; Rosario, D.K.; Cunha-Neto, A.; Mano, S.B.; Figueiredo, E.E.; Conte-Junior, C.A. Worldwide epidemiology of Salmonella serovars in animal-based foods: A meta-analysis. Appl. Environ. Microbiol. 2019, 85, e00591-19. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Im, J.; Lee, J.S.; Jeon, H.J.; Mogeni, O.D.; Kim, J.H.; Rakotozandrindrainy, R.; Baker, S.; Marks, F. The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Hum. Vaccines Immunother. 2019, 15, 1421–1426. [Google Scholar] [CrossRef]
- Guarino, A.; Ashkenazi, S.; Gendrel, D.; Vecchio, A.L.; Shamir, R.; Szajewska, H. European society for pediatric gastroenterology, hepatology, and nutrition/European society for pediatric infectious diseases evidence-based guidelines for the management of acute gastroenteritis in children in Europe: Update 2014. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 132–152. [Google Scholar] [CrossRef]
- Pegues, D.A.; Miller, S.I. Salmonellosis. In Harrison’s Principles of Internal Medicine, 21st ed.; Loscalzo, J., Fauci, A., Kasper, D., Hauser, S., Longo, D., Jameson, J., Eds.; McGraw Hill: New York, NY, USA, 2022; Volume 1, pp. 1291–1297. [Google Scholar]
- Costa, D.; Iraola, G. Pathogenomics of emerging Campylobacter species. Clin. Microbiol. Rev. 2019, 32, 4. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, C. Campylobacter. Clin. Lab. Med. 2015, 35, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Blaser, M.J. Infections due to Campylobacter and related organisms. In Harrison’s Principles of Internal Medicine, 21st ed.; Loscalzo, J., Fauci, A., Kasper, D., Hauser, S., Longo, D., Jameson, J., Eds.; McGraw Hill: New York, NY, USA, 2022; Volume 1, pp. 1302–1304. [Google Scholar]
- Brennhofer, S.A.; Platts-Mills, J.A.; Lewnard, J.A.; Liu, J.; Houpt, E.R.; McQuade, E.T.R. Antibiotic use attributable to specific aetiologies of diarrhoea in children under 2 years of age in low-resource settings: A secondary analysis of the MAL-ED birth cohort. BMJ Open 2022, 12, e058740. [Google Scholar] [CrossRef] [PubMed]
- Lewnard, J.A.; Rogawski McQuade, E.T.; Platts-Mills, J.A.; Kotloff, K.L.; Laxminarayan, R. Incidence and etiology of clinically-attended, antibiotic-treated diarrhea among children under five years of age in low-and middle-income countries: Evidence from the global enteric multicenter study. PLoS Negl. Trop. Dis. 2020, 14, e0008520. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.; Aol, G.; Ouma, A.; Audi, A.; Muema, S.; Auko, J.; Omore, R.; Odongo, G.; Wiegand, R.E.; Montgomery, J.M.; et al. Inappropriate use of antibiotics for childhood diarrhea case management—Kenya, 2009–2016. BMC Public Health 2019, 19 (Suppl. S3), 468. [Google Scholar] [CrossRef] [PubMed]
- Okubo, Y.; Miyairi, I.; Michihata, N.; Morisaki, N.; Kinoshita, N.; Urayama, K.Y.; Yasunaga, H. Recent prescription patterns for children with ccute infectious diarrhea. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 13–16. [Google Scholar] [CrossRef]
- Efunshile, A.M.; Ezeanosike, O.; Nwangwu, C.C.; König, B.; Jokelainen, P.; Robertson, L.J. Apparent overuse of antibiotics in the management of watery diarrhoea in children in Abakaliki, Nigeria. BMC Infect. Dis. 2019, 19, 275. [Google Scholar] [CrossRef]
- Wi, D.; Choi, S.H. Antibiotic prescribing practices and clinical outcomes of pediatric patients with Campylobacter enterocolitis. Children 2022, 10, 40. [Google Scholar] [CrossRef]
- Lo Vecchio, A.; Liguoro, I.; Bruzzese, D.; Scotto, R.; Parola, L.; Perrone, L.; Gargantini, G.; Guarino, A. Adherence to guidelines for management of children hospitalized for acute diarrhea. Pediatr. Infect. Dis. J. 2014, 33, 1103–1108. [Google Scholar] [CrossRef]
- Sunderland, N.; Westbrook, J.; Urwin, R.; Knights, Z.; Taitz, J.; Williams, H.; Wiles, L.K.; Molloy, C.; Hibbert, P.; Ting, H.P.; et al. Appropriate management of acute gastroenteritis in Australian children: A population-based study. PLoS ONE 2019, 14, e0224681. [Google Scholar] [CrossRef]
- Tieder, J.S.; Robertson, A.; Garrison, M.M. Pediatric hospital adherence to the standard of care for acute gastroenteritis. Pediatrics 2009, 124, e1081–e1087. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Milkowska-Shibata, M.; Tseng, K.K.; Sharland, M.; Gandra, S.; Pulcini, C.; Laxminarayan, R. Assessment of WHO antibiotic consumption and access targets in 76 countries, 2000–15: An analysis of pharmaceutical sales data. Lancet Infect. Dis. 2021, 21, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Rinawi, F.; Ashkenazi, S.; Wilschanski, M.; Somekh, E.; Shamir, R. Recommendations for the diagnosis and management of pediatric acute gastroenteritis in Israel-update 2017. Harefuah 2017, 156, 189–193. [Google Scholar] [PubMed]
- King, L.M.; Bartoces, M.; Fleming-Dutra, K.E.; Roberts, R.M.; Hicks, L.A. Changes in US outpatient antibiotic prescriptions from 2011–2016. Clin. Infect. Dis. 2020, 70, 370–377. [Google Scholar] [CrossRef]
- Palin, V.; Mölter, A.; Belmonte, M.; Ashcroft, D.M.; White, A.; Welfare, W.; van Staa, T. Antibiotic prescribing for common infections in UK general practice: Variability and drivers. J. Antimicrob. Chemother. 2019, 74, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- Obolski, U.; Kassem, E.; Na’amnih, W.; Tannous, S.; Kagan, V.; Muhsen, K. Unnecessary antibiotic treatment of children hospitalised with respiratory syncytial virus (RSV) bronchiolitis: Risk factors and prescription patterns. J. Glob. Antimicrob. Resist. 2021, 27, 303–308. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Tobias, J.; Kassem, E.; Rubinstein, U.; Bialik, A.; Vutukuru, S.R.; Navaro, A.; Rokney, A.; Valinsky, L.; Ephros, M.; Cohen, D.; et al. Involvement of main diarrheagenic escherichia coli, with emphasis on enteroaggregative E. coli, in severe non-epidemic pediatric diarrhea in a high-income country. BMC Infect. Dis. 2015, 15, 79. [Google Scholar] [CrossRef]
- Muhsen, K.; Anis, E.; Rubinstein, U.; Kassem, E.; Goren, S.; Shulman, L.M.; Ephros, M.; Cohen, D. Effectiveness of rotavirus pentavalent vaccine under a universal immunization programme in Israel, 2011–2015: A case–control study. Clin. Microbiol. Infect. 2018, 24, 53–59. [Google Scholar] [CrossRef]
- Muhsen, K.; Rubenstein, U.; Kassem, E.; Goren, S.; Schachter, Y.; Kremer, A.; Shulman, L.M.; Ephros, M.; Cohen, D. A significant and consistent reduction in rotavirus gastroenteritis hospitalization of children under 5 years of age, following the introduction of universal rotavirus immunization in Israel. Hum. Vaccines Immunother. 2015, 11, 2475–2482. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Brintz, B.J.; Pavlinac, P.B.; Hossain, M.I.; Khan, A.I.; Platts-Mills, J.A.; Kotloff, K.L.; Leung, D.T. Clinical prediction rule to guide diagnostic testing for shigellosis and improve antibiotic stewardship for pediatric diarrhea. Open Forum Infect. Dis. 2023, 10, ofad119. [Google Scholar] [CrossRef]
- Cohen, D.; Bassal, R.; Goren, S.; Rouach, T.; Taran, D.; Schemberg, B.; Peled, N.; Keness, Y.; Ken-Dror, S.; Vasilev, V.; et al. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: A reanalysis of the GEMS case-control study. Lancet 2016, 388, 1291–1301. [Google Scholar] [CrossRef]
- Tickell, K.D.; Brander, R.L.; Atlas, H.E.; Pernica, J.M.; Walson, J.L.; Pavlinac, P.B. Identification and management of Shigella infection in children with diarrhoea: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e1235–e1248. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.; Bassal, R.; Goren, S.; Rouach, T.; Taran, D.; Schemberg, B.; Peled, N.; Keness, Y.; Ken-Dror, S.; Vasilev, V.; et al. Recent trends in the epidemiology of shigellosis in Israel. Epidemiol. Infect. 2014, 142, 2583–2594. [Google Scholar] [CrossRef]
- Bassal, R.; Reisfeld, A.; Andorn, N.; Yishai, R.; Nissan, I.; Agmon, V.; Peled, N.; Block, C.; Keller, N.; Kenes, Y.; et al. Recent trends in the epidemiology of non-typhoidal Salmonella in Israel, 1999–2009. Epidemiol. Infect. 2012, 140, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Central Bureau of Statistics. Statistical Abstract of Israel 2008. Publication Number 59. Jerusalem: State of Israel, 2008. Available online: http://www1.cbs.gov.il/reader/shnatonhnew_site.htm (accessed on 14 June 2009).
- Israel Central Bureau of Statistics. Statistical abstract of Israel 2015. Publication number 66; Jerusalem: State of Israel, 2016. Available online: https://www.cbs.gov.il/en/publications/Pages/2015/Statistical-Abstract-of-Israel-2015-No66.aspx (accessed on 10 September 2015).
- Porath, A.; Lev, B. The new Israeli national health insurance law and quality of care. Int. J. Qual. Health Care 1995, 7, 281–284. [Google Scholar] [CrossRef]
- Vaccines and Biologicals World Health Organization. Generic Protocols for (i) Hospital-Based Surveillance to Estimate the Burden of Rotavirus Gastroenteritis in Children and (ii) a Community-Based Survey on Utilization of Health Care Services for Gastroenteritis in Children; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Government of Israel, Central Bureau of Statistics. Characterization and Classification of Geographic Units by the Socio-Economic Level of the Population 2008. 2013. Available online: http://www.cbs.gov.il/webpub/pub/text_page_eng.html?pub1=100&CYear=2008&CMonth=1 (accessed on 2 June 2017).
- Sattar, S.B.A.; Singh, S. Bacterial gastroenteritis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK513295/ (accessed on 8 August 2023).
- C Charles, R.C.; LaRocque, R.C. Acute infectious diarrheal diseases and bacterial food poisoning. In Harrison’s Principles of Internal Medicine, 21st ed.; Loscalzo, J., Fauci, A., Kasper, D., Hauser, S., Longo, D., Jameson, J., Eds.; McGraw Hill: New York, NY, USA, 2022. [Google Scholar]
- Williams, P.C.; Berkley, J.A. Guidelines for the treatment of dysentery (shigellosis): A systematic review of the evidence. Paediatr. Int. Child Health 2018, 38, S50–S65. [Google Scholar] [CrossRef]
- Brownlee, K.A. Statistical Theory and Methodology in Science and Engineering; A Wiley Publication in Applied Statistics; John Wiley & Sons: Hoboken, NJ, USA, 1965. [Google Scholar]
- Abramson, J.H. WINPEPI updated: Computer programs for epidemiologists, and their teaching potential. Epidemiol. Perspect. Innov. 2011, 8, 1–9. Available online: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041648/pdf/1742-5573-8-1.pdf (accessed on 8 August 2023). [CrossRef]
Characteristics | N | % |
---|---|---|
Overall | 827 | 100.0% |
Age (months) | ||
0–11 | 416 | 50.3% |
12–23 | 220 | 26.6% |
24–59 | 191 | 23.1% |
Sex | ||
Female | 401 | 48.5% |
Male | 426 | 51.5% |
Ethnicity | ||
Jewish | 355 | 42.9% |
Arab | 472 | 57.1% |
Residential socioeconomic status rank | ||
1–3 (Low) | 397 | 48.0% |
4–5 (Intermediate) | 286 | 34.6% |
6–10 (High) | 90 | 10.9% |
Missing data | 54 | 6.5% |
Years of admissions | ||
2008 * | 31 | 3.7% |
2009 | 92 | 11.1% |
2010 | 120 | 14.5% |
2011 | 74 | 8.9% |
2012 | 157 | 19.0% |
2013 | 128 | 15.5% |
2014 | 154 | 18.6% |
2015 | 71 | 8.6% |
Fever at admission (≥38 °C) | 500 | 60.5% |
Bloody stool (dysentery) | 350 | 42.3% |
Vomiting | 581 | 70.3% |
Rotavirus vaccination ¥ | ||
Birth cohorts not eligible for the universal rotavirus vaccination birth years 2007–2010 | 45/366 | 12.3% |
Birth cohorts eligible for universal rotavirus vaccination birth years 2011–2015 | 340/430 | 79.1% |
N | % | |
---|---|---|
Overall participants with bacterial infection | 827 | 100.0% |
Stool culture | ||
Stool culture performed | 745 | 90.1% |
Stool culture not performed | 82 | 9.9% |
Stool culture result (n = 745) | ||
Campylobacter | 242 | 32.5% |
Salmonella | 56 | 7.5% |
Shigella | 65 | 8.7% |
Mixed infections * | 7 | 0.9% |
Any positive stool cultures | 370 | 49.7% |
Negative | 370 | 49.7% |
Unknown | 5 | 0.7% |
Rotavirus test | ||
Rotavirus test performed | 530 | 64.1% |
Rotavirus test not performed | 297 | 35.9% |
Rotavirus test result | ||
Pre-universal rotavirus vaccination period 2008–2010 (n = 190) | ||
Positive | 45 | 23.7% |
Negative | 119 | 62.6% |
Unknown | 26 | 13.7% |
Universal rotavirus vaccination period 2011–2015 (n = 340) | ||
Positive | 24 | 7.1% |
Negative | 312 | 91.8% |
Unknown | 4 | 1.2% |
Blood culture | ||
Blood culture performed | 400 | 48.4% |
Blood culture not performed | 427 | 51.6% |
Blood culture result (n = 400) | ||
Positive ** | 11 | 2.7% |
Negative | 340 | 85.0% |
Contamination | 8 | 2.0% |
Unknown | 41 | 10.3% |
Urine culture | ||
Urine culture performed | 148 | 17.9% |
Urine culture not performed | 679 | 82.1% |
Urine culture result (n = 148) | ||
E. coli | 43 | 29.1% |
Klebsiella (all species) ¥ | 5 | 3.4% |
Other § | 8 | 5.4% |
Unknown | 17 | 11.5% |
Negative | 75 | 50.6% |
Chest X-ray imaging test | ||
Chest X-ray imaging test performed | 214 | 25.9% |
Chest X-ray imaging test not performed | 613 | 74.1% |
Chest X-ray test results (n = 214) | ||
Normal chest X-ray | 119 | 55.6% |
Chest X-ray bacterial pneumonia | 70 | 32.7% |
Chest X-ray viral pneumonia | 15 | 7.0% |
Unknown | 10 | 4.7% |
Category | N | % |
---|---|---|
Dysentery alone § | 164 | 30.0% |
Positive stool culture alone | 189 | 34.4% |
Dysentery and positive stool culture | 165 | 30.0% |
Dysentery and bacterial co-infections and positive stool culture | 5 | 0.9% |
Dysentery and bacterial co-infections *,§ | 16 | 2.9% |
Positive stool culture and bacterial co-infections | 11 | 2.0% |
Total | 550 | 100.0% |
Antibiotics Treatment (Any) | Before Admission | During Hospitalization | At Discharge | |
---|---|---|---|---|
N (%) | N (%) | N (%) | N (%) | |
Received antibiotics | ||||
Yes | 369/550 (67.1%) | 46/369 (12.5%) | 339/369 (91.9%) | 171/369 (46.3%) |
No | 181/550 (32.9%) | NA | NA | NA |
Antibiotic agents § | ||||
Penicillin | ||||
Ampicillin | 7/369 (1.9%) | 0/46 (0.0%) | 7/339 (2.1%) | 0/171 (0.0%) |
Amoxicillin | 34/369 (9.2%) | 17/46 (37.0%) | 6/339 (1.8%) | 17/171 (9.9%) |
Penicillin V | 1/369 (0.3%) | 1/46 (2.2%) | 0/339 (0.0%) | 0/171 (0.0%) |
Amoxicillin/clavulanic acid | 6/369 (1.6%) | 2/46 (4.3%) | 3/339 (0.9%) | 1/171 (0.6%) |
Cephalosporins 1st generation | ||||
Cefamezin | 3/369 (0.8%) | 0/46 (0.0%) | 3/339 (0.9%) | 0/171 (0.0%) |
Cephalexin | 11/369 (3.0%) | 1/46 (2.2%) | 3/339 (0.9%) | 8/171 (4.7%) |
Cephalosporins 2nd generation | ||||
Cefuroxime | 10/369 (2.7%) | 0/46 (0.0%) | 9/339 (2.7%) | 2/171 (1.2%) |
Cephalosporins 3rd generation | ||||
Ceftriaxone | 140/369 (37.9%) | 4/46 (8.7%) | 137/339 (40.4%) | 0/171 (0.0%) |
Ceftazidime | 1/369 (0.3%) | 0/46 (0.0%) | 1/339 (0.3%) | 0/171 (0.0%) |
Cefotaxime | 1/369 (0.3%) | 0/46 (0.0%) | 1/339 (0.3%) | 0/171 (0.0%) |
Macrolides | ||||
Azithromycin | 228/369 (61.8%) | 22/46 (47.8%) | 195/339 (57.5%) | 143/171 (83.6%) |
Other antibiotics | ||||
Gentamicin | 5/369 (1.4%) | 0/46 (0.0%) | 5/339 (1.5%) | 0/171 (0.0%) |
Metronidazole | 6/369 (1.6%) | 0/46 (0.0%) | 6/339 (1.8%) | 2/171 (1.2%) |
Trimethoprim/ | 3/369 (0.8%) | 2/46 (4.3%) | 0/339 (0.0%) | 1/171 (0.6%) |
sulfamethoxazole | ||||
Vancomycin | 1/369 (0.3%) | 0/46 (0.0%) | 1/339 (0.3%) | 0/171 (0.0%) |
Unknown * | 15/369 (4.1%) | 1/46 (2.2%) | 14/339 (4.1%) | 0/171 (0.0%) |
Culture-Proven Bacterial AGE or Dysentery | Campylobacter | Shigella | Salmonella | Mixed Infections * | Overall, Positive Stool Culture | Overall Dysentery | Only Dysentery without a Positive Stool Culture | |
---|---|---|---|---|---|---|---|---|
N (%) | N (%) | N (%) | N (%) | N (%) | N (%) | N (%) | N (%) | |
Total | 550 | 242 | 65 | 56 | 7 | 370 | 350 | 154 |
Received antibiotics | ||||||||
Yes | 355/550 (64.5%) | 162/242 (66.9%) | 42/65 (64.6%) | 27/56 (48.2%) | 7/7 (100.0%) | 238/370 (64.3%) | 267/350 (76.3%) | 92/154 (59.7%) |
No | 195/550 (35.5%) | 80/242 (33.1%) | 23/65 (35.4%) | 29/56 (51.8%) | 0/7 (0.0%) | 132/370 (35.7%) | 83/350 (23.7%) | 62/154 (40.3%) |
Antibiotic agents § | ||||||||
Penicillin | ||||||||
Ampicillin | 8/355 (2.3%) | 3/162 (1.9%) | 2/42 (4.8%) | 1/27 (3.7%) | 0/7 (0.0%) | 6/238 (2.5%) | 5/267 (1.9%) | 2/92 (2.2%) |
Amoxicillin | 19/355 (5.4%) | 9/162 (5.6%) | 4/42 (9.5%) | 0/27 (0.0%) | 1/7 (14.3%) | 14/238 (5.9%) | 10/267 (3.7%) | 1/92 (1.1%) |
Amoxicillin/clavulanic acid | 4/355 (1.1%) | 2/162 (1.2%) | 1/42 (2.4%) | 0/27 (0.0%) | 0/7 (0.0%) | 3/238 (1.3%) | 3/267 (1.1%) | 1/92 (1.1%) |
Cephalosporins 1st generation | ||||||||
Cephalexin | 11/355 (3.1%) | 6/162 (3.7%) | 1/42 (2.4%) | 0/27 (0.0%) | 0/7 (0.0%) | 7/238 (2.9%) | 6/267 (2.2%) | 2/92 (2.2%) |
Cefamezin | 3/355 (0.8%) | 1/162 (0.6%) | 0/42 (0.0%) | 0/27 (0.0%) | 0/7 (0.0%) | 1/238 (0.4%) | 2/267 (0.7%) | 0/92 (0.0%) |
Cephalosporins 2nd generation | ||||||||
Cefuroxime | 10/355 (2.8%) | 4/162 (2.5%) | 1/42 (2.4%) | 1/27 (3.7%) | 0/7 (0.0%) | 6/238 (2.5%) | 2/267 (0.7%) | 1/92 (1.1%) |
Cephalosporins 3rd generation | ||||||||
Ceftriaxone | 138/355 (39.1%) | 53/162 (32.7%) | 18/42 (42.9%) | 14/27 (51.9%) | 4/7 (57.1%) | 89/238 (37.4%) | 101/267 (37.8%) | 31/92 (33.7%) |
Ceftazidime | 1/355 (0.3%) | 0/162 (0.0%) | 0/42 (0.0%) | 0/27 (0.0%) | 0/7 (0.0%) | 0/238 (0.0%) | 1/267 (0.4%) | 1/92 (1.1%) |
Cefotaxime | 1/355 (0.3%) | 1/162 (0.6%) | 0/42 (0.0%) | 0/27 (0.0%) | 0/7 (0.0%) | 1/238 (0.4%) | 1/267 (0.4%) | 0/92 (0.0%) |
Macrolides | ||||||||
Azithromycin | 212/355 (59.7%) | 113/162 (69.8%) | 19/42 (45.2%) | 15/27 (55.6%) | 2/7 (28.6%) | 149/238 (62.6%) | 166/267 (62.2%) | 58/92 (63.0%) |
Other antibiotics | ||||||||
Gentamicin | 5/355 (1.4%) | 3/162 (1.9%) | 1/42 (2.4%) | 0/27 (0.0%) | 0/7 (0.0%) | 4/238 (1.7%) | 1/267 (0.4%) | 1/92 (1.1%) |
Metronidazole | 6/355 (1.7%) | 2/162 (1.2%) | 0/42 (0.0%) | 0/27 (0.0%) | 0/7 (0.0%) | 1/238 (0.4%) | 3/267 (1.1%) | 4/92 (4.3%) |
Trimethoprim/ | 1/355 (0.3%) | 0/162 (0.0%) | 0/42 (0.0%) | 1/27 (3.7%) | 0/7 (0.0%) | 1/238 (0.4%) | 1/267 (0.4%) | 0/92 (0.0%) |
sulfamethoxazole | ||||||||
Vancomycin | 1/355 (0.3%) | 1/162 (0.6%) | 0/42 (0.0%) | 0/27 (0.0%) | 0/7 (0.0%) | 1/238 (0.4%) | 0/267 (0.0%) | 0/92 (0.0%) |
Unknown ¥ | 14/355 (3.9%) | 9/162 (3.7%) | 1/42 (2.4%) | 0/27 (0.0%) | 0/7 (0.0%) | 10/238 (4.2%) | 8/267 (3.0%) | 3/92 (3.3%) |
Appropriate Antibiotic Treatment § (N = 318) | No Antibiotic Treatment (N = 195) | p Value | |
---|---|---|---|
Age (months), N (%) | 0.045 | ||
0–11 | 173 (54.4%) | 84 (43.1%) | |
12–23 | 72 (22.6%) | 55 (28.2%) | |
24–59 | 73 (23.0%) | 56 (28.7%) | |
Sex, males, N (%) | 166 (52.2%) | 104 (53.3%) | 0.803 |
Ethnicity (Arab vs. Jews), N (%) | 210 (66.0%) | 116 (59.5%) | 0.135 |
Residential socioeconomic status rank, N (%) | 0.371 | ||
1–3 (Low) | 180 (60.2%) | 96 (53.6%) | |
4–5 (Intermediate) | 90 (30.1%) | 63 (35.2%) | |
6–10 (High) | 29 (9.7%) | 20 (11.2%) | |
Background diseases, N (%) | 42 (13.2%) | 39 (20.0%) | 0.041 |
Fever at admission, N (%) | 184 (58.0%) | 98 (50.5%) | 0.097 |
Vomiting, N (%) | 206 (64.8%) | 145 (74.4%) | 0.023 |
Dysentery, N (%) | 245 (77.0%) | 83 (42.6%) | <0.001 |
Number of stools on the severe day, N (%) | 0.563 | ||
0–5 | 104 (32.7%) | 59 (30.3%) | |
6≤ | 214 (67.3%) | 136 (69.7%) | |
Chest-X-ray test performed, N (%) | 46 (14.5%) | 20 (10.3%) | 0.167 |
Blood culture performed, N (%) | 155 (48.7%) | 66 (33.8%) | <0.001 |
Urine culture performed, N (%) | 55 (17.3%) | 16 (8.2%) | 0.004 |
Rotavirus test results *, N (%) | 0.005 | ||
Positive | 19 (8.7%) | 24 (17.3%) | |
Negative | 193 (88.1%) | 104 (74.8%) | |
Unknown | 7 (3.2%) | 11 (7.9%) | |
C-reactive protein (mg/L), median (IQR) | 32.0 (63.9) | 17.2 (38.1) | <0.001 |
Potassium mEq/L, mean (SD) | 4.7 (0.7), N = 280 | 4.5 (0.6), N = 166 | 0.039 |
Hemoglobin (g/dL), mean (SD) | 11.5 (1.4), N = 305 | 11.6 (1.2), N = 186 | 0.084 |
Leukocytes (K/µL), mean (SD) | 13.4 (5.7), N = 305 | 13.6 (6.2), N = 186 | 0.168 |
Neutrophils (K/µL), mean (SD) | 7.7 (6.7), N = 304 | 7.9 (5.6), N = 185 | 0.785 |
Variable | Unadjusted OR (95% CI) | p Value | Adjusted OR (95% CI) | p Value |
---|---|---|---|---|
Age (months) | Df = 2 | 0.082 | Df = 2 | 0.027 |
0–11 | 1.54 (1.02–2.33) | 0.039 | 1.90 (1.09–3.33) | 0.025 |
12–23 | 1.12 (0.69–1.80) | 0.651 | 1.01 (0.56–1.83) | 0.972 |
24–59 | Reference group | |||
Dysentery, yes vs. no | 4.53 (3.08–6.66) | <0.001 | 5.30 (3.35–8.39) | <0.001 |
Vomiting, yes vs. no | 0.63 (0.43–0.94) | 0.024 | 0.65 (0.40–1.07) | 0.093 |
Fever at admission, yes vs. no | 1.36 (0.95–1.94) | 0.097 | 1.45 (0.92–2.30) | 0.109 |
C-reactive protein (mg/L), continuous variable | 1.01 (1.00–1.01) | <0.001 | 1.01 (1.01–1.02) | <0.001 |
Blood culture performed, yes vs. no | 1.86 (1.29–2.69) | <0.001 | 1.59 (1.02–2.48) | 0.04 |
Urine culture performed, yes vs. no | 2.34 (1.30–4.21) | 0.005 | 1.12 (0.56–2.24) | 0.752 |
Rotavirus test results | Df = 2 | 0.048 | Df = 2 | 0.077 |
Did not perform the test | Reference group | |||
Positive rotavirus test result | 0.45 (0.23–0.89) | 0.022 | 0.66 (0.28–1.54) | 0.337 |
Negative/Unknown test result | 0.98 (0.66–1.47) | 0.936 | 1.43 (0.87–2.33) | 0.155 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omar, M.; Kassem, E.; Abu-Jabal, R.; Mwassi, B.; Cohen, D.; Muhsen, K. Characterization of Antibiotic Treatment among Children Aged 0–59 Months Hospitalized for Acute Bacterial Gastroenteritis in Israel. Antibiotics 2024, 13, 64. https://doi.org/10.3390/antibiotics13010064
Omar M, Kassem E, Abu-Jabal R, Mwassi B, Cohen D, Muhsen K. Characterization of Antibiotic Treatment among Children Aged 0–59 Months Hospitalized for Acute Bacterial Gastroenteritis in Israel. Antibiotics. 2024; 13(1):64. https://doi.org/10.3390/antibiotics13010064
Chicago/Turabian StyleOmar, Muna, Eias Kassem, Roula Abu-Jabal, Basher Mwassi, Dani Cohen, and Khitam Muhsen. 2024. "Characterization of Antibiotic Treatment among Children Aged 0–59 Months Hospitalized for Acute Bacterial Gastroenteritis in Israel" Antibiotics 13, no. 1: 64. https://doi.org/10.3390/antibiotics13010064
APA StyleOmar, M., Kassem, E., Abu-Jabal, R., Mwassi, B., Cohen, D., & Muhsen, K. (2024). Characterization of Antibiotic Treatment among Children Aged 0–59 Months Hospitalized for Acute Bacterial Gastroenteritis in Israel. Antibiotics, 13(1), 64. https://doi.org/10.3390/antibiotics13010064