A Machine Learning Approach to Determine Risk Factors for Respiratory Bacterial/Fungal Coinfection in Critically Ill Patients with Influenza and SARS-CoV-2 Infection: A Spanish Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Study Population
2.3. Definitions
2.4. Study Variables
2.5. Analysis Plan and Statistical Analysis
3. Results
3.1. Whole Population
3.2. Factors Associated with COI in the Whole Population According to General Linear Model (GLM)
3.3. GLM Validation
3.4. Factors Associated with COI in the Whole Population According to No-Linear Model (Random Forest)
3.5. Factors Associated with COI in the Influenza Cohort According to General Linear Model (GLM)
3.6. Factors Associated with COI in the Influenza Cohort According to No-Linear Model (Random Forest)
3.7. Factors Associated with COI in the COVID-19 Cohort According to General Linear Model (GLM)
3.8. Factors Associated with COI in the COVID-19 Cohort According to No-Linear Model (Random Forest)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simonsen, L.; Spreeuwenberg, P.; Lustig, R.; Taylor, R.J.; Fleming, D.M.; Kroneman, M.; Van Kerkhove, M.D.; Mounts, A.W.; Paget, W.J.; the GLaMOR Collaborating Teams. Global Mortality Estimates for the 2009 Influenza Pandemic from the GLaMOR Project: A Modeling Study. PLoS Med. 2013, 10, e1001558. [Google Scholar] [CrossRef]
- Viboud, C.; Simonsen, L. Global mortality of 2009 pandemic influenza A H1N1. Lancet Infect. Dis. 2012, 9, 651–653. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, E.; Ritchie, H.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Hasell, J.; Macdonald, B.; Dattani, S.; Beltekian, D.; Ortiz-Ospina, E.; et al. “Coronavirus Pandemic (COVID-19)”. 2020 Published online at OurWorldInData.org. Available online: https://ourworldindata.org/coronavirus (accessed on 3 August 2024).
- World Health Organization. 2023 Data.who.int. WHO Coronavirus (COVID-19) Dashboard > Deaths [Dashboard]. Available online: https://data.who.int/dashboards/covid19/deaths (accessed on 13 August 2024).
- Martin-Loeches, I.; Schultz, M.J.; Vincent, J.-L.; Alvarez-Lerma, F.; Bos, L.D.; Solé-Violán, J.; Torres, A.; Rodriguez, A. Increased incidence of co-infection in critically ill patients with influenza. Intensive Care Med. 2017, 43, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.H.; Avilés-Jurado, F.X.; Díaz, E.; Schuetz, P.; Trefler, S.I.; Solé-Violán, J.; Cordero, L.; Vidaur, L.; Estella, Á.; Socias, L.; et al. Procalcitonin (PCT) levels for ruling-out bacterial coinfection in ICU patients with influenza: A CHAID decision-tree analysis. J. Infect. 2016, 72, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, R.; Urgelés, S.; Rodríguez, A.; Bodí, M.; Martín-Loeches, I.; Solé-Violán, J.; Díaz, E.; Gómez, J.; Trefler, S.; Vallverdú, M.; et al. Mortality comparison between the first and second/third waves among 3,795 critical COVID-19 patients with pneumonia admitted to the ICU: A multicentre retrospective cohort study. Lancet Reg. Health Eur. 2021, 11, 100243. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, e1622–e1629. [Google Scholar] [CrossRef]
- Rodríguez, A.; Moreno, G.; Bodi, M.; Martín-Loeches, I. Antibiotics in development for multiresistant gram-negative bacilli. Med. Intensiv. (Engl. Ed.) 2022, 46, 630–640. [Google Scholar] [CrossRef]
- Kariyawasam, R.M.; Julien, D.A.; Jelinski, D.C.; Larose, S.L.; Rennert-May, E.; Conly, J.M.; Dingle, T.C.; Chen, J.Z.; Tyrrell, G.J.; Ronksley, P.E.; et al. Antimicrobial resistance (AMR) in COVID-19 patients: A systematic review and meta-analysis (November 2019–June 2021). Antimicrob. Resist. Infect. Control 2022, 11, 45. [Google Scholar] [CrossRef]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A.H. Bacterial and Fungal Coinfection in Individuals with Coronavirus: A Rapid Review to Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar] [CrossRef]
- Varshney, K.; Pillay, P.; Mustafa, A.D.; Shen, D.; Jenna Renee Adalbert, J.R.; Mahmood, M.Q. A systematic review of the clinical characteristics of influenza-COVID-19 co-infection. Clin. Exp. Med. 2023, 23, 3265–3275. [Google Scholar] [CrossRef]
- Delhommeau, G.; Buetti, N.; Neuville, M.; Siami, S.; Cohen, Y.; Laurent, V.; Mourvillier, B.; Reignier, J.; Goldgran-Toledano, D.; Schwebel, C.; et al. Bacterial Pulmonary Co-Infections on ICU Admission: Comparison in Patients with SARS-CoV-2 and Influenza Acute Respiratory Failure: A Multicentre Cohort Study. Biomedicines 2022, 10, 2646. [Google Scholar] [CrossRef] [PubMed]
- Patton, M.J.; Orihuela, C.J.; Harrod, K.S.; Bhuiyan, M.A.N.; Dominic, P.; Kevil, C.G.; Fort, D.; Liu, V.X.; Farhat, M.; Koff, J.L.; et al. COVID-19 bacteremic co-infection is a major risk factor for mortality, ICU admission, and mechanical ventilation. Crit. Care 2023, 27, 34. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, R.; Moreno, G.; Martín-Loeches, I.; Bodí, M.; Rodríguez, A. The Role of Biomarkers in Influenza and COVID-19 Community-Acquired Pneumonia in Adults. Antibiotics 2023, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, R.; Moreno, G.; Martín-Loeches, I.; Gomez-Bertomeu, F.; Sarvisé, C.; Gómez, J.; Bodí, M.; Díaz, E.; Papiol, E.; Trefler, S.; et al. Prognostic Value of Procalcitonin and C-Reactive Protein in 1608 Critically Ill Patients with Severe Influenza Pneumonia. Antibiotics 2021, 10, 350. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, R.; Urgelés, S.; Salgado, M.; Rodríguez, A.; Reyes, L.F.; Fuentes, Y.V.; Serrano, C.C.; Caceres, E.L.; Bodí, M.; Martín-Loeches, I.; et al. Negative predictive value of procalcitonin to rule out bacterial respiratory co-infection in critical COVID-19 patients. J. Infect. 2022, 85, 374–381. [Google Scholar] [CrossRef]
- Hu, F.; Jia, Y.; Zhao, D.; Fu, X.; Zhang, W.; Tang, W.; Hu, S.; Wu, H.; Ge, M.; Du, W.; et al. Clinical outcomes of the severe acute respiratory syndrome coronavirus 2 Omicron and Delta variant: Systematic review and meta-analysis of 33 studies covering 6 037 144 coronavirus disease 2019-positive patients. Clin. Microbiol. Infect. 2023, 29, 835–844. [Google Scholar] [CrossRef]
- Murakami, Y.; Nozaki, Y.; Morosawa, M.; Toyama, M.; Ogashiwa, H.; Ueda, T.; Nakajima, K.; Tanaka, R.; Takesue, Y. Difference in the impact of coinfections and secondary infections on antibiotic use in patients hospitalized with COVID-19 between the Omicron-dominant period and the pre-Omicron period. J. Infect. Chemother. 2024, 30, 853–859. [Google Scholar] [CrossRef]
- Graham, M.S.; Sudre, C.H.; May, A.; Antonelli, M.; Murray, B.; Varsavsky, T.; Kläser, K.; Canas, L.S.; Molteni, E.; Modat, M.; et al. Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: An ecological study. Lancet Public Health 2021, 6, e335–e345. [Google Scholar] [CrossRef]
- For the Efraim investigators and the Nine-I study group; Martin-Loeches, I.; Lemiale, V.; Geoghegan, P.; McMahon, M.A.; Pickkers, P.; Soares, M.; Perner, A.; Meyhoff, T.S.; Bukan, R.B.; et al. Influenza and associated co-infections in critically ill immunosuppressed patients. Crit. Care 2019, 23, 152. [Google Scholar] [CrossRef]
- Corey, L.; Beyrer, C.; Cohen, M.S.; Michael, N.L.; Bedford, T.; Rolland, M. SARS-CoV-2 Variants in Patients with Immunosuppression. N. Engl. J. Med. 2021, 385, 562–566. [Google Scholar] [CrossRef]
- Evans, R.A.; Dube, S.; Lu, Y.; Yates, M.; Arnetorp, S.; Barnes, E.; Bell, S.; Carty, L.; Evans, K.; Graham, S.; et al. Impact of COVID-19 on immunocompromised populations during the Omicron era: Insights from the observational population-based INFORM study. Lancet Reg. Health—Eur. 2023, 35, 100747. [Google Scholar] [CrossRef] [PubMed]
- Oliva, I.; Ferré, C.; Daniel, X.; Cartanyà, M.; Villavicencio, C.; Salgado, M.; Vidaur, L.; Papiol, E.; de Molina, F.G.; Bodí, M.; et al. Risk factors and outcome of acute kidney injury in critically ill patients with SARS-CoV-2 pneumonia: A multicenter study. Med. Intensiv. (Engl. Ed.) 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Ruiz-Botella, M.; Martín-Loeches, I.; Herrera, M.J.; Solé-Violan, J.; Gómez, J.; Bodí, M.; Trefler, S.; Papiol, E.; Díaz, E.; et al. Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain. Crit. Care 2021, 25, 63. [Google Scholar] [CrossRef]
- Uyeki, T.M.; Bernstein, H.H.; Bradley, J.S.; Englund, J.A.; File, T.M., Jr.; Fry, A.M.; Gravenstein, S.; Hayden, F.G.; Harper, S.A.; Hirshon, J.M.; et al. Clinical practice guidelines by the Infectious Diseases Society of America: 2018 update on diagnosis, treatment, chemoprophylaxis, and institutional outbreak management of seasonal influenza. Clin. Infect. Dis. 2019, 68, e1–e47. [Google Scholar] [CrossRef]
- WHO. Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease is Suspected: Interim Guidance. 13 March 2020. Available online: https://iris.who.int/bitstream/handle/10665/331446/WHO-2019-nCoV-clinical-2020.4-eng.pdf?sequence=1&isAllowed=y (accessed on 13 August 2024).
- Verweij, P.E.; Rijnders, B.J.A.; Brüggemann, R.J.M.; Azoulay, E.; Bassetti, M.; Blot, S.; Calandra, T.; Clancy, C.J.; Cornely, O.A.; Chiller, T.; et al. Review of influenza-associated PA in ICU patients and proposal for a case definition: An expert opinion. Intensive Care Med. 2020, 46, 1524–1535. [Google Scholar] [CrossRef]
- Claverias, L.; Daniel, X.; Martín-Loeches, I.; Vidal-Cortez, P.; Gómez-Bertomeu, F.; Trefler, S.; Zaragoza, R.; Borges-Sa, M.; Reyes, L.F.; Quindós, G.; et al. Impact of Aspergillus spp. isolation in the first 24 hours of admission in critically ill patients with severe influenza virus pneumonia. Med. Intensiv. 2022, 46, 426–435. [Google Scholar] [CrossRef]
- Lunardon, N.; Menardi, G.; Torelli, N. ROSE: A Package for Binary Imbalanced Learning. R J. 2014, 6, 79–89. Available online: https://journal.r-project.org/archive/2014-1/menardi-lunardon-torelli.pdf (accessed on 10 August 2024). [CrossRef]
- Menardi, G.; Torelli, N. Training and assessing classification rules with imbalanced data. Data Min. Knowl. Discov. 2014, 28, 92–122. [Google Scholar] [CrossRef]
- Ramsey, J.B. Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis. J. R. Stat. Soc. Ser. B (Methodol.) 1969, 21, 350–371. [Google Scholar] [CrossRef]
- Lai, C.C.; Chen, S.Y.; Ko, W.C.; Hsueh, P.R. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef]
- Su, L.; Yu, T.; Zhang, C.; Huo, P.; Zhao, Z. A prediction model for secondary invasive fungal infection among severe SARS-CoV-2 positive patients in ICU. Front. Cell. Infect. Microbiol. 2024, 14, 1382720. [Google Scholar] [CrossRef] [PubMed]
- van Grootveld, R.; van der Beek, M.T.; Janssen, N.A.; Ergün, M.; van Dijk, K.; Bethlehem, C.; Stads, S.; van Paassen, J.; Heunks, L.M.; Bouman, C.S.; et al. Incidence, risk factors and pre-emptive screening for COVID-19 associated pulmonary aspergillosis in an era of immunomodulant therapy. J. Crit. Care 2023, 76, 154272. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, W.; Wang, H.; Song, P. Development and validation of machine learning-based models for predicting healthcare-associated bacterial/fungal infections among COVID-19 inpatients: A retrospective cohort study. Antimicrob. Resist. Infect. Control 2024, 13, 42. [Google Scholar] [CrossRef] [PubMed]
- López-Herrero, R.; Prada, L.S.-D.; Tamayo-Velasco, A.; Lorenzo-López, M.; Gómez-Pesquera, E.; Sánchez-Quirós, B.; de la Varga-Martínez, O.; Gómez-Sánchez, E.; Resino, S.; Tamayo, E.; et al. Epidemiology of bacterial co-infections and risk factors in COVID-19-hospitalized patients in Spain: A nationwide study. Eur. J. Public Health 2023, 33, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Chu, R.B.H.; Zhao, S.; Zhang, J.Z.; Chan, K.C.K.; Ng, P.Y.; Chan, C.; Fong, K.M.; Au, S.Y.; Yeung, A.W.T.; Chan, J.K.H.; et al. Comparison of COVID-19 with influenza A in the ICU: A territory-wide, retrospective, propensity matched cohort on mortality and length of stay. BMJ Open 2023, 13, e067101. [Google Scholar] [CrossRef]
- Giannella, M.; Rinaldi, M.; Tesini, G.; Gallo, M.; Cipriani, V.; Vatamanu, O.; Campoli, C.; Toschi, A.; Ferraro, G.; Horna, C.S.; et al. Predictive model for bacterial co-infection in patients hospitalized for COVID-19: A multicenter observational cohort study. Infection 2022, 50, 1243–1253. [Google Scholar] [CrossRef]
- Masiá, M.; Padilla, S.; Antequera, P.; Ramos, J.M.; Ruiz, M.; Gutiérrez, F. Predictors of Pneumococcal Co-infection for Patients with Pandemic (H1N1) 2009. Emerg. Infect. Dis. 2011, 17, 1475–1478. [Google Scholar] [CrossRef]
Variables # | Whole Population (n = 8902) | Influenza Cohort (n = 3702) | COVID-19 Cohort (n = 5200) | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | No-COI (n = 7639) | COI (n= 1263) | Total | No-COI (n = 2897) | COI (n = 805) | Total | No-COI (n = 4742) | COI (n = 458) | |
General characteristics | |||||||||
Age, years | 60 (49–70) | 60 (49–69) | 62 (51–72) *** | 55 (43–67) | 54 (42–66) | 59 (47–72) *** | 63 (54–71) | 63 (54–71) | 65 (57–72) *** |
Male sex | 5855 (66.1) | 5012 (65–6) | 843 (66.7) | 2203 (59.5) | 1698 (58.6) | 505 (62.7) * | 3652 (70.2) | 3314 (69.9) | 338 (73.8) |
APACHE II score | 14 (10–19) | 14 (10–18) | 17 (12–22) *** | 15 (11–21) | 15 (11–20) | 19 (14–24) *** | 13 (10–17) | 13 (10–17) | 14 (11–18) *** |
SOFA score | 5 (3–7) | 5 (3–7) | 6 (4–9) | 5 (4–8) | 5 (4–8) | 7 (4–10) *** | 4 (3–7) | 4 (3–7) | 5 (4–8) *** |
Gap-ICU, days | 1 (1–3) | 1 (1–3) | 1 (0–2) *** | 3 (1–6) | 1.0 (1.0–2.0) | 1.0 (1.0–2.0) | 2 (0–4) | 2 (0–4) | 1 (0–3) * |
COVID | 5200 | 4742 (61.1) | 458 (36.3) *** | ----- | ----- | ----- | ----- | ----- | ----- |
Influenza | 3702 | 2897 (37.9) | 805 (63.7) *** | ----- | ----- | ----- | ----- | ----- | ----- |
Laboratory | |||||||||
WBC ×103 | 8.6 (5.7–12.5) | 8.6 (5.8–12.3) | 8.9 (5.8–13.7) | 8.1 (4.6–12.4) | 8.0 (4.7–12.0) | 8.8 (3.6–14.3) | 8.9 (6.4–12.5) | 8.9 (6.4–12.4) | 9.0 (6.1–13.1) |
LDH U/L | 542 (403–687) | 537 (401–686) | 566 (415–697) * | 599 (457–750) | 600 (456–754) | 594 (449–737) | 501 (380–632) | 500 (379–632) | 514 (390–631) |
C-RP mg/mL | 19.6 (9.8–34.7) | 18.3 (9.3–32.8) | 27.0 (14.3–64.2) *** | 36 (19–84) | 34 (17–20) | 42 (23–100) *** | 14 (7–22) | 14 (7.2–22.5) | 14 (8.6–24.6) *** |
PCT ng/mL | 0.8 (0.20–5.67) | 0.73 (0.19–4.14) | 3.4 (0.56–19.3) *** | 7.2 (1.9–22.0) | 6.2 (1.7–20.7) | 12.2 (3.2–26.4) *** | 0.26 (0.11–0.72) | 0.25 (0.11–0.70) | 0.30 (0.14–0.8) *** |
Creatinine mg/dL | 0.89 (0.70–1.23) | 0.87 (0.69–1.17) | 1.0 (0.75–1.57) *** | 1.0 (0.70–1.46) | 0.9 (0.7–1.4) | 1.2 (0.8–1.9) *** | 0.8 (0.7–1.0) | 0.8 (0.6–1.0) | 0.8 (0.7–1.1) *** |
CPK | 216 (100–420) | 208 (98–410) | 272 (119–490) *** | 331 (145–585) | 327 (146–578) | 344 (138–629) | 170 (83–321) | 169 (83–320) | 193 (95–335) * |
Lactate mmol/L | 2.0 (1.4–3.3) | 1.9 (1.3–3.1) | 2.8 (1.8–4.2) *** | 3.2 (2.8–4.7) | 3.2 (2.3–4.7) | 3.6 (2.7–5.0) *** | 1.5 (1.1–2.1) | 1.5 (1.1–2.0) | 1.6 (1.2–2.2) *** |
Comobidities | |||||||||
COPD | 1281 (14.3) | 1022 (13.4) | 259 (20.5) *** | 908 (24.5) | 696 (24.0) | 212 (26.3) | 373 (7.2) | 326 (6.8) | 47 (10.3) * |
Asthma | 698 (7.8) | 595 (7.8) | 103 (8.1) | 367 (10.0) | 296 (10.2) | 71 (8.8) | 331 (6.4) | 299 (6.3) | 32 (6.9) |
Chr. Heart Dis | 623 (7.0) | 501 (6.6) | 122 (9.6) *** | 447 (12.0) | 347 (12.0) | 100 (12.4) | 176 (3.4) | 154 (3.2) | 22 (4.8) |
Chr.Renal Dis. | 595 (6.7) | 486 (6.4) | 109 (8.6) *** | 314 (8.5) | 235 (8.1) | 79 (9.8) | 281 (5.4) | 251 (5.3) | 30 (6.5) |
Hematologic Dis. | 436 (4.9) | 343 (4.5) | 93 (7.4) *** | 272 (7.3) | 202 (6.7) | 70 (8.7) | 164 (3.1) | 141 (2.9) | 23 (5.0) * |
Pregnancy | 480 (5.4) | 364 (4.7) | 116 (9.2) *** | 460 (12.4) | 344 (11.9) | 116 (14.4) | 20 (0.38) | 20 (0.4) | 0 (0.0) |
Obesity | 3046 (34.2) | 2677 (35.0) | 369 (29.2) *** | 1178 (31.8) | 985 (34.0) | 193 (24.0) *** | 1868 (35.9) | 1692 (35.7) | 176 (38.4) |
IS | 711 (7.9) | 564 (7.4) | 147 (11.6) *** | 419 (11.3) | 305 (10.5) | 114 (14.2) ** | 292 (5.6) | 1 (0.02) | 1 (0.22) |
Treatments and procedures | |||||||||
EAT | 7410 (83.2) | 6228 (81.5) | 1182 (93.6) *** | 3240 (87.5) | 2452 (84.6) | 788 (97.9) *** | 4170 (80.2) | 3776 (79.6) | 394 (86.9) *** |
Corticosteriods | 5275 (59.3) | 4530 (59.3) | 745 (59.0) | 1438 (38.8) | 1048 (36.2) | 390 (48.4) *** | 3837 (73.8) | 3482 (73.4) | 355 (77.5) |
IMV | 5998 (67.4) | 3512 (46.0) | 740 (58.6) *** | 2072 (56.0) | 1566 (54.1) | 506 (62.9) *** | 3926 (75.5) | 3510 (74.0) | 416 (90.8) |
AKI | 1435 (16.1) | 1081 (14.2) | 354 (28.0) *** | 904 (24.4) | 608 (21.0) | 296 (36.8) *** | 531 (10.2) | 473 (9.9) | 58 (12.7) |
Prone IMV | 4064 (45.6) | 3469 (45.4) | 595 (47.1) | 1101 (29.7) | 837 (28.9) | 264 (32.8) * | 2963 (57.0) | 2632 (55.5) | 331 (72.3) *** |
Shock | 3549 (39.9) | 2827 (37.0) | 722 (57.2) *** | 1899 (51.3) | 1363 (47.0) | 536 (66.6) *** | 1650 (31.7) | 1464 (30.9) | 186 (40.6) *** |
Outcomes | |||||||||
LOS ICU, days | 13 (6–23) | 12 (6–23) | 14 (6–27) *** | 10 (4–18) | 10.0 (4–18) | 10.0 (5–19) | 15 (8–27) | 14 (7–26) | 23 (13–37) *** |
IMV days | 12 (6–23) | 12 (6–23) | 13 (7–25) | 8 (3–17) | 8 (3–16) | 10 (4–18) *** | 15 (8–27) | 15 (8–27) | 19 (11–33) *** |
ICU mortality | 2294 (25.8) | 1872 (24.5) | 422 (33.4) *** | 796 (21.5) | 552 (19.1) | 244 (30.3) *** | 1498 (28.8) | 1320 (27.8) | 178 (38.9) *** |
Microorganism | COI Whole Population n = 1263 | Influenza Cohort n = 805 | COVID-19 Cohort n = 458 |
---|---|---|---|
Streptococcus pneumoniae, n (%) | 433 (32.3) | 367 (44.8) | 66 (12.4) |
Staphylococcus aures Methicillin-sensitive, n (%) | 172 (12.8) | 99 (12.1) | 73 (13.8) |
Pseudomonas aeruginosa, n (%) | 143 (10.6) | 56 (6.9) | 87 (16.4) |
Aspergillus spp., n (%) | 78 (5.8) | 42 (5.2) | 36 (6.8) |
Escherichia coli, n (%) | 69 (5.1) | 23 (2.8) | 46 (8.7) |
Klebsiella spp., n (%) | 66 (4.8) | 19 (2.3) | 47 (8.8) |
Haemophilus influenzae, n (%) | 61 (4.5) | 38 (4.7) | 23 (4.3) |
Staphylococcus aures Methicillin-resistant, n (%) | 56 (4.2) | 34 (4.1) | 22 (4.1) |
Streptococcus pyogenes, n (%) | 45 (3.3) | 45 (5.6) | 0 (0.0) |
Enterobacter spp., n (%) | 30 (2.3) | 4 (0.5) | 26 (4.9) |
Serratia spp., n (%) | 23 (1.6) | 8 (1.0) | 15 (2.8) |
Staphylococcus hominis | 22 (1.6) | 6 (0.7) | 16 (3.0) |
Stenotrophomonas maltophilia, n (%) | 21 (1.5) | 6 (0.7) | 15 (2.8) |
Moraxella catarrhalis, n (%) | 15 (1.1) | 12 (1.4) | 3 (0.6) |
Acinetobacter baumannii, n (%) | 14 (1.0) | 14 (1.7) | 0 (0.0) |
Chlamydia spp., n (%) | 10 (0.7) | 5 (0.6) | 5 (0.9) |
Mycoplasma spp., n (%) | 10 (0.7) | 5 (0.6) | 5 (0.9) |
Staphylococcus haemolyticus, n (%) | 10 (0.7) | 0 (0.0) | 10 (1.8) |
Streptococcus agalactiae, n (%) | 5 (0.4) | 0 (0.0) | 5 (0.9) |
Coxiella burnetii, n (%) | 5 (0.4) | 0 (0.0) | 5 (0.9) |
Pneumocystis jirovecii, n (%) | 5 (0.4) | 5 (0.6) | 0 (0.0) |
Morganella morganii, n (%) | 4 (0.3) | 2 (0.2) | 2 (0.4) |
Proteus spp., n (%) | 4 (0.3) | 0 (0.0) | 4 (0.8) |
Corynebacterium spp., n (%) | 4 (0.3) | 0 (0.0) | 4 (0.8) |
Citrobacter spp., n (%) | 4 (0.3) | 0 (0.0) | 4 (0.8) |
Others, n (%) | 40(3.0) | 29 (3.5) | 11 (2.0) |
Total, n (%) | 1342(100) | 819 (100) | 530 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, A.; Gómez, J.; Martín-Loeches, I.; Claverias, L.; Díaz, E.; Zaragoza, R.; Borges-Sa, M.; Gómez-Bertomeu, F.; Franquet, Á.; Trefler, S.; et al. A Machine Learning Approach to Determine Risk Factors for Respiratory Bacterial/Fungal Coinfection in Critically Ill Patients with Influenza and SARS-CoV-2 Infection: A Spanish Perspective. Antibiotics 2024, 13, 968. https://doi.org/10.3390/antibiotics13100968
Rodríguez A, Gómez J, Martín-Loeches I, Claverias L, Díaz E, Zaragoza R, Borges-Sa M, Gómez-Bertomeu F, Franquet Á, Trefler S, et al. A Machine Learning Approach to Determine Risk Factors for Respiratory Bacterial/Fungal Coinfection in Critically Ill Patients with Influenza and SARS-CoV-2 Infection: A Spanish Perspective. Antibiotics. 2024; 13(10):968. https://doi.org/10.3390/antibiotics13100968
Chicago/Turabian StyleRodríguez, Alejandro, Josep Gómez, Ignacio Martín-Loeches, Laura Claverias, Emili Díaz, Rafael Zaragoza, Marcio Borges-Sa, Frederic Gómez-Bertomeu, Álvaro Franquet, Sandra Trefler, and et al. 2024. "A Machine Learning Approach to Determine Risk Factors for Respiratory Bacterial/Fungal Coinfection in Critically Ill Patients with Influenza and SARS-CoV-2 Infection: A Spanish Perspective" Antibiotics 13, no. 10: 968. https://doi.org/10.3390/antibiotics13100968
APA StyleRodríguez, A., Gómez, J., Martín-Loeches, I., Claverias, L., Díaz, E., Zaragoza, R., Borges-Sa, M., Gómez-Bertomeu, F., Franquet, Á., Trefler, S., González Garzón, C., Cortés, L., Alés, F., Sancho, S., Solé-Violán, J., Estella, Á., Berrueta, J., García-Martínez, A., Suberviola, B., ... Bodí, M., on behalf of GETGAG/COVID-19 SEMICYUC Working Group. (2024). A Machine Learning Approach to Determine Risk Factors for Respiratory Bacterial/Fungal Coinfection in Critically Ill Patients with Influenza and SARS-CoV-2 Infection: A Spanish Perspective. Antibiotics, 13(10), 968. https://doi.org/10.3390/antibiotics13100968